SX1276 Shield based Applications

Dependencies:   X_NUCLEO_IKS01A1 LoRaWAN-lib SX1276Lib mbed

LoRaWAN-SX1276-Application Demo uses SX1276MB1LAS mbed component shield on a nucleo board platform to demonstrate a Class-A LoRaWAN device in the 915MHz ISM band for North American region. It uses the LoRaWAN-lib and SX1276Lib libraries.

Comissioning.h (LoRaWAN Network Configuration)

The end-device can be activated in one of the two ways:

Over the Air (OTA) activation can be enabled as shown in the figure below. /media/uploads/ubhat/ota_enable.png

The end-device must be configured with the following parameters:

  • LORAWAN_DEVICE_EUI (8 Bytes) : Fist 3 Bytes is the Organizationally Unique Identifier (OUI) followed by 5 bytes of unique ID. If not defined by user, then the firmware automatically assigns one to the end-device
  • LORAWAN_APPLICATION_EUI (8 Bytes)
  • LORAWAN_APPLICATION_KEY (or DEVKEY) (16 Bytes)

/media/uploads/ubhat/ota_eui.png

Activation by Personalization (ABP) can be enabled as shown in the figure below. /media/uploads/ubhat/abp_enable.png

The end-device must be configured with the following parameters:

  • LORAWAN_DEVICE_ADDRESS (4 Bytes) : If not defined by user, then the firmware automatically assigns one to the end-device
  • LORAWAN_NWKSKEY (16 Bytes)
  • LORAWAN_APPSKEY (16 Bytes)

/media/uploads/ubhat/abp_key.png

Config.h (LoRaWAN Communication Parameters)

  • Mode of Operation : Hybrid If the end-device needs to be configured to operate over 8-channels, then Hybrid Mode needs to be enabled /media/uploads/ubhat/hybridenable.png
  • Mode of Operation : Frequency Hop If the end-device needs to be configured to operate over 64-channels, then Hybrid Mode needs to be disabled
  • Delay between successive JOIN REQUESTs : The delay between successive Join Requests (until the end-device joins the network) can be configured using the parameter OVER_THE_AIR_ACTIVATION_DUTYCYCLE
  • Inter-Frame Delay : One can change the delay between each frame transmission using APP_TX_DUTYCYCLE It is advisable that APP_TX_DUTYCYCLE is greater than or equal to 3sec.
  • Data Rate : The data rate can be configured as per LoRaWAN specification using the paramter LORAWAN_DEFAULT_DATARATE. The range of values are DR_0, DR_1, DR_2, DR_3 and DR_4
  • Confirmed/Unconfirmed Messages : The uplink message or payload can be chosen to be confirmed or unconfirmed using the parameter LORAWAN_CONFIRMED_MSG_ON. When set to 1, the transmitted messages need to be confirmed with an ACK by the network server in the subsequent RX window. When set to 0, no ACK is requested.
  • ADR ON/OFF : The ADR can be enabled or disabled using the parameter LORAWAN_ADR_ON. When set to 1, ADR is enabled and disabled when set to 0.
  • Application Port : The application port can be set using parameter LORAWAN_APP_PORT. A few examples are associated to specific Application Port, and are defined in Config.h
  • Payload Length : The lenght of the payload (in bytes) to be transmitted can be configured using LORAWAN_APP_DATA_SIZE
  • Transmit Power : The transmit power can be configured using LORAWAN_TX_POWER (LoRaMAC verifies if the set power is compliant with the LoRaWAN spec and FCC guidelines)

/media/uploads/ubhat/loraconfig.png

The baud-rate for serial terminal display is 115200

app/LoRaApp.cpp

Committer:
ubhat
Date:
2016-08-27
Revision:
2:78df92a365c2
Parent:
0:42863a11464a
Child:
3:4bca7f8f731a

File content as of revision 2:78df92a365c2:

/*
 / _____)             _              | |
( (____  _____ ____ _| |_ _____  ____| |__
 \____ \| ___ |    (_   _) ___ |/ ___)  _ \
 _____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
    (C)2015 Semtech

Description: User-defined applications such as GPS, Temp, Accelerometer, LED indications etc.
            Event based actions such as LED blink on Tx, LED toggle on downlink etc

