Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: biquadFilter FastPWM MODSERIAL QEI mbed
main.cpp@50:4a7b0a3f64cb, 2018-11-01 (annotated)
- Committer:
- tverouden
- Date:
- Thu Nov 01 20:22:46 2018 +0000
- Revision:
- 50:4a7b0a3f64cb
- Parent:
- 44:ca74d11a2dac
- Child:
- 51:78c75cc72d17
Merge
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
tverouden | 0:c0c35b95765f | 1 | // ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ PREPARATION ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ |
tverouden | 0:c0c35b95765f | 2 | // Libraries |
tverouden | 0:c0c35b95765f | 3 | #include "mbed.h" |
tverouden | 2:d70795e4e0bf | 4 | #include "BiQuad.h" |
tverouden | 0:c0c35b95765f | 5 | #include "FastPWM.h" |
tverouden | 0:c0c35b95765f | 6 | #include "MODSERIAL.h" |
efvanmarrewijk | 25:ac139331fe51 | 7 | #include "QEI.h" |
EvaKrolis | 13:4ba8f63e6ff4 | 8 | #include <algorithm> |
tverouden | 41:5aecc1a27ce6 | 9 | #include <math.h> |
tverouden | 41:5aecc1a27ce6 | 10 | #include <cmath> |
EvaKrolis | 14:2c0bf576a0e7 | 11 | #define PI 3.14159265 |
tverouden | 0:c0c35b95765f | 12 | |
tverouden | 8:8cef1050ebd9 | 13 | // LEDs |
tverouden | 23:e282bdb9e9b7 | 14 | DigitalOut ledRed(LED_RED,1); // red LED K64F |
tverouden | 23:e282bdb9e9b7 | 15 | DigitalOut ledGreen(LED_GREEN,1); // green LED K64F |
tverouden | 23:e282bdb9e9b7 | 16 | DigitalOut ledBlue(LED_BLUE,1); // blue LED K64F |
tverouden | 8:8cef1050ebd9 | 17 | |
tverouden | 23:e282bdb9e9b7 | 18 | Ticker blinkTimer; // LED ticker |
EvaKrolis | 36:b233c549dd80 | 19 | Timer EMGtransition_timer; // Timer for the transition from EMG calibration to homing |
tverouden | 8:8cef1050ebd9 | 20 | |
tverouden | 8:8cef1050ebd9 | 21 | // Buttons/inputs |
tverouden | 23:e282bdb9e9b7 | 22 | InterruptIn buttonBio1(D0); // button 1 BioRobotics shield |
tverouden | 23:e282bdb9e9b7 | 23 | InterruptIn buttonBio2(D1); // button 2 BioRobotics shield |
tverouden | 23:e282bdb9e9b7 | 24 | InterruptIn buttonEmergency(SW2); // emergency button on K64F |
tverouden | 24:0abc564349e1 | 25 | InterruptIn buttonHome(SW3); // button on K64F |
tverouden | 0:c0c35b95765f | 26 | |
efvanmarrewijk | 25:ac139331fe51 | 27 | // Potmeters |
efvanmarrewijk | 25:ac139331fe51 | 28 | AnalogIn pot1(A1); |
efvanmarrewijk | 25:ac139331fe51 | 29 | AnalogIn pot2(A2); |
efvanmarrewijk | 25:ac139331fe51 | 30 | |
efvanmarrewijk | 25:ac139331fe51 | 31 | // Motor pins input |
efvanmarrewijk | 25:ac139331fe51 | 32 | DigitalIn pin8(D8); // Encoder L B |
efvanmarrewijk | 25:ac139331fe51 | 33 | DigitalIn pin9(D9); // Encoder L A |
efvanmarrewijk | 25:ac139331fe51 | 34 | DigitalIn pin10(D10); // Encoder R B |
efvanmarrewijk | 25:ac139331fe51 | 35 | DigitalIn pin11(D11); // Encoder R A |
