SX1276 Shield based Applications
Dependencies: X_NUCLEO_IKS01A1 LoRaWAN-lib SX1276Lib mbed
LoRaWAN-SX1276-Application Demo uses SX1276MB1LAS mbed component shield on a nucleo board platform to demonstrate a Class-A LoRaWAN device in the 915MHz ISM band for North American region. It uses the LoRaWAN-lib and SX1276Lib libraries.
Comissioning.h (LoRaWAN Network Configuration)
The end-device can be activated in one of the two ways:
Over the Air (OTA) activation can be enabled as shown in the figure below.
The end-device must be configured with the following parameters:
LORAWAN_DEVICE_EUI
(8 Bytes) : Fist 3 Bytes is the Organizationally Unique Identifier (OUI) followed by 5 bytes of unique ID. If not defined by user, then the firmware automatically assigns one to the end-deviceLORAWAN_APPLICATION_EUI
(8 Bytes)LORAWAN_APPLICATION_KEY
(or DEVKEY) (16 Bytes)
Activation by Personalization (ABP) can be enabled as shown in the figure below.
The end-device must be configured with the following parameters:
LORAWAN_DEVICE_ADDRESS
(4 Bytes) : If not defined by user, then the firmware automatically assigns one to the end-deviceLORAWAN_NWKSKEY
(16 Bytes)LORAWAN_APPSKEY
(16 Bytes)
Config.h (LoRaWAN Communication Parameters)
- Mode of Operation : Hybrid
If the end-device needs to be configured to operate over 8-channels, then
Hybrid Mode
needs to be enabled
- Mode of Operation : Frequency Hop
If the end-device needs to be configured to operate over 64-channels, then
Hybrid Mode
needs to be disabled
- Delay between successive JOIN REQUESTs :
The delay between successive Join Requests (until the end-device joins the network) can be configured using the parameter
OVER_THE_AIR_ACTIVATION_DUTYCYCLE
- Inter-Frame Delay :
One can change the delay between each frame transmission using
APP_TX_DUTYCYCLE
It is advisable thatAPP_TX_DUTYCYCLE
is greater than or equal to 3sec.
- Data Rate :
The data rate can be configured as per LoRaWAN specification using the paramter
LORAWAN_DEFAULT_DATARATE
. The range of values are DR_0, DR_1, DR_2, DR_3 and DR_4
- Confirmed/Unconfirmed Messages :
The uplink message or payload can be chosen to be confirmed or unconfirmed using the parameter
LORAWAN_CONFIRMED_MSG_ON
. When set to 1, the transmitted messages need to be confirmed with anACK
by the network server in the subsequent RX window. When set to 0, noACK
is requested.
- ADR ON/OFF :
The ADR can be enabled or disabled using the parameter
LORAWAN_ADR_ON
. When set to 1, ADR is enabled and disabled when set to 0.
