smart sensor code initial version
Dependencies: mbed-src-KL05Z-smart-sensor
kl05-smart-sensor.cpp@0:10bf1bb6d2b5, 2019-03-26 (annotated)
- Committer:
- vincenxp
- Date:
- Tue Mar 26 10:37:02 2019 +0000
- Revision:
- 0:10bf1bb6d2b5
- Child:
- 1:587e0346abca
initial version
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
vincenxp | 0:10bf1bb6d2b5 | 1 | /**************************************************************************************** |
vincenxp | 0:10bf1bb6d2b5 | 2 | * |
vincenxp | 0:10bf1bb6d2b5 | 3 | * MIT License (https://spdx.org/licenses/MIT.html) |
vincenxp | 0:10bf1bb6d2b5 | 4 | * Copyright 2018 NXP |
vincenxp | 0:10bf1bb6d2b5 | 5 | * |
vincenxp | 0:10bf1bb6d2b5 | 6 | * MBED code for KL05Z-based "smart" current sensor, which measures current in |
vincenxp | 0:10bf1bb6d2b5 | 7 | * three ranges. Intended to be used with an aggregator board which triggers sensors |
vincenxp | 0:10bf1bb6d2b5 | 8 | * on all instrumented rails and then sequentially reads the data from each out over I2C. |
vincenxp | 0:10bf1bb6d2b5 | 9 | * |
vincenxp | 0:10bf1bb6d2b5 | 10 | * Because there is no crystal on the board, need to edit source mbed-dev library |
vincenxp | 0:10bf1bb6d2b5 | 11 | * to use internal oscillator with pound-define: |
vincenxp | 0:10bf1bb6d2b5 | 12 | * change to "#define CLOCK_SETUP 0" in file: |
vincenxp | 0:10bf1bb6d2b5 | 13 | * mbed-dev/targets/TARGET_Freescale/TARGET_KLXX/TARGET_KL05Z/device/system_MKL05Z4.c |
vincenxp | 0:10bf1bb6d2b5 | 14 | * |
vincenxp | 0:10bf1bb6d2b5 | 15 | ****************************************************************************************/ |
vincenxp | 0:10bf1bb6d2b5 | 16 | |
vincenxp | 0:10bf1bb6d2b5 | 17 | #include <mbed.h> |
vincenxp | 0:10bf1bb6d2b5 | 18 | |
vincenxp | 0:10bf1bb6d2b5 | 19 | #define USEI2CNOTUART 0 |
vincenxp | 0:10bf1bb6d2b5 | 20 | |
vincenxp | 0:10bf1bb6d2b5 | 21 | // set things up... |
vincenxp | 0:10bf1bb6d2b5 | 22 | #if (USEI2CNOTUART == 1) |
vincenxp | 0:10bf1bb6d2b5 | 23 | I2CSlave slave(PTB4, PTB3); |
vincenxp | 0:10bf1bb6d2b5 | 24 | #else |
vincenxp | 0:10bf1bb6d2b5 | 25 | Serial uart(PTB3, PTB4); // tx, rx |
vincenxp | 0:10bf1bb6d2b5 | 26 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 27 | |
vincenxp | 0:10bf1bb6d2b5 | 28 | // These will be used for identifying smart sensor build options: |
vincenxp | 0:10bf1bb6d2b5 | 29 | // voltage range (0-3.3V, 0-6.6V, and 12V), and |
vincenxp | 0:10bf1bb6d2b5 | 30 | // current range (high: 4A max, and low: 1.65A max) |
vincenxp | 0:10bf1bb6d2b5 | 31 | // (default pin pulls are pull up...) |
vincenxp | 0:10bf1bb6d2b5 | 32 | // But this still needs to be implemented per schematic... |
vincenxp | 0:10bf1bb6d2b5 | 33 | DigitalIn gpio0(PTA3); // R8 |
vincenxp | 0:10bf1bb6d2b5 | 34 | DigitalIn C_RANGE(PTA4); // R9 |
vincenxp | 0:10bf1bb6d2b5 | 35 | DigitalIn V_RANGE0(PTA5); // R10 |
vincenxp | 0:10bf1bb6d2b5 | 36 | DigitalIn V_RANGE1(PTA6); // R11 |
vincenxp | 0:10bf1bb6d2b5 | 37 | |
vincenxp | 0:10bf1bb6d2b5 | 38 | // configure pins for measurements... |
vincenxp | 0:10bf1bb6d2b5 | 39 | // analog inputs from sense amps and rail voltage (divider)... |
vincenxp | 0:10bf1bb6d2b5 | 40 | AnalogIn HIGH_ADC(PTB10); |
vincenxp | 0:10bf1bb6d2b5 | 41 | AnalogIn VRAIL_ADC(PTB11); |
vincenxp | 0:10bf1bb6d2b5 | 42 | AnalogIn LOW1_ADC(PTA9); |
vincenxp | 0:10bf1bb6d2b5 | 43 | AnalogIn LOW2_ADC(PTA8); |
vincenxp | 0:10bf1bb6d2b5 | 44 | // outputs which control switching FETs... |
vincenxp | 0:10bf1bb6d2b5 | 45 | DigitalOut VRAIL_MEAS(PTA7); // turns on Q7, connecting voltage divider |
vincenxp | 0:10bf1bb6d2b5 | 46 | DigitalOut LOW_ENABLE(PTB0); // turns on Q4, turning off Q1, enabling low measurement |
vincenxp | 0:10bf1bb6d2b5 | 47 | DigitalOut LOW1(PTB2); // turns on Q5, turning off Q2, disconnecting shunt R1 |
vincenxp | 0:10bf1bb6d2b5 | 48 | DigitalOut LOW2(PTB1); // turns on Q6, turning off Q3, disconnecting shunt R2 |
vincenxp | 0:10bf1bb6d2b5 | 49 | |
vincenxp | 0:10bf1bb6d2b5 | 50 | |
vincenxp | 0:10bf1bb6d2b5 | 51 | |
vincenxp | 0:10bf1bb6d2b5 | 52 | // set initial, default I2C listening address... |
vincenxp | 0:10bf1bb6d2b5 | 53 | // same one for all sensors so we don't need to individually program each one... |
vincenxp | 0:10bf1bb6d2b5 | 54 | int address = 0x48 << 1; |
vincenxp | 0:10bf1bb6d2b5 | 55 | // buffers for I2C communication |
vincenxp | 0:10bf1bb6d2b5 | 56 | char buf[15], inbuf[10]; |
vincenxp | 0:10bf1bb6d2b5 | 57 | char obuf[10], cbuf[10]; // another buf for compressed output... |
vincenxp | 0:10bf1bb6d2b5 | 58 | |
vincenxp | 0:10bf1bb6d2b5 | 59 | // variables... |
vincenxp | 0:10bf1bb6d2b5 | 60 | int i, j, n=0; |
vincenxp | 0:10bf1bb6d2b5 | 61 | bool waiting; |
vincenxp | 0:10bf1bb6d2b5 | 62 | bool big_data = false; // flag to save time during ISR |