efvanmarrewijk | 25:ac139331fe51 | 36 | DigitalIn pin12(D12); // Encoder F B |
efvanmarrewijk | 25:ac139331fe51 | 37 | DigitalIn pin13(D13); // Encoder F A |
tverouden | 8:8cef1050ebd9 | 38 | |
efvanmarrewijk | 25:ac139331fe51 | 39 | // Motor pins output |
efvanmarrewijk | 25:ac139331fe51 | 40 | DigitalOut pin2(D2); // Motor F direction = motor flip |
efvanmarrewijk | 25:ac139331fe51 | 41 | FastPWM pin3(A5); // Motor F pwm = motor flip |
efvanmarrewijk | 25:ac139331fe51 | 42 | DigitalOut pin4(D4); // Motor R direction = motor right |
efvanmarrewijk | 25:ac139331fe51 | 43 | FastPWM pin5(D5); // Motor R pwm = motor right |
efvanmarrewijk | 25:ac139331fe51 | 44 | FastPWM pin6(D6); // Motor L pwm = motor left |
tverouden | 32:a00ff9898574 | 45 | DigitalOut pin7(D7); // Motor L direction = motor left |
efvanmarrewijk | 25:ac139331fe51 | 46 | |
efvanmarrewijk | 25:ac139331fe51 | 47 | // Utilisation of libraries |
tverouden | 32:a00ff9898574 | 48 | MODSERIAL pc(USBTX, USBRX); // communication with pc |
efvanmarrewijk | 25:ac139331fe51 | 49 | QEI encoderL(D9,D8,NC,4200); // Encoder input of motor L |
efvanmarrewijk | 25:ac139331fe51 | 50 | QEI encoderR(D10,D11,NC,4200); // Encoder input of motor R |
efvanmarrewijk | 25:ac139331fe51 | 51 | QEI encoderF(D12,D13,NC,4200); // Encoder input of motor F |
efvanmarrewijk | 25:ac139331fe51 | 52 | Ticker motorL; |
efvanmarrewijk | 25:ac139331fe51 | 53 | Ticker motorR; |
efvanmarrewijk | 25:ac139331fe51 | 54 | Ticker motorF; |
tverouden | 4:5ce2c8864908 | 55 | |
tverouden | 0:c0c35b95765f | 56 | // Define & initialise state machine |
efvanmarrewijk | 26:247be0bea9b1 | 57 | const float dt = 0.002f; |
tverouden | 50:4a7b0a3f64cb | 58 | enum states { calibratingMotorL, calibratingMotorR, calibratingMotorF, |
tverouden | 50:4a7b0a3f64cb | 59 | calibratingEMG, homing, reading, operating, failing, demoing }; |
tverouden | 50:4a7b0a3f64cb | 60 | |
tverouden | 50:4a7b0a3f64cb | 61 | states currentState = calibratingMotorL; // start in motor L mode |
tverouden | 23:e282bdb9e9b7 | 62 | bool changeState = true; // initialise the first state |
tverouden | 2:d70795e4e0bf | 63 | |
tverouden | 23:e282bdb9e9b7 | 64 | Ticker stateTimer; // state machine ticker |
tverouden | 19:2797bb471f9f | 65 | |
EvaKrolis | 14:2c0bf576a0e7 | 66 | //------------------------ Parameters for the EMG ---------------------------- |
tverouden | 3:9c63fc5f157e | 67 | |
tverouden | 23:e282bdb9e9b7 | 68 | // EMG inputs |
tverouden | 23:e282bdb9e9b7 | 69 | AnalogIn EMG0In(A0); // EMG input 0 |
tverouden | 23:e282bdb9e9b7 | 70 | AnalogIn EMG1In(A1); // EMG input 1 |
EvaKrolis | 13:4ba8f63e6ff4 | 71 | |
tverouden | 23:e282bdb9e9b7 | 72 | // Timers |