- Application Port :
The application port can be set using parameter
LORAWAN_APP_PORT
. A few examples are associated to specific Application Port, and are defined in Config.h
- Payload Length :
The lenght of the payload (in bytes) to be transmitted can be configured using
LORAWAN_APP_DATA_SIZE
- Transmit Power :
The transmit power can be configured using
LORAWAN_TX_POWER
(LoRaMAC verifies if the set power is compliant with the LoRaWAN spec and FCC guidelines)
The baud-rate for serial terminal display is 115200
app/LoRaApp.cpp
- Committer:
- ubhat
- Date:
- 2017-04-06
- Revision:
- 3:4bca7f8f731a
- Parent:
- 2:78df92a365c2
File content as of revision 3:4bca7f8f731a:
/* / _____) _ | | ( (____ _____ ____ _| |_ _____ ____| |__ \____ \| ___ | (_ _) ___ |/ ___) _ \ _____) ) ____| | | || |_| ____( (___| | | | (______/|_____)_|_|_| \__)_____)\____)_| |_| (C)2015 Semtech Description: User-defined applications such as GPS, Temp, Accelerometer, LED indications etc. Event based actions such as LED blink on Tx, LED toggle on downlink etc License: Revised BSD License, see LICENSE.TXT file include in the project Maintainer: Uttam Bhat */ #include "LoRaApp.h" #ifdef USE_IKS01A1_SENSOR float iks01a1_data; int32_t Accl_Value[3] = {0}; #endif #ifdef USE_CAYENNE_LPP /* .... Pressure .... Temperature .... Humidity .... Accelerometer */ uint8_t maxLPPsize[4] = {4, 4, 3, 8}; #endif bool VerticalStatus = false; Application::Application( uint8_t * memptr ) { BuffAddr = memptr; memset( BuffAddr, 0, LORAWAN_APP_DATA_MAX_SIZE ); BuffPtr = 0; } Application::~Application( ) { } void Application::ApplicationAppendData( uint8_t *pData, uint8_t len ) { memcpy( BuffAddr + BuffPtr, pData, len ); BuffPtr += len; } void Application::ApplicationPtrPos( uint8_t ptrPos ) { BuffPtr = ptrPos; } void Application::ApplicationCall( eAppType App ) { switch( App ) { // Appends 1 Byte to TX buffer case AppTemp: { #ifdef USE_IKS01A1_SENSOR temp_sensor2->GetTemperature(&iks01a1_data); printf("Temp = %f, %d\r\n", iks01a1_data, (int8_t) iks01a1_data); if( ( BuffPtr + 1 ) <= LORAWAN_APP_DATA_SIZE ) { #ifdef USE_CAYENNE_LPP BuffAddr[BuffPtr++] = 0; BuffAddr[BuffPtr++] = (int8_t) ( iks01a1_data * 10 ); #else BuffAddr[BuffPtr++] = (int8_t) iks01a1_data; #endif } #endif break; } // Appends 2 Bytes to TX buffer case AppPressr: { #ifdef USE_IKS01A1_SENSOR pressure_sensor->GetPressure(&iks01a1_data); printf("Pressure = %f, %d\r\n", iks01a1_data, (uint16_t) iks01a1_data); if( ( BuffPtr + 2 ) <= LORAWAN_APP_DATA_SIZE ) { #ifdef USE_CAYENNE_LPP int16_t tmp; tmp = (int16_t) ( iks01a1_data * 10 ); BuffAddr[BuffPtr++] = ( tmp >> 8 ) & 0xFF; BuffAddr[BuffPtr++] = ( tmp ) & 0xFF; #else BuffAddr[BuffPtr++] = ( (int16_t) iks01a1_data >> 8 ) & 0xFF; BuffAddr[BuffPtr++] = ( (int16_t) iks01a1_data ) & 0xFF; #endif } #endif break; } // Appends 2 Bytes to TX buffer case AppHumid: { #ifdef USE_IKS01A1_SENSOR humidity_sensor->GetHumidity(&iks01a1_data); printf("Humidity = %f, %d\r\n", iks01a1_data, (uint8_t) iks01a1_data); if( ( BuffPtr + 1 ) <= LORAWAN_APP_DATA_SIZE ) { #ifdef USE_CAYENNE_LPP BuffAddr[BuffPtr++] = (uint8_t) ( iks01a1_data * 2 ); #else BuffAddr[BuffPtr++] = (int8_t) iks01a1_data; #endif } #endif break; } // Appends 1 Byte to TX buffer case AppBat: { if( ( BuffPtr + 1 ) <= LORAWAN_APP_DATA_SIZE ) { BuffAddr[BuffPtr++] = BoardGetBatteryLevel( ); // Per LoRaWAN spec; 0 = Charging; 1...254 = level, 255 = N/A } break; } // Appends