vincenxp | 0:10bf1bb6d2b5 | 63 | // only process uncompressed data if explicitly called for... |
vincenxp | 0:10bf1bb6d2b5 | 64 | |
vincenxp | 0:10bf1bb6d2b5 | 65 | // these unions enable converting float val to bytes for transmission over I2C... |
vincenxp | 0:10bf1bb6d2b5 | 66 | union u_tag { |
vincenxp | 0:10bf1bb6d2b5 | 67 | char b[4]; |
vincenxp | 0:10bf1bb6d2b5 | 68 | float fval; |
vincenxp | 0:10bf1bb6d2b5 | 69 | int ival; |
vincenxp | 0:10bf1bb6d2b5 | 70 | } u, v; |
vincenxp | 0:10bf1bb6d2b5 | 71 | |
vincenxp | 0:10bf1bb6d2b5 | 72 | //union u_current { |
vincenxp | 0:10bf1bb6d2b5 | 73 | // float high; |
vincenxp | 0:10bf1bb6d2b5 | 74 | // float mid; |
vincenxp | 0:10bf1bb6d2b5 | 75 | // float low; |
vincenxp | 0:10bf1bb6d2b5 | 76 | //} current; |
vincenxp | 0:10bf1bb6d2b5 | 77 | float current[3]; |
vincenxp | 0:10bf1bb6d2b5 | 78 | |
vincenxp | 0:10bf1bb6d2b5 | 79 | // define measurement result and status variables... |
vincenxp | 0:10bf1bb6d2b5 | 80 | float measurement1; |
vincenxp | 0:10bf1bb6d2b5 | 81 | float measurement2; |
vincenxp | 0:10bf1bb6d2b5 | 82 | char status=0; |
vincenxp | 0:10bf1bb6d2b5 | 83 | //int n_meas=25; // number of averages when measuring... |
vincenxp | 0:10bf1bb6d2b5 | 84 | int n_meas=1; // number of averages when measuring... |
vincenxp | 0:10bf1bb6d2b5 | 85 | float vref =3.3; |
vincenxp | 0:10bf1bb6d2b5 | 86 | float factor_H = vref / 0.8; |
vincenxp | 0:10bf1bb6d2b5 | 87 | float factor_L1 = vref / (0.05 * 1000); |
vincenxp | 0:10bf1bb6d2b5 | 88 | float factor_L2 = vref / (2 * 1000); |
vincenxp | 0:10bf1bb6d2b5 | 89 | |
vincenxp | 0:10bf1bb6d2b5 | 90 | int wait_mbbb = 5; |
vincenxp | 0:10bf1bb6d2b5 | 91 | int wait_high = 250; |
vincenxp | 0:10bf1bb6d2b5 | 92 | int wait_low1 = 250; |
vincenxp | 0:10bf1bb6d2b5 | 93 | int wait_low2 = 500; |
vincenxp | 0:10bf1bb6d2b5 | 94 | int wait_vrail = 200; |
vincenxp | 0:10bf1bb6d2b5 | 95 | |
vincenxp | 0:10bf1bb6d2b5 | 96 | Timer timer; |
vincenxp | 0:10bf1bb6d2b5 | 97 | float timestamp; |
vincenxp | 0:10bf1bb6d2b5 | 98 | |
vincenxp | 0:10bf1bb6d2b5 | 99 | /*********************************************************************************** |
vincenxp | 0:10bf1bb6d2b5 | 100 | * |
vincenxp | 0:10bf1bb6d2b5 | 101 | * FUNCTIONS FOR MEASURING CURRENT AND VOLTAGE |
vincenxp | 0:10bf1bb6d2b5 | 102 | * |
vincenxp | 0:10bf1bb6d2b5 | 103 | ************************************************************************************/ |
vincenxp | 0:10bf1bb6d2b5 | 104 | |
vincenxp | 0:10bf1bb6d2b5 | 105 | void enableHighRange(){ |
vincenxp | 0:10bf1bb6d2b5 | 106 | LOW_ENABLE = 0; // short both low current shunts, close Q1 |
vincenxp | 0:10bf1bb6d2b5 | 107 | wait_us(wait_mbbb); // delay for FET to settle... (make before break) |
vincenxp | 0:10bf1bb6d2b5 | 108 | LOW1 = 0; LOW2 = 0; // connect both shunts to make lower series resistance |
vincenxp | 0:10bf1bb6d2b5 | 109 | VRAIL_MEAS = 0; // disconnect rail voltage divider |
vincenxp | 0:10bf1bb6d2b5 | 110 | wait_us(wait_high); // wait for B2902A settling... |
vincenxp | 0:10bf1bb6d2b5 | 111 | } |
vincenxp | 0:10bf1bb6d2b5 | 112 | |
vincenxp | 0:10bf1bb6d2b5 | 113 | void enableLow1Range(){ |
vincenxp | 0:10bf1bb6d2b5 | 114 | LOW1 = 0; LOW2 = 1; // disconnect LOW2 shunt so LOW1 can measure |
vincenxp | 0:10bf1bb6d2b5 | 115 | wait_us(wait_mbbb); // delay for FET to settle... (make before break) |
vincenxp | 0:10bf1bb6d2b5 | 116 | LOW_ENABLE = 1; // unshort low current shunts, open Q1 |
vincenxp | 0:10bf1bb6d2b5 | 117 | VRAIL_MEAS = 0; // disconnect rail voltage divider |
vincenxp | 0:10bf1bb6d2b5 | 118 | wait_us(wait_low1); // wait for B2902A settling... |
vincenxp | 0:10bf1bb6d2b5 | 119 | } |
vincenxp | 0:10bf1bb6d2b5 | 120 | |
vincenxp | 0:10bf1bb6d2b5 | 121 | void enableLow2Range(){ |
vincenxp | 0:10bf1bb6d2b5 | 122 | LOW1 = 1; LOW2 = 0; // disconnect LOW1 shunt so LOW2 can measure |
vincenxp | 0:10bf1bb6d2b5 | 123 | wait_us(wait_mbbb); // delay for FET to settle... (make before break) |
vincenxp | 0:10bf1bb6d2b5 | 124 | LOW_ENABLE = 1; // unshort low current shunts, open Q1 |
vincenxp | 0:10bf1bb6d2b5 | 125 | VRAIL_MEAS = 0; // disconnect rail voltage divider |
vincenxp | 0:10bf1bb6d2b5 | 126 | wait_us(wait_low2); // wait for B2902A settling... |
vincenxp | 0:10bf1bb6d2b5 | 127 | } |
vincenxp | 0:10bf1bb6d2b5 | 128 | |
vincenxp | 0:10bf1bb6d2b5 | 129 | void enableRailV(){ |
vincenxp | 0:10bf1bb6d2b5 | 130 | VRAIL_MEAS = 1; // turn on Q7, to enable R3-R4 voltage divider |
vincenxp | 0:10bf1bb6d2b5 | 131 | wait_us(wait_vrail); // wait for divider to settle... |
vincenxp | 0:10bf1bb6d2b5 | 132 | // Compensation cap can be used to make |
vincenxp | 0:10bf1bb6d2b5 | 133 | // voltage at ADC a "square wave" but it is |
vincenxp | 0:10bf1bb6d2b5 | 134 | // rail voltage and FET dependent. Cap will |