License: Revised BSD License, see LICENSE.TXT file include in the project

Maintainer: Uttam Bhat
*/

#include "LoRaApp.h"

#ifdef USE_IKS01A1_SENSOR
float iks01a1_data;
int32_t Accl_Value[3] = {0};
#endif

bool VerticalStatus = false;


Application::Application( uint8_t * memptr )
{
    BuffAddr = memptr;
    memset( BuffAddr, 0, LORAWAN_APP_DATA_MAX_SIZE );
    BuffPtr = 0;    
}

Application::~Application( )
{
}

void Application::ApplicationAppendData( uint8_t *pData, uint8_t len )
{
    memcpy( BuffAddr + BuffPtr, pData, len );
    BuffPtr += len;
}

void Application::ApplicationPtrPos( uint8_t ptrPos )
{
    BuffPtr = ptrPos;
}

void Application::ApplicationCall( eAppType App )
{
    switch( App )
    {        
        // Appends 1 Byte to TX buffer
        case AppTemp:
        {    
#ifdef USE_IKS01A1_SENSOR 
                        
            temp_sensor1->GetTemperature(&iks01a1_data);
                                    
            printf("Temp = %f, %d\r\n", iks01a1_data, (int8_t) iks01a1_data);
                               
            if( ( BuffPtr + 1 ) <= LORAWAN_APP_DATA_SIZE )
            {
                BuffAddr[BuffPtr++] = (int8_t) iks01a1_data;                         
            }
            
#endif            
            break;
        }
        
        // Appends 2 Bytes to TX buffer
        case AppPressr:
        {    
#ifdef USE_IKS01A1_SENSOR 
                        
            pressure_sensor->GetPressure(&iks01a1_data);
                                    
            printf("Pressure = %f, %d\r\n", iks01a1_data, (uint16_t) iks01a1_data);
                               
            if( ( BuffPtr + 2 ) <= LORAWAN_APP_DATA_SIZE )
            {
                BuffAddr[BuffPtr++] = ( (int16_t) iks01a1_data >> 8 ) & 0xFF;
                BuffAddr[BuffPtr++] = ( (int16_t) iks01a1_data ) & 0xFF;                         
            }
            
#endif            
            break;
        }
        
        // Appends 2 Bytes to TX buffer
        case AppHumid:
        {    
#ifdef USE_IKS01A1_SENSOR 
                        
            humidity_sensor->GetHumidity(&iks01a1_data);
                                    
            printf("Humidity = %f, %d\r\n", iks01a1_data, (uint8_t) iks01a1_data);
                               
            if( ( BuffPtr + 1 ) <= LORAWAN_APP_DATA_SIZE )
            {
                BuffAddr[BuffPtr++] = (int8_t) iks01a1_data;
            }
            
#endif            
            break;
        }

        // Appends 1 Byte to TX buffer
        case AppBat:
        {  
            if( ( BuffPtr + 1 ) <= LORAWAN_APP_DATA_SIZE )
            {
                BuffAddr[BuffPtr++] = BoardGetBatteryLevel( );              // Per LoRaWAN spec; 0 = Charging; 1...254 = level, 255 = N/A
            }
            break;
        }

        // Appends incremental values of 1 Byte each to TX buffer until Full
        case AppRamp:
        {
            int32_t i, j;

            // Populate Tx Buffer with increasing byte values starting from 0x00, 0x01, 0x02 ... 
            for( i = BuffPtr, j = 0; i < LORAWAN_APP_DATA_SIZE; i++ )
            {
                BuffAddr[i] = j++;
            }
            BuffPtr = LORAWAN_APP_DATA_SIZE;
            break;
        }

        // Appends 2 Bytes to TX buffer
        case AppAccl:
        {  
#ifdef USE_IKS01A1_SENSOR 
                        
            accelerometer->Get_X_Axes(Accl_Value);
                                    
            printf("X/Y/Z = %d/%d/%d\r\n", Accl_Value[0], Accl_Value[1], Accl_Value[2]);
                               
            if( ( BuffPtr + 6 ) <= LORAWAN_APP_DATA_SIZE )
            {
                BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[0] >> 8 ) & 0xFF;
                BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[0] ) & 0xFF; 
                BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[1] >> 8 ) & 0xFF;
                BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[1] ) & 0xFF; 
                BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[2] >> 8 ) & 0xFF;
                BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[2] ) & 0xFF;                         
            }            
#endif            
            break;
        }       

        case AppPushButton:
        {   
            uint16_t PushButtonCnt;
            uint8_t *p = (uint8_t *) &PushButtonCnt;