tverouden | 23:e282bdb9e9b7 | 73 | Ticker FindMax0_timer; // Timer for finding the max muscle |
tverouden | 23:e282bdb9e9b7 | 74 | Ticker FindMax1_timer; // Timer for finding the max muscle |
EvaKrolis | 13:4ba8f63e6ff4 | 75 | |
tverouden | 23:e282bdb9e9b7 | 76 | // Constants |
tverouden | 23:e282bdb9e9b7 | 77 | const int Length = 10000; // Length of the array for the calibration |
tverouden | 23:e282bdb9e9b7 | 78 | const int Parts = 50; // Mean average filter over 50 values |
EvaKrolis | 13:4ba8f63e6ff4 | 79 | |
tverouden | 23:e282bdb9e9b7 | 80 | // Parameters for the first EMG signal |
tverouden | 23:e282bdb9e9b7 | 81 | float EMG0; // float for EMG input |
tverouden | 23:e282bdb9e9b7 | 82 | float EMG0filt; // float for filtered EMG |
tverouden | 23:e282bdb9e9b7 | 83 | float EMG0filtArray[Parts]; // Array for the filtered array |
tverouden | 23:e282bdb9e9b7 | 84 | float EMG0Average; // float for the value after Moving Average Filter |
tverouden | 23:e282bdb9e9b7 | 85 | float Sum0 = 0; // Sum0 for the moving average filter |
tverouden | 41:5aecc1a27ce6 | 86 | float EMG0Calibrate[Length]; // Array for the calibration |
tverouden | 23:e282bdb9e9b7 | 87 | int ReadCal0 = 0; // Integer to read over the calibration array |
tverouden | 23:e282bdb9e9b7 | 88 | float MaxValue0 = 0; // float to save the max muscle |
tverouden | 23:e282bdb9e9b7 | 89 | float Threshold0 = 0; // Threshold for the first EMG signal |
EvaKrolis | 13:4ba8f63e6ff4 | 90 | |
tverouden | 23:e282bdb9e9b7 | 91 | // Parameters for the second EMG signal |
tverouden | 23:e282bdb9e9b7 | 92 | float EMG1; // float for EMG input |
tverouden | 23:e282bdb9e9b7 | 93 | float EMG1filt; // float for filtered EMG |
tverouden | 23:e282bdb9e9b7 | 94 | float EMG1filtArray[Parts]; // Array for the filtered array |
tverouden | 23:e282bdb9e9b7 | 95 | float EMG1Average; // float for the value after Moving Average Filter |
tverouden | 23:e282bdb9e9b7 | 96 | float Sum1 = 0; // Sum0 for the moving average filter |
tverouden | 41:5aecc1a27ce6 | 97 | float EMG1Calibrate[Length]; // Array for the calibration |
tverouden | 23:e282bdb9e9b7 | 98 | int ReadCal1 = 0; // Integer to read over the calibration array |
tverouden | 23:e282bdb9e9b7 | 99 | float MaxValue1 = 0; // float to save the max muscle |
tverouden | 23:e282bdb9e9b7 | 100 | float Threshold1 = 0; // Threshold for the second EMG signal |
EvaKrolis | 13:4ba8f63e6ff4 | 101 | |
EvaKrolis | 13:4ba8f63e6ff4 | 102 | //Filter variables |
EvaKrolis | 36:b233c549dd80 | 103 | BiQuad Notch50_0(0.9049,-1.4641,0.9049,-1.4641,0.8098); //Make Notch filter around 50 Hz |
EvaKrolis | 36:b233c549dd80 | 104 | BiQuad Notch50_1(0.9049,-1.4641,0.9049,-1.4641,0.8098); //Make Notch filter around 50 Hz |