vincenxp | 0:10bf1bb6d2b5 | 135 | // need tuning if this wait time is to be |
vincenxp | 0:10bf1bb6d2b5 | 136 | // removed/reduced. |
vincenxp | 0:10bf1bb6d2b5 | 137 | // |
vincenxp | 0:10bf1bb6d2b5 | 138 | // So, as it turns out, this settling time and |
vincenxp | 0:10bf1bb6d2b5 | 139 | // compensation capacitance are voltage dependent |
vincenxp | 0:10bf1bb6d2b5 | 140 | // because of the depletion region changes in the |
vincenxp | 0:10bf1bb6d2b5 | 141 | // FET. Reminiscent of grad school and DLTS. |
vincenxp | 0:10bf1bb6d2b5 | 142 | // Gotta love device physics... |
vincenxp | 0:10bf1bb6d2b5 | 143 | } |
vincenxp | 0:10bf1bb6d2b5 | 144 | |
vincenxp | 0:10bf1bb6d2b5 | 145 | // when a divider is present, turn it off to remove the current it draws... |
vincenxp | 0:10bf1bb6d2b5 | 146 | void disableRailV(){ |
vincenxp | 0:10bf1bb6d2b5 | 147 | VRAIL_MEAS = 0; // turn off Q7, disabling R3-R4 voltage divider |
vincenxp | 0:10bf1bb6d2b5 | 148 | } |
vincenxp | 0:10bf1bb6d2b5 | 149 | |
vincenxp | 0:10bf1bb6d2b5 | 150 | // measure high range current... |
vincenxp | 0:10bf1bb6d2b5 | 151 | float measureHigh(int nbMeas){ |
vincenxp | 0:10bf1bb6d2b5 | 152 | float highI=0; |
vincenxp | 0:10bf1bb6d2b5 | 153 | enableHighRange(); |
vincenxp | 0:10bf1bb6d2b5 | 154 | for (i = 0; i < nbMeas; i++){ |
vincenxp | 0:10bf1bb6d2b5 | 155 | highI += HIGH_ADC; |
vincenxp | 0:10bf1bb6d2b5 | 156 | } |
vincenxp | 0:10bf1bb6d2b5 | 157 | highI = factor_H * highI/nbMeas; |
vincenxp | 0:10bf1bb6d2b5 | 158 | timestamp = timer.read(); |
vincenxp | 0:10bf1bb6d2b5 | 159 | return highI; |
vincenxp | 0:10bf1bb6d2b5 | 160 | } |
vincenxp | 0:10bf1bb6d2b5 | 161 | |
vincenxp | 0:10bf1bb6d2b5 | 162 | // mesaure mid range current... |
vincenxp | 0:10bf1bb6d2b5 | 163 | float measureLow1(bool autorange, int nbMeas){ |
vincenxp | 0:10bf1bb6d2b5 | 164 | float low1I=0; |
vincenxp | 0:10bf1bb6d2b5 | 165 | if (!autorange) enableLow1Range(); |
vincenxp | 0:10bf1bb6d2b5 | 166 | for (i = 0; i < nbMeas; i++){ |
vincenxp | 0:10bf1bb6d2b5 | 167 | low1I += LOW1_ADC; |
vincenxp | 0:10bf1bb6d2b5 | 168 | } |
vincenxp | 0:10bf1bb6d2b5 | 169 | if (!autorange) enableHighRange(); |
vincenxp | 0:10bf1bb6d2b5 | 170 | low1I = factor_L1 * low1I/nbMeas; |
vincenxp | 0:10bf1bb6d2b5 | 171 | timestamp = timer.read(); |
vincenxp | 0:10bf1bb6d2b5 | 172 | return low1I; |
vincenxp | 0:10bf1bb6d2b5 | 173 | } |
vincenxp | 0:10bf1bb6d2b5 | 174 | |
vincenxp | 0:10bf1bb6d2b5 | 175 | // measure low range current... |
vincenxp | 0:10bf1bb6d2b5 | 176 | float measureLow2(bool autorange, int nbMeas){ |
vincenxp | 0:10bf1bb6d2b5 | 177 | float low2I=0; |
vincenxp | 0:10bf1bb6d2b5 | 178 | if (!autorange) enableLow2Range(); |
vincenxp | 0:10bf1bb6d2b5 | 179 | for (i = 0; i < nbMeas; i++){ |
vincenxp | 0:10bf1bb6d2b5 | 180 | low2I += LOW2_ADC; |
vincenxp | 0:10bf1bb6d2b5 | 181 | } |
vincenxp | 0:10bf1bb6d2b5 | 182 | if (!autorange) enableHighRange(); |
vincenxp | 0:10bf1bb6d2b5 | 183 | low2I = factor_L2 * low2I/nbMeas; |
vincenxp | 0:10bf1bb6d2b5 | 184 | timestamp = timer.read(); |
vincenxp | 0:10bf1bb6d2b5 | 185 | return low2I; |
vincenxp | 0:10bf1bb6d2b5 | 186 | } |
vincenxp | 0:10bf1bb6d2b5 | 187 | |
vincenxp | 0:10bf1bb6d2b5 | 188 | // this function measures current, autoranging as necessary |
vincenxp | 0:10bf1bb6d2b5 | 189 | // to get the best measurement... |
vincenxp | 0:10bf1bb6d2b5 | 190 | // hard coded values for switching ranges needs to be made |
vincenxp | 0:10bf1bb6d2b5 | 191 | // dynamic so 4.125A/1.65A ranges can be used... |
vincenxp | 0:10bf1bb6d2b5 | 192 | #if (USEI2CNOTUART == 1) |
vincenxp | 0:10bf1bb6d2b5 | 193 | float measureAutoI(){ |
vincenxp | 0:10bf1bb6d2b5 | 194 | float tempI; |
vincenxp | 0:10bf1bb6d2b5 | 195 | enableHighRange(); // this should already be the case, but do it anyway... |
vincenxp | 0:10bf1bb6d2b5 | 196 | tempI = measureHigh(); |
vincenxp | 0:10bf1bb6d2b5 | 197 | status = 1; |
vincenxp | 0:10bf1bb6d2b5 | 198 | // if current is below this threshold, use LOW1 to measure... |
vincenxp | 0:10bf1bb6d2b5 | 199 | if (tempI < 0.060) { |
vincenxp | 0:10bf1bb6d2b5 | 200 | enableLow1Range(); |
vincenxp | 0:10bf1bb6d2b5 | 201 | tempI = measureLow1(false); // call function |
vincenxp | 0:10bf1bb6d2b5 | 202 | status = 2; |
vincenxp | 0:10bf1bb6d2b5 | 203 | // if current is below this threshold, use LOW2 to measure... |
vincenxp | 0:10bf1bb6d2b5 | 204 | if (tempI < 0.0009){ |
vincenxp | 0:10bf1bb6d2b5 | 205 | enableLow2Range(); // change FETs to enable LOW2 measurement... |
vincenxp | 0:10bf1bb6d2b5 | 206 | tempI = measureLow2(false); |
vincenxp | 0:10bf1bb6d2b5 | 207 | status = 3; |
vincenxp | 0:10bf1bb6d2b5 | 208 | } |
vincenxp | 0:10bf1bb6d2b5 | 209 | enableHighRange(); |
