smart sensor code initial version
Dependencies: mbed-src-KL05Z-smart-sensor
kl05-smart-sensor.cpp@1:587e0346abca, 2019-03-26 (annotated)
- Committer:
- vincenxp
- Date:
- Tue Mar 26 10:41:49 2019 +0000
- Revision:
- 1:587e0346abca
- Parent:
- 0:10bf1bb6d2b5
- Child:
- 2:5dacfd690a75
run4 for Cz
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
vincenxp | 0:10bf1bb6d2b5 | 1 | /**************************************************************************************** |
vincenxp | 0:10bf1bb6d2b5 | 2 | * |
vincenxp | 0:10bf1bb6d2b5 | 3 | * MIT License (https://spdx.org/licenses/MIT.html) |
vincenxp | 0:10bf1bb6d2b5 | 4 | * Copyright 2018 NXP |
vincenxp | 0:10bf1bb6d2b5 | 5 | * |
vincenxp | 0:10bf1bb6d2b5 | 6 | * MBED code for KL05Z-based "smart" current sensor, which measures current in |
vincenxp | 0:10bf1bb6d2b5 | 7 | * three ranges. Intended to be used with an aggregator board which triggers sensors |
vincenxp | 0:10bf1bb6d2b5 | 8 | * on all instrumented rails and then sequentially reads the data from each out over I2C. |
vincenxp | 0:10bf1bb6d2b5 | 9 | * |
vincenxp | 0:10bf1bb6d2b5 | 10 | * Because there is no crystal on the board, need to edit source mbed-dev library |
vincenxp | 0:10bf1bb6d2b5 | 11 | * to use internal oscillator with pound-define: |
vincenxp | 0:10bf1bb6d2b5 | 12 | * change to "#define CLOCK_SETUP 0" in file: |
vincenxp | 0:10bf1bb6d2b5 | 13 | * mbed-dev/targets/TARGET_Freescale/TARGET_KLXX/TARGET_KL05Z/device/system_MKL05Z4.c |
vincenxp | 0:10bf1bb6d2b5 | 14 | * |
vincenxp | 0:10bf1bb6d2b5 | 15 | ****************************************************************************************/ |
vincenxp | 0:10bf1bb6d2b5 | 16 | |
vincenxp | 1:587e0346abca | 17 | /**************************************************************************************** |
vincenxp | 1:587e0346abca | 18 | * Add a uart trace instead of I2C |
vincenxp | 1:587e0346abca | 19 | * For the uart trace: |
vincenxp | 1:587e0346abca | 20 | * * add a timestamp (returns the timestamp of the current measure) |
vincenxp | 1:587e0346abca | 21 | * * do not average the measures: |
vincenxp | 1:587e0346abca | 22 | * + add a paramter to the existing function to set the number of samples to be |
vincenxp | 1:587e0346abca | 23 | * averaged (I2C legacy) |
vincenxp | 1:587e0346abca | 24 | * * set to 0 the different settling time: |
vincenxp | 1:587e0346abca | 25 | * + do not see dysfunction so far for the FET settling time neither for the voltage |
vincenxp | 1:587e0346abca | 26 | * divider |
vincenxp | 1:587e0346abca | 27 | * + do not see the need in case of the voltage or current measurement. It is |
vincenxp | 1:587e0346abca | 28 | * mentionned that this is for the B2902A settling time, so i guess this when the |
vincenxp | 1:587e0346abca | 29 | * SMU is used. It should not be the case by default anyway! |
vincenxp | 1:587e0346abca | 30 | * |
vincenxp | 1:587e0346abca | 31 | * Use few defines to instrument the code as below: |
vincenxp | 1:587e0346abca | 32 | * |
vincenxp | 1:587e0346abca | 33 | * | USEI2CNOTUART | DEBUG | TRACEPRINT | BUFFMEASURES | comment |
vincenxp | 1:587e0346abca | 34 | * | 1 | 0 | 0 | 0 | legacy mode - modify the KL25Z code to output the sensor number, voltage and current information |
vincenxp | 1:587e0346abca | 35 | * | 0 | 0 | 0 | 0 | uart trace: print thru the uart console the result of the measures: timestamp, voltage, current |
vincenxp | 1:587e0346abca | 36 | * | 0 | 0 | 1 | 0 | same as above but print also the time consumes to print those data! |
vincenxp | 1:587e0346abca | 37 | * | 0 | 1 | 0 | 0 | uart trace: print thru the uart console many measures (see define below) but impact the sampling rate |
vincenxp | 1:587e0346abca | 38 | * | 0 | 1 | 1 | 0 | same as above but uprint also the time consumes to print those data! |
vincenxp | 1:587e0346abca | 39 | * | 0 | 0 | 0 | 1 | use a buffer to store the measures and print the entire buffer one it is full; improve the sampling rate but the buffer size is limited |
vincenxp | 1:587e0346abca | 40 | * |
vincenxp | 1:587e0346abca | 41 | ****************************************************************************************/ |
vincenxp | 0:10bf1bb6d2b5 | 42 | #include <mbed.h> |
vincenxp | 0:10bf1bb6d2b5 | 43 | |
vincenxp | 1:587e0346abca | 44 | // Select the I2C trace or the uart trace for debug |
vincenxp | 0:10bf1bb6d2b5 | 45 | #define USEI2CNOTUART 0 |
vincenxp | 0:10bf1bb6d2b5 | 46 | |
vincenxp | 1:587e0346abca | 47 | // Custom setup in case of I2C |
vincenxp | 1:587e0346abca | 48 | #define I2CCUSTOM 0 |
vincenxp | 1:587e0346abca | 49 | |
vincenxp | 1:587e0346abca | 50 | // If BUFFMEASURES == 1 : fill up a buffer of measures (timestamp, vdd & current only) and then send the whole buffer thru the uart console & loop |
vincenxp | 1:587e0346abca | 51 | // * buffer size is limited to the 4k of RAM (1 measure of timestamp or volt or current is a float, each of 4 bytes) |
vincenxp | 1:587e0346abca | 52 | #define BUFFMEASURES 0 |
vincenxp | 1:587e0346abca | 53 | |
vincenxp | 1:587e0346abca | 54 | // If TRACEPRINT == 1 : trace the time comnsumes by the printf to the uart console |
vincenxp | 1:587e0346abca | 55 | #define TRACEPRINT 1 |
vincenxp | 1:587e0346abca | 56 | |
vincenxp | 1:587e0346abca | 57 | // If DEBUG == 1 : do not buffer the measures but send the measures thru the uart console (measures duration (volt + current), sensor number, timestamps, voltage, current, high current, mid current, low current |
vincenxp | 1:587e0346abca | 58 | #define DEBUG 1 |
vincenxp | 1:587e0346abca | 59 | |
vincenxp | 0:10bf1bb6d2b5 | 60 | // set things up... |
vincenxp | 0:10bf1bb6d2b5 | 61 | #if (USEI2CNOTUART == 1) |
vincenxp | 0:10bf1bb6d2b5 | 62 | I2CSlave slave(PTB4, PTB3); |
vincenxp | 1:587e0346abca | 63 | #if (I2CCUSTOM == 1) |
vincenxp | 1:587e0346abca | 64 | int n_meas=1; // number of averages when measuring... |
vincenxp | 1:587e0346abca | 65 | #else |
vincenxp | 1:587e0346abca | 66 | int n_meas=25; // number of averages when measuring... |
vincenxp | 1:587e0346abca | 67 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 68 | #else |