EvaKrolis | 36:b233c549dd80 | 105 | BiQuad Notch100_0(0.8427,-0.5097,0.8247,-0.5097,0.6494); //Make Notch filter around 100 Hz |
EvaKrolis | 36:b233c549dd80 | 106 | BiQuad Notch100_1(0.8427,-0.5097,0.8247,-0.5097,0.6494); //Make Notch filter around 100 Hz |
EvaKrolis | 36:b233c549dd80 | 107 | BiQuad Notch150_0(0.7548,0.4665,0.7544,0.4665,0.5095); //Make Notch filter around 150 Hz |
EvaKrolis | 36:b233c549dd80 | 108 | BiQuad Notch150_1(0.7548,0.4665,0.7544,0.4665,0.5095); //Make Notch filter around 150 Hz |
EvaKrolis | 36:b233c549dd80 | 109 | BiQuad Notch200_0(0.6919,1.1196,0.6919,1.1196,0.3839); //Make Notch filter around 200 Hz |
EvaKrolis | 36:b233c549dd80 | 110 | BiQuad Notch200_1(0.6919,1.1196,0.6919,1.1196,0.3839); //Make Notch filter around 200 Hz |
EvaKrolis | 36:b233c549dd80 | 111 | BiQuad High_0(0.9150,-1.8299,0.9150,-1.8227,0.8372); //Make high-pass filter |
EvaKrolis | 36:b233c549dd80 | 112 | BiQuad High_1(0.9150,-1.8299,0.9150,-1.8227,0.8372); //Make high-pass filter |
EvaKrolis | 36:b233c549dd80 | 113 | BiQuad Low_0(0.6389,1.2779,0.6389,1.143,0.4128); //Make low-pass filter |
EvaKrolis | 36:b233c549dd80 | 114 | BiQuad Low_1(0.6389,1.2779,0.6389,1.143,0.4128); //Make low-pass filter |
EvaKrolis | 13:4ba8f63e6ff4 | 115 | BiQuadChain filter0; //Make chain of filters for the first EMG signal |
EvaKrolis | 13:4ba8f63e6ff4 | 116 | BiQuadChain filter1; //Make chain of filters for the second EMG signal |
EvaKrolis | 13:4ba8f63e6ff4 | 117 | |
EvaKrolis | 13:4ba8f63e6ff4 | 118 | //Bool for movement |
EvaKrolis | 13:4ba8f63e6ff4 | 119 | bool xMove = false; //Bool for the x-movement |
EvaKrolis | 13:4ba8f63e6ff4 | 120 | bool yMove = false; //Bool for the y-movement |
tverouden | 3:9c63fc5f157e | 121 | |
EvaKrolis | 14:2c0bf576a0e7 | 122 | // -------------------- Parameters for the kinematics ------------------------- |
EvaKrolis | 14:2c0bf576a0e7 | 123 | |
EvaKrolis | 14:2c0bf576a0e7 | 124 | //Constants |
EvaKrolis | 14:2c0bf576a0e7 | 125 | const double ll = 230; //Length of the lower arm |
EvaKrolis | 14:2c0bf576a0e7 | 126 | const double lu = 198; //Length of the upper arm |
EvaKrolis | 14:2c0bf576a0e7 | 127 | const double lb = 50; //Length of the part between the upper arms |
EvaKrolis | 14:2c0bf576a0e7 | 128 | const double le = 79; //Length of the end-effector beam |
EvaKrolis | 14:2c0bf576a0e7 | 129 | const double xbase = 450-lb; //Length between the motors |
EvaKrolis | 14:2c0bf576a0e7 | 130 | |
EvaKrolis | 14:2c0bf576a0e7 | 131 | //General parameters |
EvaKrolis | 14:2c0bf576a0e7 | 132 | double theta1 = PI*0.49; //Angle of the left motor |
EvaKrolis | 14:2c0bf576a0e7 | 133 | double theta4 = PI*0.49; //Angle of the right motor |