vincenxp | 0:10bf1bb6d2b5 | 210 | } |
vincenxp | 0:10bf1bb6d2b5 | 211 | return tempI; |
vincenxp | 0:10bf1bb6d2b5 | 212 | } |
vincenxp | 0:10bf1bb6d2b5 | 213 | #else |
vincenxp | 0:10bf1bb6d2b5 | 214 | float measureAutoI_uart(int nbMeas){ |
vincenxp | 0:10bf1bb6d2b5 | 215 | //void measureAutoI_uart(int nbMeas){ |
vincenxp | 0:10bf1bb6d2b5 | 216 | float tempI; |
vincenxp | 0:10bf1bb6d2b5 | 217 | |
vincenxp | 0:10bf1bb6d2b5 | 218 | enableHighRange(); // this should already be the case, but do it anyway... |
vincenxp | 0:10bf1bb6d2b5 | 219 | current[0] = 0; |
vincenxp | 0:10bf1bb6d2b5 | 220 | current[1] = 0; |
vincenxp | 0:10bf1bb6d2b5 | 221 | current[2] = 0; |
vincenxp | 0:10bf1bb6d2b5 | 222 | tempI = measureHigh(nbMeas); |
vincenxp | 0:10bf1bb6d2b5 | 223 | // uart.printf("\r\nnb samples: %d - measureHigh:%f A", nbMeas, tempI); |
vincenxp | 0:10bf1bb6d2b5 | 224 | current[0] = tempI; |
vincenxp | 0:10bf1bb6d2b5 | 225 | status = 1; |
vincenxp | 0:10bf1bb6d2b5 | 226 | // if current is below this threshold, use LOW1 to measure... |
vincenxp | 0:10bf1bb6d2b5 | 227 | if (tempI < 0.060) { |
vincenxp | 0:10bf1bb6d2b5 | 228 | enableLow1Range(); |
vincenxp | 0:10bf1bb6d2b5 | 229 | tempI = measureLow1(false, nbMeas); // call function |
vincenxp | 0:10bf1bb6d2b5 | 230 | // uart.printf("\r\nnb samples: %d - measureLow1:%f A", nbMeas, tempI); |
vincenxp | 0:10bf1bb6d2b5 | 231 | current[1] = tempI; |
vincenxp | 0:10bf1bb6d2b5 | 232 | status = 2; |
vincenxp | 0:10bf1bb6d2b5 | 233 | // if current is below this threshold, use LOW2 to measure... |
vincenxp | 0:10bf1bb6d2b5 | 234 | if (tempI < 0.0009){ |
vincenxp | 0:10bf1bb6d2b5 | 235 | enableLow2Range(); // change FETs to enable LOW2 measurement... |
vincenxp | 0:10bf1bb6d2b5 | 236 | tempI = measureLow2(false, nbMeas); |
vincenxp | 0:10bf1bb6d2b5 | 237 | // uart.printf("\r\nnb samples: %d - measureLow2:%f A", nbMeas, tempI); |
vincenxp | 0:10bf1bb6d2b5 | 238 | current[2] = tempI; |
vincenxp | 0:10bf1bb6d2b5 | 239 | status = 3; |
vincenxp | 0:10bf1bb6d2b5 | 240 | } |
vincenxp | 0:10bf1bb6d2b5 | 241 | enableHighRange(); |
vincenxp | 0:10bf1bb6d2b5 | 242 | } |
vincenxp | 0:10bf1bb6d2b5 | 243 | return tempI; |
vincenxp | 0:10bf1bb6d2b5 | 244 | } |
vincenxp | 0:10bf1bb6d2b5 | 245 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 246 | |
vincenxp | 0:10bf1bb6d2b5 | 247 | |
vincenxp | 0:10bf1bb6d2b5 | 248 | // measure the rail voltage, default being with |
vincenxp | 0:10bf1bb6d2b5 | 249 | // need to add logic for 5V/12V/arbitraryV range... |
vincenxp | 0:10bf1bb6d2b5 | 250 | #if (USEI2CNOTUART == 1) |
vincenxp | 0:10bf1bb6d2b5 | 251 | float measureRailV(){ |
vincenxp | 0:10bf1bb6d2b5 | 252 | float railv=0; |
vincenxp | 0:10bf1bb6d2b5 | 253 | enableRailV(); // switch FETs so divider is connected... |
vincenxp | 0:10bf1bb6d2b5 | 254 | for (i = 0; i < n_meas; i++){ |
vincenxp | 0:10bf1bb6d2b5 | 255 | railv += VRAIL_ADC; // read voltage at divider output... |
vincenxp | 0:10bf1bb6d2b5 | 256 | } |
vincenxp | 0:10bf1bb6d2b5 | 257 | disableRailV(); // now disconnect the voltage divider |
vincenxp | 0:10bf1bb6d2b5 | 258 | railv = vref * (railv/n_meas); // compute average |
vincenxp | 0:10bf1bb6d2b5 | 259 | // Convert to voltage by multiplying by "mult" |
vincenxp | 0:10bf1bb6d2b5 | 260 | timestamp = timer.read(); |
vincenxp | 0:10bf1bb6d2b5 | 261 | if (vref==12.0) railv = railv * 0.24770642201; |
vincenxp | 0:10bf1bb6d2b5 | 262 | return railv; |
vincenxp | 0:10bf1bb6d2b5 | 263 | } |
vincenxp | 0:10bf1bb6d2b5 | 264 | #else |
vincenxp | 0:10bf1bb6d2b5 | 265 | float measureRailV_uart(int nbMeas){ |
vincenxp | 0:10bf1bb6d2b5 | 266 | float railv=0; |
vincenxp | 0:10bf1bb6d2b5 | 267 | enableRailV(); // switch FETs so divider is connected... |
vincenxp | 0:10bf1bb6d2b5 | 268 | for (i = 0; i < nbMeas; i++){ |
vincenxp | 0:10bf1bb6d2b5 | 269 | railv += VRAIL_ADC; // read voltage at divider output... |
vincenxp | 0:10bf1bb6d2b5 | 270 | } |
vincenxp | 0:10bf1bb6d2b5 | 271 | disableRailV(); // now disconnect the voltage divider |
vincenxp | 0:10bf1bb6d2b5 | 272 | railv = vref * (railv/nbMeas); // compute average |
vincenxp | 0:10bf1bb6d2b5 | 273 | // Convert to voltage by multiplying by "mult" |
vincenxp | 0:10bf1bb6d2b5 | 274 | if (vref==12.0) railv = railv * 0.24770642201; |
vincenxp | 0:10bf1bb6d2b5 | 275 | // uart.printf("\r\nnb samples: %d - measureRailV:%f V\n", nbMeas, railv); |
vincenxp | 0:10bf1bb6d2b5 | 276 | return railv; |
vincenxp | 0:10bf1bb6d2b5 | 277 | } |
vincenxp | 0:10bf1bb6d2b5 | 278 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 279 | /*********************************************************************************** |
vincenxp | 0:10bf1bb6d2b5 | 280 | * |
vincenxp | 0:10bf1bb6d2b5 | 281 | * INTERRUPT SERVICE ROUTINE |
vincenxp | 0:10bf1bb6d2b5 | 282 | * |