vincenxp | 0:10bf1bb6d2b5 | 69 | Serial uart(PTB3, PTB4); // tx, rx |
vincenxp | 1:587e0346abca | 70 | int n_meas=1; // number of averages when measuring... |
vincenxp | 1:587e0346abca | 71 | Timer timer; // I2C trace isn't prototype with timestamp |
vincenxp | 1:587e0346abca | 72 | float timestamp; |
vincenxp | 1:587e0346abca | 73 | #endif |
vincenxp | 1:587e0346abca | 74 | |
vincenxp | 1:587e0346abca | 75 | #if (BUFFMEASURES == 1) |
vincenxp | 1:587e0346abca | 76 | // Define BUFFERSIZE to 250 |
vincenxp | 1:587e0346abca | 77 | // * 250 * 3 (float) * 4 (4 bytes for each float) = 3000 bytes almost 3kBytes out of the 4 |
vincenxp | 1:587e0346abca | 78 | #define BUFFERSIZE 200 |
vincenxp | 1:587e0346abca | 79 | |
vincenxp | 1:587e0346abca | 80 | // buffer to store timestamp, voltage & current |
vincenxp | 1:587e0346abca | 81 | float buffer[BUFFERSIZE][3]; |
vincenxp | 1:587e0346abca | 82 | #endif |
vincenxp | 1:587e0346abca | 83 | |
vincenxp | 1:587e0346abca | 84 | #ifndef BUFFERSIZE |
vincenxp | 1:587e0346abca | 85 | #define BUFFERSIZE 0 |
vincenxp | 0:10bf1bb6d2b5 | 86 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 87 | |
vincenxp | 0:10bf1bb6d2b5 | 88 | // These will be used for identifying smart sensor build options: |
vincenxp | 0:10bf1bb6d2b5 | 89 | // voltage range (0-3.3V, 0-6.6V, and 12V), and |
vincenxp | 0:10bf1bb6d2b5 | 90 | // current range (high: 4A max, and low: 1.65A max) |
vincenxp | 0:10bf1bb6d2b5 | 91 | // (default pin pulls are pull up...) |
vincenxp | 0:10bf1bb6d2b5 | 92 | // But this still needs to be implemented per schematic... |
vincenxp | 0:10bf1bb6d2b5 | 93 | DigitalIn gpio0(PTA3); // R8 |
vincenxp | 0:10bf1bb6d2b5 | 94 | DigitalIn C_RANGE(PTA4); // R9 |
vincenxp | 0:10bf1bb6d2b5 | 95 | DigitalIn V_RANGE0(PTA5); // R10 |
vincenxp | 0:10bf1bb6d2b5 | 96 | DigitalIn V_RANGE1(PTA6); // R11 |
vincenxp | 0:10bf1bb6d2b5 | 97 | |
vincenxp | 0:10bf1bb6d2b5 | 98 | // configure pins for measurements... |
vincenxp | 0:10bf1bb6d2b5 | 99 | // analog inputs from sense amps and rail voltage (divider)... |
vincenxp | 0:10bf1bb6d2b5 | 100 | AnalogIn HIGH_ADC(PTB10); |
vincenxp | 0:10bf1bb6d2b5 | 101 | AnalogIn VRAIL_ADC(PTB11); |
vincenxp | 0:10bf1bb6d2b5 | 102 | AnalogIn LOW1_ADC(PTA9); |
vincenxp | 0:10bf1bb6d2b5 | 103 | AnalogIn LOW2_ADC(PTA8); |
vincenxp | 0:10bf1bb6d2b5 | 104 | // outputs which control switching FETs... |
vincenxp | 0:10bf1bb6d2b5 | 105 | DigitalOut VRAIL_MEAS(PTA7); // turns on Q7, connecting voltage divider |
vincenxp | 0:10bf1bb6d2b5 | 106 | DigitalOut LOW_ENABLE(PTB0); // turns on Q4, turning off Q1, enabling low measurement |
vincenxp | 0:10bf1bb6d2b5 | 107 | DigitalOut LOW1(PTB2); // turns on Q5, turning off Q2, disconnecting shunt R1 |
vincenxp | 0:10bf1bb6d2b5 | 108 | DigitalOut LOW2(PTB1); // turns on Q6, turning off Q3, disconnecting shunt R2 |
vincenxp | 0:10bf1bb6d2b5 | 109 | |
vincenxp | 1:587e0346abca | 110 | //VB |
vincenxp | 1:587e0346abca | 111 | //DigitalOut OPT3(PTB13); |
vincenxp | 0:10bf1bb6d2b5 | 112 | |
vincenxp | 0:10bf1bb6d2b5 | 113 | // set initial, default I2C listening address... |
vincenxp | 0:10bf1bb6d2b5 | 114 | // same one for all sensors so we don't need to individually program each one... |
vincenxp | 0:10bf1bb6d2b5 | 115 | int address = 0x48 << 1; |
vincenxp | 0:10bf1bb6d2b5 | 116 | // buffers for I2C communication |
vincenxp | 0:10bf1bb6d2b5 | 117 | char buf[15], inbuf[10]; |
vincenxp | 0:10bf1bb6d2b5 | 118 | char obuf[10], cbuf[10]; // another buf for compressed output... |
vincenxp | 0:10bf1bb6d2b5 | 119 | |
vincenxp | 0:10bf1bb6d2b5 | 120 | // variables... |
vincenxp | 0:10bf1bb6d2b5 | 121 | int i, j, n=0; |
vincenxp | 0:10bf1bb6d2b5 | 122 | bool waiting; |
vincenxp | 0:10bf1bb6d2b5 | 123 | bool big_data = false; // flag to save time during ISR |
vincenxp | 0:10bf1bb6d2b5 | 124 | // only process uncompressed data if explicitly called for... |
vincenxp | 0:10bf1bb6d2b5 | 125 | |
vincenxp | 0:10bf1bb6d2b5 | 126 | // these unions enable converting float val to bytes for transmission over I2C... |
vincenxp | 0:10bf1bb6d2b5 | 127 | union u_tag { |
vincenxp | 0:10bf1bb6d2b5 | 128 | char b[4]; |
vincenxp | 0:10bf1bb6d2b5 | 129 | float fval; |
vincenxp | 0:10bf1bb6d2b5 | 130 | int ival; |
vincenxp | 0:10bf1bb6d2b5 | 131 | } u, v; |
vincenxp | 0:10bf1bb6d2b5 | 132 | |
vincenxp | 0:10bf1bb6d2b5 | 133 | |
vincenxp | 0:10bf1bb6d2b5 | 134 | // define measurement result and status variables... |
vincenxp | 0:10bf1bb6d2b5 | 135 | float measurement1; |
vincenxp | 0:10bf1bb6d2b5 | 136 | float measurement2; |
vincenxp | 0:10bf1bb6d2b5 | 137 | char status=0; |
vincenxp | 1:587e0346abca | 138 | |
vincenxp | 0:10bf1bb6d2b5 | 139 | float vref =3.3; |
vincenxp | 0:10bf1bb6d2b5 | 140 | float factor_H = vref / 0.8; |
vincenxp | 0:10bf1bb6d2b5 | 141 | float factor_L1 = vref / (0.05 * 1000); |
vincenxp | 0:10bf1bb6d2b5 | 142 | float factor_L2 = vref / (2 * 1000); |
vincenxp | 0:10bf1bb6d2b5 | 143 | |
vincenxp | 1:587e0346abca | 144 | #if (USEI2CNOTUART == 1) |
vincenxp | 1:587e0346abca | 145 | #if (I2CCUSTOM == 1) |
vincenxp | 1:587e0346abca | 146 | int wait_mbbb = 0; |
vincenxp | 1:587e0346abca | 147 | int wait_high = 0; |
vincenxp | 1:587e0346abca | 148 | int wait_low1 = 0; |
vincenxp | 1:587e0346abca | 149 | int wait_low2 = 0; |
vincenxp | 1:587e0346abca | 150 | int wait_vrail = 0; |
vincenxp | 1:587e0346abca | 151 | #else |
vincenxp | 0:10bf1bb6d2b5 | 152 | int wait_mbbb = 5; |
vincenxp | 0:10bf1bb6d2b5 | 153 | int wait_high = 250; |
vincenxp | 0:10bf1bb6d2b5 | 154 | int wait_low1 = 250; |
vincenxp | 0:10bf1bb6d2b5 | 155 | int wait_low2 = 500; |
vincenxp | 0:10bf1bb6d2b5 | 156 | int wait_vrail = 200; |
vincenxp | 1:587e0346abca | 157 | #endif |
vincenxp | 1:587e0346abca | 158 | #else |
vincenxp | 1:587e0346abca | 159 | int wait_mbbb = 5;//VB |
vincenxp | 1:587e0346abca | 160 | int wait_high = 250;//VB |
vincenxp | 1:587e0346abca | 161 | int wait_low1 = 250;//VB |
vincenxp | 1:587e0346abca | 162 | int wait_low2 = 500;//VB |
vincenxp | 1:587e0346abca | 163 | int wait_vrail = 200;//VB |