EvaKrolis | 14:2c0bf576a0e7 | 134 | double thetaflip = 0; //Angle of the flipping motor |
EvaKrolis | 14:2c0bf576a0e7 | 135 | double prefx; //Desired x velocity |
EvaKrolis | 14:2c0bf576a0e7 | 136 | double prefy; //Desired y velocity " |
tverouden | 41:5aecc1a27ce6 | 137 | float iJ[2][2]; //inverse Jacobian matrix |
EvaKrolis | 14:2c0bf576a0e7 | 138 | |
tverouden | 44:ca74d11a2dac | 139 | //Kinematics parameters for x |
tverouden | 44:ca74d11a2dac | 140 | float xendsum; |
tverouden | 44:ca74d11a2dac | 141 | float xendsqrt1; |
tverouden | 44:ca74d11a2dac | 142 | float xendsqrt2; |
tverouden | 44:ca74d11a2dac | 143 | float xend; |
tverouden | 44:ca74d11a2dac | 144 | |
tverouden | 44:ca74d11a2dac | 145 | //Kinematics parameters for y |
tverouden | 44:ca74d11a2dac | 146 | float yendsum; |
tverouden | 44:ca74d11a2dac | 147 | float yendsqrt1; |
tverouden | 44:ca74d11a2dac | 148 | float yendsqrt2; |
tverouden | 44:ca74d11a2dac | 149 | float yend; |
tverouden | 44:ca74d11a2dac | 150 | |
EvaKrolis | 14:2c0bf576a0e7 | 151 | // ---------------------- Parameters for the motors --------------------------- |
efvanmarrewijk | 26:247be0bea9b1 | 152 | const float countsRad = 4200.0f; |
efvanmarrewijk | 26:247be0bea9b1 | 153 | int countsL; |
efvanmarrewijk | 26:247be0bea9b1 | 154 | int countsR; |
efvanmarrewijk | 26:247be0bea9b1 | 155 | int countsF; |
efvanmarrewijk | 26:247be0bea9b1 | 156 | int countsCalibratedL; |
efvanmarrewijk | 26:247be0bea9b1 | 157 | int countsCalibratedR; |
efvanmarrewijk | 26:247be0bea9b1 | 158 | int countsCalibratedF; |
efvanmarrewijk | 26:247be0bea9b1 | 159 | float angleCurrentL; |
efvanmarrewijk | 26:247be0bea9b1 | 160 | float angleCurrentR; |
efvanmarrewijk | 26:247be0bea9b1 | 161 | float angleCurrentF; |
efvanmarrewijk | 26:247be0bea9b1 | 162 | float errorL; |
efvanmarrewijk | 26:247be0bea9b1 | 163 | float errorR; |
efvanmarrewijk | 26:247be0bea9b1 | 164 | float errorF; |
efvanmarrewijk | 26:247be0bea9b1 | 165 | float errorCalibratedL; |
efvanmarrewijk | 26:247be0bea9b1 | 166 | float errorCalibratedR; |
efvanmarrewijk | 26:247be0bea9b1 | 167 | float errorCalibratedF; |
EvaKrolis | 14:2c0bf576a0e7 | 168 | |
efvanmarrewijk | 26:247be0bea9b1 | 169 | int countsCalibration = 4200/4; |
efvanmarrewijk | 25:ac139331fe51 | 170 | |
tverouden | 4:5ce2c8864908 | 171 | // ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ FUNCTIONS ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ |
tverouden | 6:f32352bc5078 | 172 | // ============================ GENERAL FUNCTIONS ============================= |
tverouden | 6:f32352bc5078 | 173 | void stopProgram(void) |
tverouden | 6:f32352bc5078 | 174 | { |
tverouden | 6:f32352bc5078 | 175 | // Error message |