vincenxp | 0:10bf1bb6d2b5 | 283 | ************************************************************************************/ |
vincenxp | 0:10bf1bb6d2b5 | 284 | #if (USEI2CNOTUART == 1) |
vincenxp | 0:10bf1bb6d2b5 | 285 | // measurements are only taken during ISR, triggered by aggregator on IRQ line... |
vincenxp | 0:10bf1bb6d2b5 | 286 | // this could have been implemented differently, but this was simple... |
vincenxp | 0:10bf1bb6d2b5 | 287 | // If coulomb counting is desired, this code would probably need to change... |
vincenxp | 0:10bf1bb6d2b5 | 288 | void interrupt_service(){ |
vincenxp | 0:10bf1bb6d2b5 | 289 | // make measurement... (this is currently just a placeholder...) |
vincenxp | 0:10bf1bb6d2b5 | 290 | status = 0; // clear status byte.. allow measurement functions to modify... |
vincenxp | 0:10bf1bb6d2b5 | 291 | measurement1 = measureAutoI(); |
vincenxp | 0:10bf1bb6d2b5 | 292 | measurement2 = measureRailV(); |
vincenxp | 0:10bf1bb6d2b5 | 293 | n += 10; //increment interrupt counter... |
vincenxp | 0:10bf1bb6d2b5 | 294 | |
vincenxp | 0:10bf1bb6d2b5 | 295 | // prepare data for transport, in the event that aggregator asks for short format... |
vincenxp | 0:10bf1bb6d2b5 | 296 | |
vincenxp | 0:10bf1bb6d2b5 | 297 | // compressed data format, 4 bytes total, with a status nibble |
vincenxp | 0:10bf1bb6d2b5 | 298 | // Each byte has form: (s*128) + (digit1*10) + (digit2), which fits into 8 bits |
vincenxp | 0:10bf1bb6d2b5 | 299 | // Each value is composed of two bytes with form above, first three digits are |
vincenxp | 0:10bf1bb6d2b5 | 300 | // the mantissa and the last digit is the exponent. Two values is four bytes, so |
vincenxp | 0:10bf1bb6d2b5 | 301 | // that allows four status bits to be included. |
vincenxp | 0:10bf1bb6d2b5 | 302 | sprintf(buf, "%4.2e", measurement1); |
vincenxp | 0:10bf1bb6d2b5 | 303 | buf[10] = (buf[0]-48)*10 + (buf[2]-48); // no decimal, we use fixed point... |
vincenxp | 0:10bf1bb6d2b5 | 304 | buf[11] = (buf[3]-48)*10 + (buf[7]-48); // no 'e', and no exp sign, since we know that's negative... |
vincenxp | 0:10bf1bb6d2b5 | 305 | sprintf(buf, "%4.2e", measurement2); |
vincenxp | 0:10bf1bb6d2b5 | 306 | buf[12] = (buf[0]-48)*10 + (buf[2]-48); // no decimal, we use fixed point... |
vincenxp | 0:10bf1bb6d2b5 | 307 | buf[13] = (buf[3]-48)*10 + (buf[7]-48); // no 'e', and no exp sign, since we know that's negative... |
vincenxp | 0:10bf1bb6d2b5 | 308 | |
vincenxp | 0:10bf1bb6d2b5 | 309 | // add in the four status bits... |
vincenxp | 0:10bf1bb6d2b5 | 310 | buf[10] = buf[10] | (status & 1<<3)<<4; |
vincenxp | 0:10bf1bb6d2b5 | 311 | buf[11] = buf[11] | (status & 1<<2)<<5; |
vincenxp | 0:10bf1bb6d2b5 | 312 | buf[12] = buf[12] | (status & 1<<1)<<6; |
vincenxp | 0:10bf1bb6d2b5 | 313 | buf[13] = buf[13] | (status & 1<<0)<<7; |
vincenxp | 0:10bf1bb6d2b5 | 314 | |
vincenxp | 0:10bf1bb6d2b5 | 315 | // Convert each 32-bit floating point measurement value into 4 bytes |
vincenxp | 0:10bf1bb6d2b5 | 316 | // using union, so we can send bytes over I2C... |
vincenxp | 0:10bf1bb6d2b5 | 317 | u.fval = measurement1; |
vincenxp | 0:10bf1bb6d2b5 | 318 | v.fval = measurement2; |
vincenxp | 0:10bf1bb6d2b5 | 319 | |
vincenxp | 0:10bf1bb6d2b5 | 320 | // now fill the buffers with the stuff generated above so it can be sent over I2C: |
vincenxp | 0:10bf1bb6d2b5 | 321 | |
vincenxp | 0:10bf1bb6d2b5 | 322 | // stuff latest measurement float values into bytes of buf for next transmission... |
vincenxp | 0:10bf1bb6d2b5 | 323 | // buffer format: 4 bytes = (float) V, 4 bytes = (float) I, 1 byte status |
vincenxp | 0:10bf1bb6d2b5 | 324 | for (j=0; j<4; j++) buf[j] = u.b[j]; // voltage |
vincenxp | 0:10bf1bb6d2b5 | 325 | for (j=0; j<4; j++) buf[j+4] = v.b[j]; // current |
vincenxp | 0:10bf1bb6d2b5 | 326 | buf[8] = status; |
vincenxp | 0:10bf1bb6d2b5 | 327 | |
vincenxp | 0:10bf1bb6d2b5 | 328 | // transfer compressed measurement data to output buffers... |
vincenxp | 0:10bf1bb6d2b5 | 329 | // for (j=0; j<9; j++) obuf[j] = buf[j]; |
vincenxp | 0:10bf1bb6d2b5 | 330 | // for (j=0; j<4; j++) cbuf[j] = buf[j+10]; |
vincenxp | 0:10bf1bb6d2b5 | 331 | for (j=0; j<9; j++) obuf[j] = j*10; |
vincenxp | 0:10bf1bb6d2b5 | 332 | for (j=0; j<4; j++) cbuf[j] = j*10+10; |
vincenxp | 0:10bf1bb6d2b5 | 333 | |
vincenxp | 0:10bf1bb6d2b5 | 334 | } //ISR |
vincenxp | 0:10bf1bb6d2b5 | 335 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 336 | #if (USEI2CNOTUART == 0) |
vincenxp | 0:10bf1bb6d2b5 | 337 | // input used for triggering measurement... |
vincenxp | 0:10bf1bb6d2b5 | 338 | // will eventually need to be set up as an interrupt so it minimizes delay before measurement |
vincenxp | 0:10bf1bb6d2b5 | 339 | InterruptIn trigger(PTA0); // use as a trigger to make measurement... |