vincenxp | 1:587e0346abca | 164 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 165 | |
vincenxp | 1:587e0346abca | 166 | // Store the 3 current sensors' value |
vincenxp | 1:587e0346abca | 167 | float current[3]; |
vincenxp | 0:10bf1bb6d2b5 | 168 | |
vincenxp | 0:10bf1bb6d2b5 | 169 | /*********************************************************************************** |
vincenxp | 0:10bf1bb6d2b5 | 170 | * |
vincenxp | 0:10bf1bb6d2b5 | 171 | * FUNCTIONS FOR MEASURING CURRENT AND VOLTAGE |
vincenxp | 0:10bf1bb6d2b5 | 172 | * |
vincenxp | 0:10bf1bb6d2b5 | 173 | ************************************************************************************/ |
vincenxp | 0:10bf1bb6d2b5 | 174 | |
vincenxp | 0:10bf1bb6d2b5 | 175 | void enableHighRange(){ |
vincenxp | 0:10bf1bb6d2b5 | 176 | LOW_ENABLE = 0; // short both low current shunts, close Q1 |
vincenxp | 1:587e0346abca | 177 | //VB #if (USEI2CNOTUART == 1 && CUSTOM == 0) |
vincenxp | 0:10bf1bb6d2b5 | 178 | wait_us(wait_mbbb); // delay for FET to settle... (make before break) |
vincenxp | 1:587e0346abca | 179 | //VB #endif |
vincenxp | 0:10bf1bb6d2b5 | 180 | LOW1 = 0; LOW2 = 0; // connect both shunts to make lower series resistance |
vincenxp | 1:587e0346abca | 181 | VRAIL_MEAS = 0; // disconnect rail voltage divider |
vincenxp | 1:587e0346abca | 182 | //VB #if (USEI2CNOTUART == 1 && CUSTOM == 0) |
vincenxp | 0:10bf1bb6d2b5 | 183 | wait_us(wait_high); // wait for B2902A settling... |
vincenxp | 1:587e0346abca | 184 | //VB #endif |
vincenxp | 0:10bf1bb6d2b5 | 185 | } |
vincenxp | 0:10bf1bb6d2b5 | 186 | |
vincenxp | 0:10bf1bb6d2b5 | 187 | void enableLow1Range(){ |
vincenxp | 0:10bf1bb6d2b5 | 188 | LOW1 = 0; LOW2 = 1; // disconnect LOW2 shunt so LOW1 can measure |
vincenxp | 1:587e0346abca | 189 | //VB #if (USEI2CNOTUART == 1 && CUSTOM == 0) |
vincenxp | 0:10bf1bb6d2b5 | 190 | wait_us(wait_mbbb); // delay for FET to settle... (make before break) |
vincenxp | 1:587e0346abca | 191 | //VB #endif |
vincenxp | 0:10bf1bb6d2b5 | 192 | LOW_ENABLE = 1; // unshort low current shunts, open Q1 |
vincenxp | 0:10bf1bb6d2b5 | 193 | VRAIL_MEAS = 0; // disconnect rail voltage divider |
vincenxp | 1:587e0346abca | 194 | //VB #if (USEI2CNOTUART == 1 && CUSTOM == 0) |
vincenxp | 0:10bf1bb6d2b5 | 195 | wait_us(wait_low1); // wait for B2902A settling... |
vincenxp | 1:587e0346abca | 196 | //VB #endif |
vincenxp | 0:10bf1bb6d2b5 | 197 | } |
vincenxp | 0:10bf1bb6d2b5 | 198 | |
vincenxp | 0:10bf1bb6d2b5 | 199 | void enableLow2Range(){ |
vincenxp | 0:10bf1bb6d2b5 | 200 | LOW1 = 1; LOW2 = 0; // disconnect LOW1 shunt so LOW2 can measure |
vincenxp | 1:587e0346abca | 201 | //VB #if (USEI2CNOTUART == 1 && CUSTOM == 0) |
vincenxp | 0:10bf1bb6d2b5 | 202 | wait_us(wait_mbbb); // delay for FET to settle... (make before break) |
vincenxp | 1:587e0346abca | 203 | //VB #endif |
vincenxp | 0:10bf1bb6d2b5 | 204 | LOW_ENABLE = 1; // unshort low current shunts, open Q1 |
vincenxp | 0:10bf1bb6d2b5 | 205 | VRAIL_MEAS = 0; // disconnect rail voltage divider |
vincenxp | 1:587e0346abca | 206 | //VB #if (USEI2CNOTUART == 1 && CUSTOM == 0) |
vincenxp | 0:10bf1bb6d2b5 | 207 | wait_us(wait_low2); // wait for B2902A settling... |
vincenxp | 1:587e0346abca | 208 | //VB #endif |
vincenxp | 0:10bf1bb6d2b5 | 209 | } |
vincenxp | 0:10bf1bb6d2b5 | 210 | |
vincenxp | 0:10bf1bb6d2b5 | 211 | void enableRailV(){ |
vincenxp | 0:10bf1bb6d2b5 | 212 | VRAIL_MEAS = 1; // turn on Q7, to enable R3-R4 voltage divider |
vincenxp | 1:587e0346abca | 213 | //VB #if (USEI2CNOTUART == 1 && CUSTOM == 0) |
vincenxp | 0:10bf1bb6d2b5 | 214 | wait_us(wait_vrail); // wait for divider to settle... |
vincenxp | 0:10bf1bb6d2b5 | 215 | // Compensation cap can be used to make |
vincenxp | 0:10bf1bb6d2b5 | 216 | // voltage at ADC a "square wave" but it is |
vincenxp | 0:10bf1bb6d2b5 | 217 | // rail voltage and FET dependent. Cap will |
vincenxp | 0:10bf1bb6d2b5 | 218 | // need tuning if this wait time is to be |
vincenxp | 0:10bf1bb6d2b5 | 219 | // removed/reduced. |
vincenxp | 0:10bf1bb6d2b5 | 220 | // |
vincenxp | 0:10bf1bb6d2b5 | 221 | // So, as it turns out, this settling time and |
vincenxp | 0:10bf1bb6d2b5 | 222 | // compensation capacitance are voltage dependent |
vincenxp | 0:10bf1bb6d2b5 | 223 | // because of the depletion region changes in the |
vincenxp | 0:10bf1bb6d2b5 | 224 | // FET. Reminiscent of grad school and DLTS. |
vincenxp | 0:10bf1bb6d2b5 | 225 | // Gotta love device physics... |
vincenxp | 1:587e0346abca | 226 | //VB #endif |
vincenxp | 0:10bf1bb6d2b5 | 227 | } |
vincenxp | 0:10bf1bb6d2b5 | 228 | |
vincenxp | 0:10bf1bb6d2b5 | 229 | // when a divider is present, turn it off to remove the current it draws... |
vincenxp | 0:10bf1bb6d2b5 | 230 | void disableRailV(){ |
vincenxp | 0:10bf1bb6d2b5 | 231 | VRAIL_MEAS = 0; // turn off Q7, disabling R3-R4 voltage divider |
vincenxp | 0:10bf1bb6d2b5 | 232 | } |
vincenxp | 0:10bf1bb6d2b5 | 233 | |
vincenxp | 0:10bf1bb6d2b5 | 234 | // measure high range current... |
vincenxp | 0:10bf1bb6d2b5 | 235 | float measureHigh(int nbMeas){ |
vincenxp | 0:10bf1bb6d2b5 | 236 | float highI=0; |
vincenxp | 0:10bf1bb6d2b5 | 237 | enableHighRange(); |
vincenxp | 0:10bf1bb6d2b5 | 238 | for (i = 0; i < nbMeas; i++){ |
vincenxp | 0:10bf1bb6d2b5 | 239 | highI += HIGH_ADC; |
vincenxp | 0:10bf1bb6d2b5 | 240 | } |
vincenxp | 0:10bf1bb6d2b5 | 241 | highI = factor_H * highI/nbMeas; |
vincenxp | 1:587e0346abca | 242 | #if (USEI2CNOTUART == 0) |
vincenxp | 0:10bf1bb6d2b5 | 243 | timestamp = timer.read(); |
vincenxp | 1:587e0346abca | 244 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 245 | return highI; |
vincenxp | 0:10bf1bb6d2b5 | 246 | } |
vincenxp | 0:10bf1bb6d2b5 | 247 | |
vincenxp | 0:10bf1bb6d2b5 | 248 | // mesaure mid range current... |
vincenxp | 0:10bf1bb6d2b5 | 249 | float measureLow1(bool autorange, int nbMeas){ |
vincenxp | 0:10bf1bb6d2b5 | 250 | float low1I=0; |
vincenxp | 0:10bf1bb6d2b5 | 251 | if (!autorange) enableLow1Range(); |
vincenxp | 0:10bf1bb6d2b5 | 252 | for (i = 0; i < nbMeas; i++){ |
vincenxp | 0:10bf1bb6d2b5 | 253 | low1I += LOW1_ADC; |
vincenxp | 0:10bf1bb6d2b5 | 254 | } |