incremental values of 1 Byte each to TX buffer until Full case AppRamp: { int32_t i, j; // Populate Tx Buffer with increasing byte values starting from 0x00, 0x01, 0x02 ... for( i = BuffPtr, j = 0; i < LORAWAN_APP_DATA_SIZE; i++ ) { BuffAddr[i] = j++; } BuffPtr = LORAWAN_APP_DATA_SIZE; break; } // Appends 2 Bytes to TX buffer case AppAccl: { #ifdef USE_IKS01A1_SENSOR accelerometer->Get_X_Axes(Accl_Value); printf("X/Y/Z = %d/%d/%d\r\n", Accl_Value[0], Accl_Value[1], Accl_Value[2]); if( ( BuffPtr + 6 ) <= LORAWAN_APP_DATA_SIZE ) { BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[0] >> 8 ) & 0xFF; BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[0] ) & 0xFF; BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[1] >> 8 ) & 0xFF; BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[1] ) & 0xFF; BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[2] >> 8 ) & 0xFF; BuffAddr[BuffPtr++] = ( (int16_t) Accl_Value[2] ) & 0xFF; } #endif break; } case AppPushButton: { uint16_t PushButtonCnt; uint8_t *p = (uint8_t *) &PushButtonCnt; PushButtonCnt = LoRaMacUplinkStatus.UplinkCounter; memcpy( &BuffAddr[BuffPtr], p, sizeof(uint16_t) ); break; } default: { break; } } } /* static void OnRedLedTimerEvent( void ) { TimerStop( &RedLedTimer.LedTimer ); if( RedLed == LED_OFF ) { RedLed = LED_ON; } else { RedLed = LED_OFF; } } static void OnYellowLedTimerEvent( void ) { TimerStop( &YellowLedTimer.LedTimer ); if( YellowLed == LED_OFF ) { YellowLed = LED_ON; } else { YellowLed = LED_OFF; } } static void OnGreenLedTimerEvent( void ) { TimerStop( &GreenLedTimer.LedTimer ); if( GreenLed == LED_OFF ) { GreenLed = LED_ON; } else { GreenLed = LED_OFF; } } TimerLed::TimerLed( eLedType led ) { switch( led ) { case Red: { TimerInit( &LedTimer, OnRedLedTimerEvent ); break; } case Yellow: { TimerInit( &LedTimer, OnYellowLedTimerEvent ); break; } case Green: { TimerInit( &LedTimer, OnGreenLedTimerEvent ); break; } } } TimerLed::~TimerLed( ) { } void BlinkLED( eLedType led, uint32_t time ) { switch( led ) { case Red: { TimerSetValue( &RedLedTimer.LedTimer, time ); TimerStart( &RedLedTimer.LedTimer ); RedLed = LED_ON; break; } case Yellow: { TimerSetValue( &YellowLedTimer.LedTimer, time ); TimerStart( &YellowLedTimer.LedTimer ); YellowLed = LED_ON; break; } case Green: { TimerSetValue( &GreenLedTimer.LedTimer, time ); TimerStart( &GreenLedTimer.LedTimer ); GreenLed = LED_ON; break; } } } void ToggleLED( eLedType led ) { switch( led ) { case Red: { if( RedLed == LED_OFF ) { RedLed = LED_ON; } else { RedLed = LED_OFF; } break; } case Yellow: { if( YellowLed == LED_OFF ) { YellowLed = LED_ON; } else { YellowLed = LED_OFF; } break; } case Green: { if( GreenLed == LED_OFF ) { GreenLed = LED_ON; } else { GreenLed = LED_OFF; } break; } } } void CtrlLED( eLedType led, uint8_t state ) { switch( led ) { case Red: { RedLed = state; break; } case Yellow: { YellowLed = state; break; } case Green: { GreenLed = state; break; } case Usr: { if( state ) { UsrLed = LED_ON; } else { UsrLed = LED_OFF; } break; } } } */ void CheckOrientation( void ) { /* uint8_t statusReg; // Read the PS_STATUS register statusReg = Mma8451q.read_single( MMA8451_PL_STATUS ); // If Orientation of the Mote changed then populate Upper Nibble of 0th Byte of Tx Buffer if( ( statusReg & 0x40 ) != 0 ) { CtrlLED( Green, LED_OFF ); VerticalStatus = false; // horizontal } else { CtrlLED( Green, LED_ON ); VerticalStatus = true; // vertical } */ }