vincenxp | 0:10bf1bb6d2b5 | 340 | |
vincenxp | 0:10bf1bb6d2b5 | 341 | // test function to see if trigger pin is being hit... |
vincenxp | 0:10bf1bb6d2b5 | 342 | // intended for use later to do timed triggering of measurements... |
vincenxp | 0:10bf1bb6d2b5 | 343 | void triggerIn(){ |
vincenxp | 0:10bf1bb6d2b5 | 344 | uart.printf("You're triggering me! \r\n"); |
vincenxp | 0:10bf1bb6d2b5 | 345 | //measureAll(); |
vincenxp | 0:10bf1bb6d2b5 | 346 | } |
vincenxp | 0:10bf1bb6d2b5 | 347 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 348 | |
vincenxp | 0:10bf1bb6d2b5 | 349 | /*********************************************************************************** |
vincenxp | 0:10bf1bb6d2b5 | 350 | * |
vincenxp | 0:10bf1bb6d2b5 | 351 | * MAIN CODE |
vincenxp | 0:10bf1bb6d2b5 | 352 | * |
vincenxp | 0:10bf1bb6d2b5 | 353 | ************************************************************************************/ |
vincenxp | 0:10bf1bb6d2b5 | 354 | |
vincenxp | 0:10bf1bb6d2b5 | 355 | // main... |
vincenxp | 0:10bf1bb6d2b5 | 356 | int main() { |
vincenxp | 0:10bf1bb6d2b5 | 357 | |
vincenxp | 0:10bf1bb6d2b5 | 358 | int sensor = 0; |
vincenxp | 0:10bf1bb6d2b5 | 359 | float volt = 0; |
vincenxp | 0:10bf1bb6d2b5 | 360 | float curr_sensor = 0; |
vincenxp | 0:10bf1bb6d2b5 | 361 | int begin=0, end=0; |
vincenxp | 0:10bf1bb6d2b5 | 362 | |
vincenxp | 0:10bf1bb6d2b5 | 363 | timer.reset(); |
vincenxp | 0:10bf1bb6d2b5 | 364 | timer.start(); |
vincenxp | 0:10bf1bb6d2b5 | 365 | |
vincenxp | 0:10bf1bb6d2b5 | 366 | buf[0] = 0; |
vincenxp | 0:10bf1bb6d2b5 | 367 | |
vincenxp | 0:10bf1bb6d2b5 | 368 | #if (USEI2CNOTUART == 0) |
vincenxp | 0:10bf1bb6d2b5 | 369 | uart.baud(115200); |
vincenxp | 0:10bf1bb6d2b5 | 370 | uart.printf("Hello World!\r\n"); |
vincenxp | 0:10bf1bb6d2b5 | 371 | |
vincenxp | 0:10bf1bb6d2b5 | 372 | uart.printf("\r\n\n........FROM SENSOR.......\n\n"); |
vincenxp | 0:10bf1bb6d2b5 | 373 | |
vincenxp | 0:10bf1bb6d2b5 | 374 | |
vincenxp | 0:10bf1bb6d2b5 | 375 | // turn on pull ups for option resistors, since resistors pull down pins |
vincenxp | 0:10bf1bb6d2b5 | 376 | C_RANGE.mode(PullUp); |
vincenxp | 0:10bf1bb6d2b5 | 377 | V_RANGE0.mode(PullUp); |
vincenxp | 0:10bf1bb6d2b5 | 378 | V_RANGE1.mode(PullUp); |
vincenxp | 0:10bf1bb6d2b5 | 379 | // change calculation multipliers according to option resistors: |
vincenxp | 0:10bf1bb6d2b5 | 380 | i = V_RANGE1*2 + V_RANGE0; |
vincenxp | 0:10bf1bb6d2b5 | 381 | if (i==1) vref = 6.6; |
vincenxp | 0:10bf1bb6d2b5 | 382 | if (i==2) vref = 12.0; |
vincenxp | 0:10bf1bb6d2b5 | 383 | if (C_RANGE==0) { |
vincenxp | 0:10bf1bb6d2b5 | 384 | factor_H = vref / 2.0; |
vincenxp | 0:10bf1bb6d2b5 | 385 | factor_L1 = vref / (0.15 * 1000); |
vincenxp | 0:10bf1bb6d2b5 | 386 | factor_L2 = vref / (15 * 1000); |
vincenxp | 0:10bf1bb6d2b5 | 387 | } |
vincenxp | 0:10bf1bb6d2b5 | 388 | |
vincenxp | 0:10bf1bb6d2b5 | 389 | uart.printf("\r\nfactor_H: %f", factor_H); |
vincenxp | 0:10bf1bb6d2b5 | 390 | uart.printf("\r\nfactor_L1: %f", factor_L1); |
vincenxp | 0:10bf1bb6d2b5 | 391 | uart.printf("\r\nfactor_L2: %f", factor_L2); |
vincenxp | 0:10bf1bb6d2b5 | 392 | |
vincenxp | 0:10bf1bb6d2b5 | 393 | while (1) { |
vincenxp | 0:10bf1bb6d2b5 | 394 | // // configure the trigger interrupt... |
vincenxp | 0:10bf1bb6d2b5 | 395 | // uart.printf("\ntrigger irq..."); |
vincenxp | 0:10bf1bb6d2b5 | 396 | // trigger.rise(&triggerIn); |
vincenxp | 0:10bf1bb6d2b5 | 397 | //// uart.printf("\r\nCalling measureAutoI..."); |
vincenxp | 0:10bf1bb6d2b5 | 398 | //// uart.printf("\nmeasureAutoI:%f", measureAutoI()); |
vincenxp | 0:10bf1bb6d2b5 | 399 | |
vincenxp | 0:10bf1bb6d2b5 | 400 | int nb_samples = 1; |
vincenxp | 0:10bf1bb6d2b5 | 401 | // for(int nb_samples=1; nb_samples <=25; nb_samples++) { |
vincenxp | 0:10bf1bb6d2b5 | 402 | |
vincenxp | 0:10bf1bb6d2b5 | 403 | // t.reset(); |
vincenxp | 0:10bf1bb6d2b5 | 404 | // t.start(); |
vincenxp | 0:10bf1bb6d2b5 | 405 | begin = timer.read_us(); |
vincenxp | 0:10bf1bb6d2b5 | 406 | volt = measureRailV_uart(nb_samples); |
vincenxp | 0:10bf1bb6d2b5 | 407 | curr_sensor = measureAutoI_uart(nb_samples); |
vincenxp | 0:10bf1bb6d2b5 | 408 | end = timer.read_us(); |
vincenxp | 0:10bf1bb6d2b5 | 409 | // uart.printf("\r\nTotal Measure Time = %d us", end-begin); |
vincenxp | 0:10bf1bb6d2b5 | 410 | uart.printf("\r\n%d %d %f %f %f %f %f %f", end-begin, sensor, timestamp, volt, curr_sensor, current[0], current[1], current[2]); |
vincenxp | 0:10bf1bb6d2b5 | 411 | // t.stop(); |
vincenxp | 0:10bf1bb6d2b5 | 412 | // uart.printf("\r\nTotal Measure Time = %f s", t.read()); |
vincenxp | 0:10bf1bb6d2b5 | 413 | // uart.printf("\r\nTotal Measure Time = %f ms", t.read_ms()); |
vincenxp | 0:10bf1bb6d2b5 | 414 | // uart.printf("\r\nTotal Measure Time = %f us", t.read_us()); |