vincenxp | 0:10bf1bb6d2b5 | 255 | if (!autorange) enableHighRange(); |
vincenxp | 0:10bf1bb6d2b5 | 256 | low1I = factor_L1 * low1I/nbMeas; |
vincenxp | 1:587e0346abca | 257 | #if (USEI2CNOTUART == 0) |
vincenxp | 0:10bf1bb6d2b5 | 258 | timestamp = timer.read(); |
vincenxp | 1:587e0346abca | 259 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 260 | return low1I; |
vincenxp | 0:10bf1bb6d2b5 | 261 | } |
vincenxp | 0:10bf1bb6d2b5 | 262 | |
vincenxp | 0:10bf1bb6d2b5 | 263 | // measure low range current... |
vincenxp | 0:10bf1bb6d2b5 | 264 | float measureLow2(bool autorange, int nbMeas){ |
vincenxp | 0:10bf1bb6d2b5 | 265 | float low2I=0; |
vincenxp | 0:10bf1bb6d2b5 | 266 | if (!autorange) enableLow2Range(); |
vincenxp | 0:10bf1bb6d2b5 | 267 | for (i = 0; i < nbMeas; i++){ |
vincenxp | 0:10bf1bb6d2b5 | 268 | low2I += LOW2_ADC; |
vincenxp | 0:10bf1bb6d2b5 | 269 | } |
vincenxp | 0:10bf1bb6d2b5 | 270 | if (!autorange) enableHighRange(); |
vincenxp | 0:10bf1bb6d2b5 | 271 | low2I = factor_L2 * low2I/nbMeas; |
vincenxp | 1:587e0346abca | 272 | #if (USEI2CNOTUART == 0) |
vincenxp | 0:10bf1bb6d2b5 | 273 | timestamp = timer.read(); |
vincenxp | 1:587e0346abca | 274 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 275 | return low2I; |
vincenxp | 0:10bf1bb6d2b5 | 276 | } |
vincenxp | 0:10bf1bb6d2b5 | 277 | |
vincenxp | 0:10bf1bb6d2b5 | 278 | // this function measures current, autoranging as necessary |
vincenxp | 0:10bf1bb6d2b5 | 279 | // to get the best measurement... |
vincenxp | 0:10bf1bb6d2b5 | 280 | // hard coded values for switching ranges needs to be made |
vincenxp | 0:10bf1bb6d2b5 | 281 | // dynamic so 4.125A/1.65A ranges can be used... |
vincenxp | 1:587e0346abca | 282 | |
vincenxp | 1:587e0346abca | 283 | |
vincenxp | 1:587e0346abca | 284 | float measureAutoI(int nbMeas){ |
vincenxp | 0:10bf1bb6d2b5 | 285 | float tempI; |
vincenxp | 0:10bf1bb6d2b5 | 286 | enableHighRange(); // this should already be the case, but do it anyway... |
vincenxp | 1:587e0346abca | 287 | #if (USEI2CNOTUART == 0) |
vincenxp | 0:10bf1bb6d2b5 | 288 | current[0] = 0; |
vincenxp | 0:10bf1bb6d2b5 | 289 | current[1] = 0; |
vincenxp | 0:10bf1bb6d2b5 | 290 | current[2] = 0; |
vincenxp | 1:587e0346abca | 291 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 292 | tempI = measureHigh(nbMeas); |
vincenxp | 1:587e0346abca | 293 | #if (USEI2CNOTUART == 0) |
vincenxp | 0:10bf1bb6d2b5 | 294 | current[0] = tempI; |
vincenxp | 1:587e0346abca | 295 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 296 | status = 1; |
vincenxp | 0:10bf1bb6d2b5 | 297 | // if current is below this threshold, use LOW1 to measure... |
vincenxp | 0:10bf1bb6d2b5 | 298 | if (tempI < 0.060) { |
vincenxp | 0:10bf1bb6d2b5 | 299 | enableLow1Range(); |
vincenxp | 0:10bf1bb6d2b5 | 300 | tempI = measureLow1(false, nbMeas); // call function |
vincenxp | 1:587e0346abca | 301 | #if (USEI2CNOTUART == 0) |
vincenxp | 0:10bf1bb6d2b5 | 302 | current[1] = tempI; |
vincenxp | 1:587e0346abca | 303 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 304 | status = 2; |
vincenxp | 0:10bf1bb6d2b5 | 305 | // if current is below this threshold, use LOW2 to measure... |
vincenxp | 0:10bf1bb6d2b5 | 306 | if (tempI < 0.0009){ |
vincenxp | 0:10bf1bb6d2b5 | 307 | enableLow2Range(); // change FETs to enable LOW2 measurement... |
vincenxp | 0:10bf1bb6d2b5 | 308 | tempI = measureLow2(false, nbMeas); |
vincenxp | 1:587e0346abca | 309 | #if (USEI2CNOTUART == 0) |
vincenxp | 0:10bf1bb6d2b5 | 310 | current[2] = tempI; |
vincenxp | 1:587e0346abca | 311 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 312 | status = 3; |
vincenxp | 0:10bf1bb6d2b5 | 313 | } |
vincenxp | 0:10bf1bb6d2b5 | 314 | enableHighRange(); |
vincenxp | 0:10bf1bb6d2b5 | 315 | } |
vincenxp | 0:10bf1bb6d2b5 | 316 | return tempI; |
vincenxp | 0:10bf1bb6d2b5 | 317 | } |
vincenxp | 0:10bf1bb6d2b5 | 318 | |
vincenxp | 0:10bf1bb6d2b5 | 319 | |
vincenxp | 0:10bf1bb6d2b5 | 320 | // measure the rail voltage, default being with |
vincenxp | 0:10bf1bb6d2b5 | 321 | // need to add logic for 5V/12V/arbitraryV range... |
vincenxp | 1:587e0346abca | 322 | float measureRailV(int nbMeas){ |
vincenxp | 0:10bf1bb6d2b5 | 323 | float railv=0; |
vincenxp | 0:10bf1bb6d2b5 | 324 | enableRailV(); // switch FETs so divider is connected... |
vincenxp | 0:10bf1bb6d2b5 | 325 | for (i = 0; i < nbMeas; i++){ |
vincenxp | 0:10bf1bb6d2b5 | 326 | railv += VRAIL_ADC; // read voltage at divider output... |
vincenxp | 0:10bf1bb6d2b5 | 327 | } |
vincenxp | 0:10bf1bb6d2b5 | 328 | disableRailV(); // now disconnect the voltage divider |
vincenxp | 0:10bf1bb6d2b5 | 329 | railv = vref * (railv/nbMeas); // compute average |
vincenxp | 0:10bf1bb6d2b5 | 330 | // Convert to voltage by multiplying by "mult" |
vincenxp | 0:10bf1bb6d2b5 | 331 | if (vref==12.0) railv = railv * 0.24770642201; |
vincenxp | 0:10bf1bb6d2b5 | 332 | return railv; |
vincenxp | 0:10bf1bb6d2b5 | 333 | } |
vincenxp | 1:587e0346abca | 334 | |
vincenxp | 1:587e0346abca | 335 | |
vincenxp | 1:587e0346abca | 336 | |
vincenxp | 1:587e0346abca | 337 | |
vincenxp | 1:587e0346abca | 338 | |
vincenxp | 1:587e0346abca | 339 | #if (USEI2CNOTUART == 1) |
vincenxp | 0:10bf1bb6d2b5 | 340 | /*********************************************************************************** |
vincenxp | 0:10bf1bb6d2b5 | 341 | * |
vincenxp | 0:10bf1bb6d2b5 | 342 | * INTERRUPT SERVICE ROUTINE |
vincenxp | 0:10bf1bb6d2b5 | 343 | * |
vincenxp | 0:10bf1bb6d2b5 | 344 | ************************************************************************************/ |
vincenxp | 1:587e0346abca | 345 | |
vincenxp | 0:10bf1bb6d2b5 | 346 | // measurements are only taken during ISR, triggered by aggregator on IRQ line... |
vincenxp | 0:10bf1bb6d2b5 | 347 | // this could have been implemented differently, but this was simple... |
vincenxp | 0:10bf1bb6d2b5 | 348 | // If coulomb counting is desired, this code would probably need to change... |
vincenxp | 0:10bf1bb6d2b5 | 349 | void interrupt_service(){ |
vincenxp | 0:10bf1bb6d2b5 | 350 | // make measurement... (this is currently just a placeholder...) |