            PushButtonCnt = LoRaMacUplinkStatus.UplinkCounter;
                
            memcpy( &BuffAddr[BuffPtr], p, sizeof(uint16_t) );
            
            break;
        }

        default:
        {            
            break;
        }
    }
}

/*
static void OnRedLedTimerEvent( void )
{
    TimerStop( &RedLedTimer.LedTimer );

    if( RedLed == LED_OFF )
    {
        RedLed = LED_ON;
    }
    else
    {
        RedLed = LED_OFF;
    }
}

static void OnYellowLedTimerEvent( void )
{
    TimerStop( &YellowLedTimer.LedTimer );

    if( YellowLed == LED_OFF )
    {
        YellowLed = LED_ON;
    }
    else
    {
        YellowLed = LED_OFF;
    }
}

static void OnGreenLedTimerEvent( void )
{
    TimerStop( &GreenLedTimer.LedTimer );

    if( GreenLed == LED_OFF )
    {
        GreenLed = LED_ON;
    }
    else
    {
        GreenLed = LED_OFF;
    }
}

TimerLed::TimerLed( eLedType led )
{
    switch( led )
    {
        case Red:
        {
            TimerInit( &LedTimer, OnRedLedTimerEvent );
            break;
        }

        case Yellow:
        {
            TimerInit( &LedTimer, OnYellowLedTimerEvent );
            break;
        }

        case Green:
        {
            TimerInit( &LedTimer, OnGreenLedTimerEvent );
            break;
        }
    }
    
}
        
TimerLed::~TimerLed( )
{
}

void BlinkLED( eLedType led, uint32_t time )
{
    switch( led )
    {
        case Red:
        {
            TimerSetValue( &RedLedTimer.LedTimer, time );
            TimerStart( &RedLedTimer.LedTimer );
            RedLed = LED_ON;
            break;
        }

        case Yellow:
        {
            TimerSetValue( &YellowLedTimer.LedTimer, time );
            TimerStart( &YellowLedTimer.LedTimer );
            YellowLed = LED_ON;
            break;
        }

        case Green:
        {
            TimerSetValue( &GreenLedTimer.LedTimer, time );
            TimerStart( &GreenLedTimer.LedTimer );
            GreenLed = LED_ON;
            break;
        }
    }
}

void ToggleLED( eLedType led )
{
    switch( led )
    {
        case Red:
        {
            if( RedLed == LED_OFF )
            {
                RedLed = LED_ON;
            }
            else
            {
                RedLed = LED_OFF;
            }
            break;
        }

        case Yellow:
        {
            if( YellowLed == LED_OFF )
            {
                YellowLed = LED_ON;
            }
            else
            {
                YellowLed = LED_OFF;
            }
            break;
        }

        case Green:
        {
            if( GreenLed == LED_OFF )
            {
                GreenLed = LED_ON;
            }
            else
            {
                GreenLed = LED_OFF;
            }
            break;
        }
    }
}   

void CtrlLED( eLedType led, uint8_t state )
{
    switch( led )
    {
        case Red:
        {
            RedLed = state;
            break;
        }

        case Yellow:
        {
            YellowLed = state;
            break;
        }

        case Green:
        {
            GreenLed = state;
            break;
        }

        case Usr:
        {
            if( state )
            {
                UsrLed = LED_ON;
            }
            else
            {
                UsrLed = LED_OFF;
            }
            break;
        }
    }
}
*/
void CheckOrientation( void )
{
    /*
    uint8_t statusReg; 
    
    // Read the PS_STATUS register
    statusReg = Mma8451q.read_single( MMA8451_PL_STATUS );

     // If Orientation of the Mote changed then populate Upper Nibble of 0th Byte of Tx Buffer                       
    if( ( statusReg & 0x40 ) != 0 )
    {           
        CtrlLED( Green, LED_OFF );
        VerticalStatus = false; // horizontal
    }
    else
    {        
        CtrlLED( Green, LED_ON );
        VerticalStatus = true; // vertical
    } 
    */      
}