vincenxp | 0:10bf1bb6d2b5 | 415 | // wait_us(100); |
vincenxp | 0:10bf1bb6d2b5 | 416 | // } |
vincenxp | 0:10bf1bb6d2b5 | 417 | } |
vincenxp | 0:10bf1bb6d2b5 | 418 | |
vincenxp | 0:10bf1bb6d2b5 | 419 | |
vincenxp | 0:10bf1bb6d2b5 | 420 | #else |
vincenxp | 0:10bf1bb6d2b5 | 421 | |
vincenxp | 0:10bf1bb6d2b5 | 422 | wait_us(200); // wait before reassigning SWD pin so as to not get locked out... |
vincenxp | 0:10bf1bb6d2b5 | 423 | DigitalIn my_select(PTA2); // this is the individual line to each sensor... |
vincenxp | 0:10bf1bb6d2b5 | 424 | |
vincenxp | 0:10bf1bb6d2b5 | 425 | |
vincenxp | 0:10bf1bb6d2b5 | 426 | while (my_select) { |
vincenxp | 0:10bf1bb6d2b5 | 427 | // wait here until aggregator signals us for address reassignment... |
vincenxp | 0:10bf1bb6d2b5 | 428 | } // end while |
vincenxp | 0:10bf1bb6d2b5 | 429 | |
vincenxp | 0:10bf1bb6d2b5 | 430 | // Need to wait to set up I2C until after we've come out of wait loop above... |
vincenxp | 0:10bf1bb6d2b5 | 431 | // Setting up the I2C earlier starts it listening on the bus even if it's not |
vincenxp | 0:10bf1bb6d2b5 | 432 | // being polled, which means that multiple sensors will respond, hanging the bus... |
vincenxp | 0:10bf1bb6d2b5 | 433 | slave.frequency(400000); // go as fast as possible... |
vincenxp | 0:10bf1bb6d2b5 | 434 | slave.address(address); // listen on the default address... |
vincenxp | 0:10bf1bb6d2b5 | 435 | |
vincenxp | 0:10bf1bb6d2b5 | 436 | while (!my_select) { |
vincenxp | 0:10bf1bb6d2b5 | 437 | // listen for new address, then repeat it back aggregator... |
vincenxp | 0:10bf1bb6d2b5 | 438 | waiting = true; |
vincenxp | 0:10bf1bb6d2b5 | 439 | while (waiting && !my_select){ |
vincenxp | 0:10bf1bb6d2b5 | 440 | int i = slave.receive(); |
vincenxp | 0:10bf1bb6d2b5 | 441 | switch (i) { |
vincenxp | 0:10bf1bb6d2b5 | 442 | case I2CSlave::WriteAddressed: |
vincenxp | 0:10bf1bb6d2b5 | 443 | slave.read(buf, 1); |
vincenxp | 0:10bf1bb6d2b5 | 444 | // we just got our new address, provided my_select subsequently changes... |
vincenxp | 0:10bf1bb6d2b5 | 445 | waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 446 | break; |
vincenxp | 0:10bf1bb6d2b5 | 447 | case I2CSlave::ReadAddressed: |
vincenxp | 0:10bf1bb6d2b5 | 448 | slave.write(buf, 1); |
vincenxp | 0:10bf1bb6d2b5 | 449 | // write back our new address to confirm we go it... |
vincenxp | 0:10bf1bb6d2b5 | 450 | waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 451 | break; |
vincenxp | 0:10bf1bb6d2b5 | 452 | } |
vincenxp | 0:10bf1bb6d2b5 | 453 | } |
vincenxp | 0:10bf1bb6d2b5 | 454 | } // end while, waiting for address reassignment... |
vincenxp | 0:10bf1bb6d2b5 | 455 | |
vincenxp | 0:10bf1bb6d2b5 | 456 | // we fell out of loop above, so now change our I2C address to the newly assigned one... |
vincenxp | 0:10bf1bb6d2b5 | 457 | // this newly assigned address will not change until we're reset... |
vincenxp | 0:10bf1bb6d2b5 | 458 | slave.address(buf[0]); |
vincenxp | 0:10bf1bb6d2b5 | 459 | |
vincenxp | 0:10bf1bb6d2b5 | 460 | // enable interrupts, need to wait until after getting new I2C address, |
vincenxp | 0:10bf1bb6d2b5 | 461 | // since we cannot respond until we have our new address... |
vincenxp | 0:10bf1bb6d2b5 | 462 | InterruptIn triggerIRQ(PTA0); // this is the ganged interrupt signal to all sensors |
vincenxp | 0:10bf1bb6d2b5 | 463 | triggerIRQ.rise(&interrupt_service); // attach the service routine... |
vincenxp | 0:10bf1bb6d2b5 | 464 | |
vincenxp | 0:10bf1bb6d2b5 | 465 | // make sure we can receive at the new address... |
vincenxp | 0:10bf1bb6d2b5 | 466 | // this isn't absolutely necessary, but it's a good check... |
vincenxp | 0:10bf1bb6d2b5 | 467 | // if this is removed, the corresponding write in the aggregator code needs to go, too |
vincenxp | 0:10bf1bb6d2b5 | 468 | waiting = true; |
vincenxp | 0:10bf1bb6d2b5 | 469 | while (waiting){ |
vincenxp | 0:10bf1bb6d2b5 | 470 | i = slave.receive(); |
vincenxp | 0:10bf1bb6d2b5 | 471 | switch (i) { |
vincenxp | 0:10bf1bb6d2b5 | 472 | case I2CSlave::ReadAddressed: |
vincenxp | 0:10bf1bb6d2b5 | 473 | slave.write(buf, 1); |
vincenxp | 0:10bf1bb6d2b5 | 474 | waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 475 | break; |
vincenxp | 0:10bf1bb6d2b5 | 476 | case I2CSlave::WriteAddressed: |
vincenxp | 0:10bf1bb6d2b5 | 477 | slave.read(buf, 1); |
vincenxp | 0:10bf1bb6d2b5 | 478 | waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 479 | break; |
vincenxp | 0:10bf1bb6d2b5 | 480 | } |
vincenxp | 0:10bf1bb6d2b5 | 481 | } |
vincenxp | 0:10bf1bb6d2b5 | 482 | |
vincenxp | 0:10bf1bb6d2b5 | 483 | |
vincenxp | 0:10bf1bb6d2b5 | 484 | /******************************************************************************/ |
vincenxp | 0:10bf1bb6d2b5 | 485 | // this is the main loop: |