vincenxp | 0:10bf1bb6d2b5 | 351 | status = 0; // clear status byte.. allow measurement functions to modify... |
vincenxp | 1:587e0346abca | 352 | measurement1 = measureAutoI(n_meas); |
vincenxp | 1:587e0346abca | 353 | measurement2 = measureRailV(n_meas); |
vincenxp | 0:10bf1bb6d2b5 | 354 | n += 10; //increment interrupt counter... |
vincenxp | 0:10bf1bb6d2b5 | 355 | |
vincenxp | 0:10bf1bb6d2b5 | 356 | // prepare data for transport, in the event that aggregator asks for short format... |
vincenxp | 0:10bf1bb6d2b5 | 357 | |
vincenxp | 0:10bf1bb6d2b5 | 358 | // compressed data format, 4 bytes total, with a status nibble |
vincenxp | 0:10bf1bb6d2b5 | 359 | // Each byte has form: (s*128) + (digit1*10) + (digit2), which fits into 8 bits |
vincenxp | 0:10bf1bb6d2b5 | 360 | // Each value is composed of two bytes with form above, first three digits are |
vincenxp | 0:10bf1bb6d2b5 | 361 | // the mantissa and the last digit is the exponent. Two values is four bytes, so |
vincenxp | 0:10bf1bb6d2b5 | 362 | // that allows four status bits to be included. |
vincenxp | 0:10bf1bb6d2b5 | 363 | sprintf(buf, "%4.2e", measurement1); |
vincenxp | 0:10bf1bb6d2b5 | 364 | buf[10] = (buf[0]-48)*10 + (buf[2]-48); // no decimal, we use fixed point... |
vincenxp | 0:10bf1bb6d2b5 | 365 | buf[11] = (buf[3]-48)*10 + (buf[7]-48); // no 'e', and no exp sign, since we know that's negative... |
vincenxp | 0:10bf1bb6d2b5 | 366 | sprintf(buf, "%4.2e", measurement2); |
vincenxp | 0:10bf1bb6d2b5 | 367 | buf[12] = (buf[0]-48)*10 + (buf[2]-48); // no decimal, we use fixed point... |
vincenxp | 0:10bf1bb6d2b5 | 368 | buf[13] = (buf[3]-48)*10 + (buf[7]-48); // no 'e', and no exp sign, since we know that's negative... |
vincenxp | 0:10bf1bb6d2b5 | 369 | |
vincenxp | 0:10bf1bb6d2b5 | 370 | // add in the four status bits... |
vincenxp | 0:10bf1bb6d2b5 | 371 | buf[10] = buf[10] | (status & 1<<3)<<4; |
vincenxp | 0:10bf1bb6d2b5 | 372 | buf[11] = buf[11] | (status & 1<<2)<<5; |
vincenxp | 0:10bf1bb6d2b5 | 373 | buf[12] = buf[12] | (status & 1<<1)<<6; |
vincenxp | 0:10bf1bb6d2b5 | 374 | buf[13] = buf[13] | (status & 1<<0)<<7; |
vincenxp | 0:10bf1bb6d2b5 | 375 | |
vincenxp | 0:10bf1bb6d2b5 | 376 | // Convert each 32-bit floating point measurement value into 4 bytes |
vincenxp | 0:10bf1bb6d2b5 | 377 | // using union, so we can send bytes over I2C... |
vincenxp | 0:10bf1bb6d2b5 | 378 | u.fval = measurement1; |
vincenxp | 0:10bf1bb6d2b5 | 379 | v.fval = measurement2; |
vincenxp | 0:10bf1bb6d2b5 | 380 | |
vincenxp | 0:10bf1bb6d2b5 | 381 | // now fill the buffers with the stuff generated above so it can be sent over I2C: |
vincenxp | 0:10bf1bb6d2b5 | 382 | |
vincenxp | 0:10bf1bb6d2b5 | 383 | // stuff latest measurement float values into bytes of buf for next transmission... |
vincenxp | 0:10bf1bb6d2b5 | 384 | // buffer format: 4 bytes = (float) V, 4 bytes = (float) I, 1 byte status |
vincenxp | 0:10bf1bb6d2b5 | 385 | for (j=0; j<4; j++) buf[j] = u.b[j]; // voltage |
vincenxp | 0:10bf1bb6d2b5 | 386 | for (j=0; j<4; j++) buf[j+4] = v.b[j]; // current |
vincenxp | 0:10bf1bb6d2b5 | 387 | buf[8] = status; |
vincenxp | 0:10bf1bb6d2b5 | 388 | |
vincenxp | 0:10bf1bb6d2b5 | 389 | // transfer compressed measurement data to output buffers... |
vincenxp | 1:587e0346abca | 390 | for (j=0; j<9; j++) obuf[j] = buf[j]; |
vincenxp | 1:587e0346abca | 391 | for (j=0; j<4; j++) cbuf[j] = buf[j+10]; |
vincenxp | 0:10bf1bb6d2b5 | 392 | |
vincenxp | 0:10bf1bb6d2b5 | 393 | } //ISR |
vincenxp | 0:10bf1bb6d2b5 | 394 | #endif |
vincenxp | 1:587e0346abca | 395 | |
vincenxp | 0:10bf1bb6d2b5 | 396 | |
vincenxp | 1:587e0346abca | 397 | |
vincenxp | 0:10bf1bb6d2b5 | 398 | |
vincenxp | 0:10bf1bb6d2b5 | 399 | /*********************************************************************************** |
vincenxp | 0:10bf1bb6d2b5 | 400 | * |
vincenxp | 0:10bf1bb6d2b5 | 401 | * MAIN CODE |
vincenxp | 0:10bf1bb6d2b5 | 402 | * |
vincenxp | 0:10bf1bb6d2b5 | 403 | ************************************************************************************/ |
vincenxp | 0:10bf1bb6d2b5 | 404 | |
vincenxp | 0:10bf1bb6d2b5 | 405 | // main... |
vincenxp | 0:10bf1bb6d2b5 | 406 | int main() { |
vincenxp | 0:10bf1bb6d2b5 | 407 | |
vincenxp | 1:587e0346abca | 408 | buf[0] = 0; |
vincenxp | 1:587e0346abca | 409 | |
vincenxp | 1:587e0346abca | 410 | #if (USEI2CNOTUART == 0) |
vincenxp | 0:10bf1bb6d2b5 | 411 | float volt = 0; |
vincenxp | 0:10bf1bb6d2b5 | 412 | float curr_sensor = 0; |
vincenxp | 1:587e0346abca | 413 | #if (DEBUG == 1) |
vincenxp | 1:587e0346abca | 414 | int sensor = 0; |
vincenxp | 1:587e0346abca | 415 | int timeStart=0, timeEnd=0; |
vincenxp | 1:587e0346abca | 416 | #endif |
vincenxp | 1:587e0346abca | 417 | #if (TRACEPRINT == 1) |
vincenxp | 1:587e0346abca | 418 | float before_printf=0, after_printf=0; |
vincenxp | 1:587e0346abca | 419 | #endif |
vincenxp | 1:587e0346abca | 420 | |
vincenxp | 1:587e0346abca | 421 | uart.baud(115200); |
vincenxp | 1:587e0346abca | 422 | uart.printf("\r\nData from current sensor...\n"); |
vincenxp | 1:587e0346abca | 423 | uart.printf("\r\nNumber of sample(s) for averaging measurement: %d", n_meas); |
vincenxp | 1:587e0346abca | 424 | uart.printf("\r\nModes:"); |
vincenxp | 1:587e0346abca | 425 | if (DEBUG) { |
vincenxp | 1:587e0346abca | 426 | uart.printf("\r\n DEBUG: YES"); |
vincenxp | 1:587e0346abca | 427 | } else { |
vincenxp | 1:587e0346abca | 428 | uart.printf("\r\n DEBUG: NO"); |
vincenxp | 1:587e0346abca | 429 | } |
vincenxp | 1:587e0346abca | 430 | if (TRACEPRINT) { |
vincenxp | 1:587e0346abca | 431 | uart.printf("\r\n TRACEPRINT: YES"); |
vincenxp | 1:587e0346abca | 432 | } else { |
vincenxp | 1:587e0346abca | 433 | uart.printf("\r\n TRACEPRINT: NO"); |
vincenxp | 1:587e0346abca | 434 | } |
vincenxp | 1:587e0346abca | 435 | if (BUFFMEASURES) { |
vincenxp | 1:587e0346abca | 436 | uart.printf("\r\n BUFFMEASURES: YES"); |
vincenxp | 1:587e0346abca | 437 | uart.printf("\r\n buffer size: %d\n", BUFFERSIZE); |
vincenxp | 1:587e0346abca | 438 | } else { |
vincenxp | 1:587e0346abca | 439 | uart.printf("\r\n BUFFMEASURES: NO"); |