tverouden | 6:f32352bc5078 | 176 | pc.printf("[ERROR] emergency button pressed\r\n"); |
tverouden | 6:f32352bc5078 | 177 | currentState = failing; // change to state |
tverouden | 6:f32352bc5078 | 178 | changeState = true; // next loop, switch states |
tverouden | 6:f32352bc5078 | 179 | } |
tverouden | 8:8cef1050ebd9 | 180 | |
tverouden | 15:6566c5dedeeb | 181 | void blinkLedRed(void) |
tverouden | 15:6566c5dedeeb | 182 | { |
tverouden | 15:6566c5dedeeb | 183 | ledRed =! ledRed; // toggle LED |
tverouden | 10:584b7d2c2d63 | 184 | } |
tverouden | 15:6566c5dedeeb | 185 | void blinkLedGreen(void) |
tverouden | 15:6566c5dedeeb | 186 | { |
tverouden | 15:6566c5dedeeb | 187 | ledGreen =! ledGreen; // toggle LED |
tverouden | 15:6566c5dedeeb | 188 | } |
tverouden | 15:6566c5dedeeb | 189 | void blinkLedBlue(void) |
tverouden | 15:6566c5dedeeb | 190 | { |
tverouden | 15:6566c5dedeeb | 191 | ledBlue =! ledBlue; // toggle LED |
tverouden | 15:6566c5dedeeb | 192 | } |
tverouden | 15:6566c5dedeeb | 193 | |
tverouden | 4:5ce2c8864908 | 194 | // ============================= EMG FUNCTIONS =============================== |
tverouden | 4:5ce2c8864908 | 195 | |
EvaKrolis | 13:4ba8f63e6ff4 | 196 | //Function to read and filter the EMG |
tverouden | 41:5aecc1a27ce6 | 197 | void ReadUseEMG0() |
tverouden | 41:5aecc1a27ce6 | 198 | { |
tverouden | 41:5aecc1a27ce6 | 199 | for(int i = Parts ; i > 0 ; i--) { //Make a first in, first out array |
EvaKrolis | 13:4ba8f63e6ff4 | 200 | EMG0filtArray[i] = EMG0filtArray[i-1]; //Every value moves one up |
EvaKrolis | 13:4ba8f63e6ff4 | 201 | } |
tverouden | 41:5aecc1a27ce6 | 202 | |
EvaKrolis | 13:4ba8f63e6ff4 | 203 | Sum0 = 0; |
EvaKrolis | 13:4ba8f63e6ff4 | 204 | EMG0 = EMG0In; //Save EMG input in float |
EvaKrolis | 13:4ba8f63e6ff4 | 205 | EMG0filt = filter0.step(EMG0); //Filter the signal |
EvaKrolis | 13:4ba8f63e6ff4 | 206 | EMG0filt = abs(EMG0filt); //Take the absolute value |
EvaKrolis | 13:4ba8f63e6ff4 | 207 | EMG0filtArray[0] = EMG0filt; //Save the filtered signal on the first place in the array |
tverouden | 41:5aecc1a27ce6 | 208 | |
tverouden | 41:5aecc1a27ce6 | 209 | for(int i = 0 ; i < Parts ; i++) { //Moving Average filter |
EvaKrolis | 13:4ba8f63e6ff4 | 210 | Sum0 += EMG0filtArray[i]; //Sum the new value and the previous 49 |
EvaKrolis | 13:4ba8f63e6ff4 | 211 | } |
EvaKrolis | 13:4ba8f63e6ff4 | 212 | EMG0Average = (float)Sum0/Parts; //Divide the sum by 50 |
tverouden | 41:5aecc1a27ce6 | 213 | |
tverouden | 41:5aecc1a27ce6 | 214 | if (EMG0Average > Threshold0) { //If the value is higher than the threshold value |
EvaKrolis | 13:4ba8f63e6ff4 | 215 | xMove = true; //Set movement to true |
tverouden | 41:5aecc1a27ce6 | 216 | } else { |