vincenxp | 0:10bf1bb6d2b5 | 486 | // We just sit here and wait for I2C commands and triggers on IRQ line... |
vincenxp | 0:10bf1bb6d2b5 | 487 | // |
vincenxp | 0:10bf1bb6d2b5 | 488 | // A triggerIRQ causes measurements in ISR, aggregator must wait at least |
vincenxp | 0:10bf1bb6d2b5 | 489 | // long enough for it to finish before reading back the result(s). |
vincenxp | 0:10bf1bb6d2b5 | 490 | // |
vincenxp | 0:10bf1bb6d2b5 | 491 | // results are sent in 9 byte packets: 4 for voltage, 4 for current, and one status, |
vincenxp | 0:10bf1bb6d2b5 | 492 | // where voltage and current are floats in units of V and A. Status byte will be |
vincenxp | 0:10bf1bb6d2b5 | 493 | // packed with something later, yet to be defined. |
vincenxp | 0:10bf1bb6d2b5 | 494 | // |
vincenxp | 0:10bf1bb6d2b5 | 495 | // What should be implemented are additional things like setting and reading |
vincenxp | 0:10bf1bb6d2b5 | 496 | // back the delays in the GPIO control functions, turning on and off averaging |
vincenxp | 0:10bf1bb6d2b5 | 497 | // so we can see what the min and max values are (which also helps tell if we |
vincenxp | 0:10bf1bb6d2b5 | 498 | // don't have enough delay in the GPIO functions), and possibly other stuff |
vincenxp | 0:10bf1bb6d2b5 | 499 | // not thought of yet... Definitely not an exercise for this pasta programmer... |
vincenxp | 0:10bf1bb6d2b5 | 500 | // |
vincenxp | 0:10bf1bb6d2b5 | 501 | while (1) { |
vincenxp | 0:10bf1bb6d2b5 | 502 | i = slave.receive(); |
vincenxp | 0:10bf1bb6d2b5 | 503 | switch (i) { |
vincenxp | 0:10bf1bb6d2b5 | 504 | case I2CSlave::ReadAddressed: |
vincenxp | 0:10bf1bb6d2b5 | 505 | if (my_select){ // if high, send uncompressed format... |
vincenxp | 0:10bf1bb6d2b5 | 506 | slave.write(obuf, 9); |
vincenxp | 0:10bf1bb6d2b5 | 507 | waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 508 | } else { // if low, send compressed format... |
vincenxp | 0:10bf1bb6d2b5 | 509 | slave.write(cbuf, 4); |
vincenxp | 0:10bf1bb6d2b5 | 510 | waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 511 | } |
vincenxp | 0:10bf1bb6d2b5 | 512 | break; |
vincenxp | 0:10bf1bb6d2b5 | 513 | case I2CSlave::WriteAddressed: |
vincenxp | 0:10bf1bb6d2b5 | 514 | // slave.read(inbuf, 1); |
vincenxp | 0:10bf1bb6d2b5 | 515 | // waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 516 | // break; |
vincenxp | 0:10bf1bb6d2b5 | 517 | if (my_select){ // if high, receive two bytes... |
vincenxp | 0:10bf1bb6d2b5 | 518 | slave.read(inbuf, 2); |
vincenxp | 0:10bf1bb6d2b5 | 519 | waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 520 | // if we're here, we've recieved two words, so we update the |
vincenxp | 0:10bf1bb6d2b5 | 521 | // appropriate parameter. |
vincenxp | 0:10bf1bb6d2b5 | 522 | switch (inbuf[0]) { |
vincenxp | 0:10bf1bb6d2b5 | 523 | case 0: |
vincenxp | 0:10bf1bb6d2b5 | 524 | wait_mbbb = inbuf[1]; |
vincenxp | 0:10bf1bb6d2b5 | 525 | break; |
vincenxp | 0:10bf1bb6d2b5 | 526 | case 1: |
vincenxp | 0:10bf1bb6d2b5 | 527 | wait_high = inbuf[1]*8; |
vincenxp | 0:10bf1bb6d2b5 | 528 | break; |
vincenxp | 0:10bf1bb6d2b5 | 529 | case 2: |
vincenxp | 0:10bf1bb6d2b5 | 530 | wait_low1 = inbuf[1]*8; |
vincenxp | 0:10bf1bb6d2b5 | 531 | break; |
vincenxp | 0:10bf1bb6d2b5 | 532 | case 3: |
vincenxp | 0:10bf1bb6d2b5 | 533 | wait_low2 = inbuf[1]*8; |
vincenxp | 0:10bf1bb6d2b5 | 534 | break; |
vincenxp | 0:10bf1bb6d2b5 | 535 | case 4: |
vincenxp | 0:10bf1bb6d2b5 | 536 | wait_vrail = inbuf[1]*8; |
vincenxp | 0:10bf1bb6d2b5 | 537 | break; |
vincenxp | 0:10bf1bb6d2b5 | 538 | case 5: |
vincenxp | 0:10bf1bb6d2b5 | 539 | n_meas = inbuf[1]; |
vincenxp | 0:10bf1bb6d2b5 | 540 | break; |
vincenxp | 0:10bf1bb6d2b5 | 541 | } // switch |
vincenxp | 0:10bf1bb6d2b5 | 542 | // and since we're still here, place the new values |
vincenxp | 0:10bf1bb6d2b5 | 543 | // in obuf so we can read back all paramters values |
vincenxp | 0:10bf1bb6d2b5 | 544 | obuf[0] = wait_mbbb; |
vincenxp | 0:10bf1bb6d2b5 | 545 | obuf[1] = wait_high/8; |
vincenxp | 0:10bf1bb6d2b5 | 546 | obuf[2] = wait_low1/8; |
vincenxp | 0:10bf1bb6d2b5 | 547 | obuf[3] = wait_low2/8; |
vincenxp | 0:10bf1bb6d2b5 | 548 | obuf[4] = wait_vrail/8; |
vincenxp | 0:10bf1bb6d2b5 | 549 | obuf[5] = n_meas; |
vincenxp | 0:10bf1bb6d2b5 | 550 | obuf[6] = 0; |
vincenxp | 0:10bf1bb6d2b5 | 551 | obuf[7] = 0; |
vincenxp | 0:10bf1bb6d2b5 | 552 | obuf[8] = 0; |
vincenxp | 0:10bf1bb6d2b5 | 553 | } else { ;// if low, receive one byte... |
vincenxp | 0:10bf1bb6d2b5 | 554 | slave.read(inbuf, 1); |
vincenxp | 0:10bf1bb6d2b5 | 555 | waiting = false; |
vincenxp | 0:10bf1bb6d2b5 | 556 | } |
vincenxp | 0:10bf1bb6d2b5 | 557 | } // switch |
vincenxp | 0:10bf1bb6d2b5 | 558 | } // while(1) |
vincenxp | 0:10bf1bb6d2b5 | 559 | #endif |
vincenxp | 0:10bf1bb6d2b5 | 560 | |
vincenxp | 0:10bf1bb6d2b5 | 561 | } |