vincenxp | 1:587e0346abca | 440 | } |
vincenxp | 1:587e0346abca | 441 | |
vincenxp | 1:587e0346abca | 442 | uart.printf("\r\nDelay for FET switching: %d us", wait_mbbb); |
vincenxp | 1:587e0346abca | 443 | uart.printf("\r\nDelay for HIGH current sensor switching: %d us", wait_high); |
vincenxp | 1:587e0346abca | 444 | uart.printf("\r\nDelay for MID current sensor switching: %d us", wait_low1); |
vincenxp | 1:587e0346abca | 445 | uart.printf("\r\nDelay for LOW current sensor switching: %d us", wait_low2); |
vincenxp | 1:587e0346abca | 446 | uart.printf("\r\nDelay for voltage sensor switching: %d us", wait_vrail); |
vincenxp | 1:587e0346abca | 447 | |
vincenxp | 1:587e0346abca | 448 | |
vincenxp | 1:587e0346abca | 449 | // turn on pull ups for option resistors, since resistors pull down pins |
vincenxp | 1:587e0346abca | 450 | C_RANGE.mode(PullUp); |
vincenxp | 1:587e0346abca | 451 | V_RANGE0.mode(PullUp); |
vincenxp | 1:587e0346abca | 452 | V_RANGE1.mode(PullUp); |
vincenxp | 1:587e0346abca | 453 | // change calculation multipliers according to option resistors: |
vincenxp | 1:587e0346abca | 454 | i = V_RANGE1*2 + V_RANGE0; |
vincenxp | 1:587e0346abca | 455 | if (i==1) vref = 6.6; |
vincenxp | 1:587e0346abca | 456 | if (i==2) vref = 12.0; |
vincenxp | 1:587e0346abca | 457 | if (C_RANGE==0) { |
vincenxp | 1:587e0346abca | 458 | factor_H = vref / 2.0; |
vincenxp | 1:587e0346abca | 459 | factor_L1 = vref / (0.15 * 1000); |
vincenxp | 1:587e0346abca | 460 | factor_L2 = vref / (15 * 1000); |
vincenxp | 1:587e0346abca | 461 | } |
vincenxp | 1:587e0346abca | 462 | |
vincenxp | 1:587e0346abca | 463 | uart.printf("\r\n\nFactor_H: %f", factor_H); |
vincenxp | 1:587e0346abca | 464 | uart.printf("\r\nFactor_L1: %f", factor_L1); |
vincenxp | 1:587e0346abca | 465 | uart.printf("\r\nFactor_L2: %f", factor_L2); |
vincenxp | 1:587e0346abca | 466 | |
vincenxp | 1:587e0346abca | 467 | |
vincenxp | 1:587e0346abca | 468 | //VB to debug the latency to compensate the FET peak current |
vincenxp | 1:587e0346abca | 469 | #if 0 |
vincenxp | 1:587e0346abca | 470 | float tempI=0; |
vincenxp | 1:587e0346abca | 471 | |
vincenxp | 1:587e0346abca | 472 | enableHighRange(); // this should already be the case, but do it anyway... |
vincenxp | 1:587e0346abca | 473 | #if (USEI2CNOTUART == 0) |
vincenxp | 1:587e0346abca | 474 | current[0] = 0; |
vincenxp | 1:587e0346abca | 475 | current[1] = 0; |
vincenxp | 1:587e0346abca | 476 | current[2] = 0; |
vincenxp | 1:587e0346abca | 477 | #endif |
vincenxp | 1:587e0346abca | 478 | tempI = measureHigh(1); |
vincenxp | 1:587e0346abca | 479 | #if (USEI2CNOTUART == 0) |
vincenxp | 1:587e0346abca | 480 | current[0] = tempI; |
vincenxp | 1:587e0346abca | 481 | #endif |
vincenxp | 1:587e0346abca | 482 | status = 1; |
vincenxp | 1:587e0346abca | 483 | // if current is below this threshold, use LOW1 to measure... |
vincenxp | 1:587e0346abca | 484 | if (tempI < 0.060) { |
vincenxp | 1:587e0346abca | 485 | enableLow1Range(); |
vincenxp | 1:587e0346abca | 486 | tempI = measureLow1(false, 1); // call function |
vincenxp | 1:587e0346abca | 487 | #if (USEI2CNOTUART == 0) |
vincenxp | 1:587e0346abca | 488 | current[1] = tempI; |
vincenxp | 1:587e0346abca | 489 | #endif |
vincenxp | 1:587e0346abca | 490 | status = 2; |
vincenxp | 1:587e0346abca | 491 | // if current is below this threshold, use LOW2 to measure... |
vincenxp | 1:587e0346abca | 492 | if (tempI < 0.0009){ |
vincenxp | 1:587e0346abca | 493 | while (1) { |
vincenxp | 1:587e0346abca | 494 | timer.reset(); |
vincenxp | 1:587e0346abca | 495 | timer.start(); |
vincenxp | 1:587e0346abca | 496 | volt = measureRailV(n_meas); |
vincenxp | 1:587e0346abca | 497 | enableLow2Range(); // change FETs to enable LOW2 measurement... |
vincenxp | 1:587e0346abca | 498 | for (int idx_meas = 0; idx_meas < BUFFERSIZE; idx_meas++) { |
vincenxp | 1:587e0346abca | 499 | enableLow2Range(); |
vincenxp | 1:587e0346abca | 500 | wait_us(100); |
vincenxp | 1:587e0346abca | 501 | tempI = factor_L2 * LOW2_ADC; |
vincenxp | 1:587e0346abca | 502 | //wait_us(500); |
vincenxp | 1:587e0346abca | 503 | enableHighRange(); |
vincenxp | 1:587e0346abca | 504 | timestamp = timer.read(); |
vincenxp | 1:587e0346abca | 505 | buffer[idx_meas][0] = timestamp; |
vincenxp | 1:587e0346abca | 506 | buffer[idx_meas][1] = volt; |
vincenxp | 1:587e0346abca | 507 | buffer[idx_meas][2] = tempI; |
vincenxp | 1:587e0346abca | 508 | } |
vincenxp | 1:587e0346abca | 509 | for (int idx_meas = 0; idx_meas < BUFFERSIZE; idx_meas++) { |
vincenxp | 1:587e0346abca | 510 | uart.printf("\r\n%d %f %f %f", idx_meas, buffer[idx_meas][0], buffer[idx_meas][1], buffer[idx_meas][2]); |
vincenxp | 1:587e0346abca | 511 | } |
vincenxp | 1:587e0346abca | 512 | } |
vincenxp | 1:587e0346abca | 513 | } |
vincenxp | 1:587e0346abca | 514 | } |
vincenxp | 1:587e0346abca | 515 | #else |
vincenxp | 1:587e0346abca | 516 | //End of VB |
vincenxp | 1:587e0346abca | 517 | |
vincenxp | 1:587e0346abca | 518 | #if (DEBUG == 1) |
vincenxp | 1:587e0346abca | 519 | #if (TRACEPRINT == 0) |
vincenxp | 1:587e0346abca | 520 | uart.printf("\r\n\nMeasuresDuration(us)(V,I) sensor timestamp(s) Voltage(V) Current(A) HighSensor(A) MidSensor(A) LowSensor(A)"); |
vincenxp | 1:587e0346abca | 521 | #else |
vincenxp | 1:587e0346abca | 522 | uart.printf("\r\n\nMeasuresDuration(us)(V,I) sensor timestamp(s) Voltage(V) Current(A) HighSensor(A) MidSensor(A) LowSensor(A) UartPrintDuration(us)"); |
vincenxp | 1:587e0346abca | 523 | #endif |
vincenxp | 1:587e0346abca | 524 | #elif (BUFFMEASURES == 1) |
vincenxp | 1:587e0346abca | 525 | uart.printf("\r\n\nidx timestamp(s) Voltage(V) Current(A)"); |
vincenxp | 1:587e0346abca | 526 | #else |
vincenxp | 1:587e0346abca | 527 | #if (TRACEPRINT == 0) |
vincenxp | 1:587e0346abca | 528 | uart.printf("\r\n\ntimestamp(s) Voltage(V) Current(A)"); |
vincenxp | 1:587e0346abca | 529 | #else |
vincenxp | 1:587e0346abca | 530 | uart.printf("\r\n\ntimestamp(s) Voltage(V) Current(A) UartPrintDuration(us)"); |
vincenxp | 1:587e0346abca | 531 | #endif |
vincenxp | 1:587e0346abca | 532 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 533 | |
vincenxp | 1:587e0346abca | 534 | #if (BUFFMEASURES == 0) |
vincenxp | 0:10bf1bb6d2b5 | 535 | timer.reset(); |
vincenxp | 0:10bf1bb6d2b5 | 536 | timer.start(); |
vincenxp | 1:587e0346abca | 537 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 538 | |
vincenxp | 0:10bf1bb6d2b5 | 539 | while (1) { |
vincenxp | 0:10bf1bb6d2b5 | 540 | |
vincenxp | 1:587e0346abca | 541 | #if (DEBUG == 1) |
vincenxp | 1:587e0346abca | 542 | timeStart = timer.read_us(); |
vincenxp | 1:587e0346abca | 543 | #endif |
vincenxp | 1:587e0346abca | 544 | #if (BUFFMEASURES == 1) |
vincenxp | 1:587e0346abca | 545 | timer.reset(); |
vincenxp | 1:587e0346abca | 546 | timer.start(); |
vincenxp | 1:587e0346abca | 547 | for (int idx_meas = 0; idx_meas < BUFFERSIZE; idx_meas++) { |
vincenxp | 1:587e0346abca | 548 | volt = measureRailV(n_meas); |
vincenxp | 1:587e0346abca | 549 | curr_sensor = measureAutoI(n_meas); |
vincenxp | 1:587e0346abca | 550 | buffer[idx_meas][0] = timestamp; |
vincenxp | 1:587e0346abca | 551 | buffer[idx_meas][1] = volt; |
vincenxp | 1:587e0346abca | 552 | buffer[idx_meas][2] = curr_sensor; |
vincenxp | 1:587e0346abca | 553 | } |
vincenxp | 1:587e0346abca | 554 | #else |
vincenxp | 1:587e0346abca | 555 | volt = measureRailV(n_meas); |
vincenxp | 1:587e0346abca | 556 | curr_sensor = measureAutoI(n_meas); |
vincenxp | 1:587e0346abca | 557 | #endif |
vincenxp | 1:587e0346abca | 558 | #if (DEBUG == 1) |
vincenxp | 1:587e0346abca | 559 | timeEnd = timer.read_us(); |
vincenxp | 1:587e0346abca | 560 | #endif |
vincenxp | 1:587e0346abca | 561 | #if (TRACEPRINT == 1) |
vincenxp | 1:587e0346abca | 562 | before_printf = timer.read(); |
vincenxp | 1:587e0346abca | 563 | #endif |
vincenxp | 1:587e0346abca | 564 | #if (DEBUG == 1) |
vincenxp | 1:587e0346abca | 565 | uart.printf("\r\n%d %d %f %f %f %f %f %f", timeEnd-timeStart, sensor, timestamp, volt, curr_sensor, current[0], current[1], current[2]); |
vincenxp | 1:587e0346abca | 566 | #elif (BUFFMEASURES == 1) |
vincenxp | 1:587e0346abca | 567 | for (int idx_meas = 0; idx_meas < BUFFERSIZE; idx_meas++) { |
vincenxp | 1:587e0346abca | 568 | uart.printf("\r\n%d %f %f %f", idx_meas, buffer[idx_meas][0], buffer[idx_meas][1], buffer[idx_meas][2]); |
vincenxp | 1:587e0346abca | 569 | } |
vincenxp | 1:587e0346abca | 570 | #else |
vincenxp | 1:587e0346abca | 571 | uart.printf("\r\n%f %f %f", timestamp, volt, curr_sensor); |
vincenxp | 1:587e0346abca | 572 | #endif |
vincenxp | 1:587e0346abca | 573 | #if (TRACEPRINT == 1) |
vincenxp | 1:587e0346abca | 574 | after_printf = timer.read(); |
vincenxp | 1:587e0346abca | 575 | uart.printf(" %f", after_printf - before_printf); |
vincenxp | 1:587e0346abca | 576 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 577 | } |
vincenxp | 1:587e0346abca | 578 | #endif |
vincenxp | 1:587e0346abca | 579 | #else |
vincenxp | 0:10bf1bb6d2b5 | 580 | |
vincenxp | 0:10bf1bb6d2b5 | 581 | wait_us(200); // wait before reassigning SWD pin so as to not get locked out... |
vincenxp | 0:10bf1bb6d2b5 | 582 | DigitalIn my_select(PTA2); // this is the individual line to each sensor... |
vincenxp | 0:10bf1bb6d2b5 | 583 | |
vincenxp | 0:10bf1bb6d2b5 | 584 | |
vincenxp | 0:10bf1bb6d2b5 | 585 | while (my_select) { |
vincenxp | 0:10bf1bb6d2b5 | 586 | // wait here until aggregator signals us for address reassignment... |
vincenxp | 0:10bf1bb6d2b5 | 587 | } // end while |
vincenxp | 0:10bf1bb6d2b5 | 588 | |
vincenxp | 0:10bf1bb6d2b5 | 589 | // Need to wait to set up I2C until after we've come out of wait loop above... |
vincenxp | 0:10bf1bb6d2b5 | 590 | // Setting up the I2C earlier starts it listening on the bus even if it's not |
vincenxp | 0:10bf1bb6d2b5 | 591 | // being polled, which means that multiple sensors will respond, hanging the bus... |
vincenxp | 0:10bf1bb6d2b5 | 592 | slave.frequency(400000); // go as fast as possible... |
vincenxp | 0:10bf1bb6d2b5 | 593 | slave.address(address); // listen on the default address... |
vincenxp | 0:10bf1bb6d2b5 | 594 | |
vincenxp | 0:10bf1bb6d2b5 | 595 | while (!my_select) { |
vincenxp | 0:10bf1bb6d2b5 | 596 | // listen for new address, then repeat it back aggregator... |
vincenxp | 0:10bf1bb6d2b5 | 597 | waiting = true; |
vincenxp | 0:10bf1bb6d2b5 | 598 | while (waiting && !my_select){ |
vincenxp | 0:10bf1bb6d2b5 | 599 | int i = slave.receive(); |
vincenxp | 0:10bf1bb6d2b5 | 600 | switch (i) { |
vincenxp | 0:10bf1bb6d2b5 | 601 | case I2CSlave::WriteAddressed: |
vincenxp | 0:10bf1bb6d2b5 | 602 | slave.read(buf, 1); |
vincenxp | 0:10bf1bb6d2b5 | 603 | // we just got our new address, provided my_select subsequently changes... |
vincenxp | 0:10bf1bb6d2b5 | 604 | waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 605 | break; |
vincenxp | 0:10bf1bb6d2b5 | 606 | case I2CSlave::ReadAddressed: |
vincenxp | 0:10bf1bb6d2b5 | 607 | slave.write(buf, 1); |
vincenxp | 0:10bf1bb6d2b5 | 608 | // write back our new address to confirm we go it... |
vincenxp | 0:10bf1bb6d2b5 | 609 | waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 610 | break; |
vincenxp | 0:10bf1bb6d2b5 | 611 | } |
vincenxp | 0:10bf1bb6d2b5 | 612 | } |
vincenxp | 0:10bf1bb6d2b5 | 613 | } // end while, waiting for address reassignment... |
vincenxp | 0:10bf1bb6d2b5 | 614 | |
vincenxp | 0:10bf1bb6d2b5 | 615 | // we fell out of loop above, so now change our I2C address to the newly assigned one... |
vincenxp | 0:10bf1bb6d2b5 | 616 | // this newly assigned address will not change until we're reset... |
vincenxp | 0:10bf1bb6d2b5 | 617 | slave.address(buf[0]); |
vincenxp | 0:10bf1bb6d2b5 | 618 | |
vincenxp | 0:10bf1bb6d2b5 | 619 | // enable interrupts, need to wait until after getting new I2C address, |
vincenxp | 0:10bf1bb6d2b5 | 620 | // since we cannot respond until we have our new address... |
vincenxp | 0:10bf1bb6d2b5 | 621 | InterruptIn triggerIRQ(PTA0); // this is the ganged interrupt signal to all sensors |
vincenxp | 0:10bf1bb6d2b5 | 622 | triggerIRQ.rise(&interrupt_service); // attach the service routine... |
vincenxp | 0:10bf1bb6d2b5 | 623 | |
vincenxp | 0:10bf1bb6d2b5 | 624 | // make sure we can receive at the new address... |
vincenxp | 0:10bf1bb6d2b5 | 625 | // this isn't absolutely necessary, but it's a good check... |
vincenxp | 0:10bf1bb6d2b5 | 626 | // if this is removed, the corresponding write in the aggregator code needs to go, too |
vincenxp | 0:10bf1bb6d2b5 | 627 | waiting = true; |
vincenxp | 0:10bf1bb6d2b5 | 628 | while (waiting){ |
vincenxp | 0:10bf1bb6d2b5 | 629 | i = slave.receive(); |
vincenxp | 0:10bf1bb6d2b5 | 630 | switch (i) { |
vincenxp | 0:10bf1bb6d2b5 | 631 | case I2CSlave::ReadAddressed: |
vincenxp | 0:10bf1bb6d2b5 | 632 | slave.write(buf, 1); |
vincenxp | 0:10bf1bb6d2b5 | 633 | waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 634 | break; |
vincenxp | 0:10bf1bb6d2b5 | 635 | case I2CSlave::WriteAddressed: |
vincenxp | 0:10bf1bb6d2b5 | 636 | slave.read(buf, 1); |
vincenxp | 0:10bf1bb6d2b5 | 637 | waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 638 | break; |
vincenxp | 0:10bf1bb6d2b5 | 639 | } |
vincenxp | 0:10bf1bb6d2b5 | 640 | } |
vincenxp | 0:10bf1bb6d2b5 | 641 | |
vincenxp | 0:10bf1bb6d2b5 | 642 | |
vincenxp | 0:10bf1bb6d2b5 | 643 | /******************************************************************************/ |
vincenxp | 0:10bf1bb6d2b5 | 644 | // this is the main loop: |
vincenxp | 0:10bf1bb6d2b5 | 645 | // We just sit here and wait for I2C commands and triggers on IRQ line... |
vincenxp | 0:10bf1bb6d2b5 | 646 | // |
vincenxp | 0:10bf1bb6d2b5 | 647 | // A triggerIRQ causes measurements in ISR, aggregator must wait at least |
vincenxp | 0:10bf1bb6d2b5 | 648 | // long enough for it to finish before reading back the result(s). |
vincenxp | 0:10bf1bb6d2b5 | 649 | // |
vincenxp | 0:10bf1bb6d2b5 | 650 | // results are sent in 9 byte packets: 4 for voltage, 4 for current, and one status, |
vincenxp | 0:10bf1bb6d2b5 | 651 | // where voltage and current are floats in units of V and A. Status byte will be |
vincenxp | 0:10bf1bb6d2b5 | 652 | // packed with something later, yet to be defined. |
vincenxp | 0:10bf1bb6d2b5 | 653 | // |
vincenxp | 0:10bf1bb6d2b5 | 654 | // What should be implemented are additional things like setting and reading |
vincenxp | 0:10bf1bb6d2b5 | 655 | // back the delays in the GPIO control functions, turning on and off averaging |
vincenxp | 0:10bf1bb6d2b5 | 656 | // so we can see what the min and max values are (which also helps tell if we |
vincenxp | 0:10bf1bb6d2b5 | 657 | // don't have enough delay in the GPIO functions), and possibly other stuff |
vincenxp | 0:10bf1bb6d2b5 | 658 | // not thought of yet... Definitely not an exercise for this pasta programmer... |
vincenxp | 0:10bf1bb6d2b5 | 659 | // |
vincenxp | 0:10bf1bb6d2b5 | 660 | while (1) { |
vincenxp | 0:10bf1bb6d2b5 | 661 | i = slave.receive(); |
vincenxp | 0:10bf1bb6d2b5 | 662 | switch (i) { |
vincenxp | 0:10bf1bb6d2b5 | 663 | case I2CSlave::ReadAddressed: |
vincenxp | 0:10bf1bb6d2b5 | 664 | if (my_select){ // if high, send uncompressed format... |
vincenxp | 0:10bf1bb6d2b5 | 665 | slave.write(obuf, 9); |
vincenxp | 0:10bf1bb6d2b5 | 666 | waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 667 | } else { // if low, send compressed format... |
vincenxp | 0:10bf1bb6d2b5 | 668 | slave.write(cbuf, 4); |
vincenxp | 0:10bf1bb6d2b5 | 669 | waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 670 | } |
vincenxp | 0:10bf1bb6d2b5 | 671 | break; |
vincenxp | 0:10bf1bb6d2b5 | 672 | case I2CSlave::WriteAddressed: |
vincenxp | 0:10bf1bb6d2b5 | 673 | // slave.read(inbuf, 1); |
vincenxp | 0:10bf1bb6d2b5 | 674 | // waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 675 | // break; |
vincenxp | 0:10bf1bb6d2b5 | 676 | if (my_select){ // if high, receive two bytes... |
vincenxp | 0:10bf1bb6d2b5 | 677 | slave.read(inbuf, 2); |
vincenxp | 0:10bf1bb6d2b5 | 678 | waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 679 | // if we're here, we've recieved two words, so we update the |
vincenxp | 0:10bf1bb6d2b5 | 680 | // appropriate parameter. |
vincenxp | 0:10bf1bb6d2b5 | 681 | switch (inbuf[0]) { |
vincenxp | 0:10bf1bb6d2b5 | 682 | case 0: |
vincenxp | 0:10bf1bb6d2b5 | 683 | wait_mbbb = inbuf[1]; |
vincenxp | 0:10bf1bb6d2b5 | 684 | break; |
vincenxp | 0:10bf1bb6d2b5 | 685 | case 1: |
vincenxp | 0:10bf1bb6d2b5 | 686 | wait_high = inbuf[1]*8; |
vincenxp | 0:10bf1bb6d2b5 | 687 | break; |
vincenxp | 0:10bf1bb6d2b5 | 688 | case 2: |
vincenxp | 0:10bf1bb6d2b5 | 689 | wait_low1 = inbuf[1]*8; |
vincenxp | 0:10bf1bb6d2b5 | 690 | break; |
vincenxp | 0:10bf1bb6d2b5 | 691 | case 3: |
vincenxp | 0:10bf1bb6d2b5 | 692 | wait_low2 = inbuf[1]*8; |
vincenxp | 0:10bf1bb6d2b5 | 693 | break; |
vincenxp | 0:10bf1bb6d2b5 | 694 | case 4: |
vincenxp | 0:10bf1bb6d2b5 | 695 | wait_vrail = inbuf[1]*8; |
vincenxp | 0:10bf1bb6d2b5 | 696 | break; |
vincenxp | 0:10bf1bb6d2b5 | 697 | case 5: |
vincenxp | 0:10bf1bb6d2b5 | 698 | n_meas = inbuf[1]; |
vincenxp | 0:10bf1bb6d2b5 | 699 | break; |
vincenxp | 0:10bf1bb6d2b5 | 700 | } // switch |
vincenxp | 0:10bf1bb6d2b5 | 701 | // and since we're still here, place the new values |
vincenxp | 0:10bf1bb6d2b5 | 702 | // in obuf so we can read back all paramters values |
vincenxp | 0:10bf1bb6d2b5 | 703 | obuf[0] = wait_mbbb; |
vincenxp | 0:10bf1bb6d2b5 | 704 | obuf[1] = wait_high/8; |
vincenxp | 0:10bf1bb6d2b5 | 705 | obuf[2] = wait_low1/8; |
vincenxp | 0:10bf1bb6d2b5 | 706 | obuf[3] = wait_low2/8; |
vincenxp | 0:10bf1bb6d2b5 | 707 | obuf[4] = wait_vrail/8; |
vincenxp | 0:10bf1bb6d2b5 | 708 | obuf[5] = n_meas; |
vincenxp | 0:10bf1bb6d2b5 | 709 | obuf[6] = 0; |
vincenxp | 0:10bf1bb6d2b5 | 710 | obuf[7] = 0; |
vincenxp | 0:10bf1bb6d2b5 | 711 | obuf[8] = 0; |
vincenxp | 0:10bf1bb6d2b5 | 712 | } else { ;// if low, receive one byte... |
vincenxp | 0:10bf1bb6d2b5 | 713 | slave.read(inbuf, 1); |
vincenxp | 0:10bf1bb6d2b5 | 714 | waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 715 | } |
vincenxp | 0:10bf1bb6d2b5 | 716 | } // switch |
vincenxp | 0:10bf1bb6d2b5 | 717 | } // while(1) |
vincenxp | 0:10bf1bb6d2b5 | 718 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 719 | |
vincenxp | 0:10bf1bb6d2b5 | 720 | } |