tverouden | 41:5aecc1a27ce6 | 217 | xMove = false; //Otherwise set movement to false |
EvaKrolis | 13:4ba8f63e6ff4 | 218 | } |
EvaKrolis | 13:4ba8f63e6ff4 | 219 | } |
EvaKrolis | 13:4ba8f63e6ff4 | 220 | |
EvaKrolis | 13:4ba8f63e6ff4 | 221 | //Function to read and filter the EMG |
tverouden | 41:5aecc1a27ce6 | 222 | void ReadUseEMG1() |
tverouden | 41:5aecc1a27ce6 | 223 | { |
tverouden | 41:5aecc1a27ce6 | 224 | for(int i = Parts ; i > 0 ; i--) { //Make a first in, first out array |
EvaKrolis | 13:4ba8f63e6ff4 | 225 | EMG1filtArray[i] = EMG1filtArray[i-1]; //Every value moves one up |
EvaKrolis | 13:4ba8f63e6ff4 | 226 | } |
tverouden | 41:5aecc1a27ce6 | 227 | |
EvaKrolis | 13:4ba8f63e6ff4 | 228 | Sum1 = 0; |
EvaKrolis | 13:4ba8f63e6ff4 | 229 | EMG1 = EMG1In; //Save EMG input in float |
EvaKrolis | 13:4ba8f63e6ff4 | 230 | EMG1filt = filter1.step(EMG1); //Filter the signal |
EvaKrolis | 13:4ba8f63e6ff4 | 231 | EMG1filt = abs(EMG1filt); //Take the absolute value |
EvaKrolis | 13:4ba8f63e6ff4 | 232 | EMG1filtArray[0] = EMG1filt; //Save the filtered signal on the first place in the array |
tverouden | 41:5aecc1a27ce6 | 233 | |
tverouden | 41:5aecc1a27ce6 | 234 | for(int i = 0 ; i < Parts ; i++) { //Moving Average filter |
EvaKrolis | 13:4ba8f63e6ff4 | 235 | Sum1 += EMG1filtArray[i]; //Sum the new value and the previous 49 |
EvaKrolis | 13:4ba8f63e6ff4 | 236 | } |
EvaKrolis | 13:4ba8f63e6ff4 | 237 | EMG1Average = (float)Sum1/Parts; //Divide the sum by 50 |
tverouden | 41:5aecc1a27ce6 | 238 | |
tverouden | 41:5aecc1a27ce6 | 239 | if (EMG1Average > Threshold1) { //If the value is higher than the threshold value |
EvaKrolis | 13:4ba8f63e6ff4 | 240 | yMove = true; //Set y movement to true |
tverouden | 41:5aecc1a27ce6 | 241 | } else { |
EvaKrolis | 13:4ba8f63e6ff4 | 242 | yMove = false; //Otherwise set y movement to false |
EvaKrolis | 13:4ba8f63e6ff4 | 243 | } |
EvaKrolis | 13:4ba8f63e6ff4 | 244 | } |
EvaKrolis | 13:4ba8f63e6ff4 | 245 | |
EvaKrolis | 13:4ba8f63e6ff4 | 246 | //Function to make an array during the calibration |
tverouden | 41:5aecc1a27ce6 | 247 | void CalibrateEMG0() |
tverouden | 41:5aecc1a27ce6 | 248 | { |
tverouden | 41:5aecc1a27ce6 | 249 | for(int i = Parts ; i > 0 ; i--) { //Make a first in, first out array |
EvaKrolis | 13:4ba8f63e6ff4 | 250 | EMG0filtArray[i] = EMG0filtArray[i-1]; //Every value moves one up |
EvaKrolis | 13:4ba8f63e6ff4 | 251 | } |
tverouden | 41:5aecc1a27ce6 | 252 | |
EvaKrolis | 13:4ba8f63e6ff4 | 253 | Sum0 = 0; |
EvaKrolis | 13:4ba8f63e6ff4 | 254 | EMG0 = EMG0In; //Save EMG input in float |
EvaKrolis | 13:4ba8f63e6ff4 | 255 | EMG0filt = filter0.step(EMG0); //Filter the signal |
EvaKrolis | 13:4ba8f63e6ff4 | 256 | EMG0filt = abs(EMG0filt); //Take the absolute value |
EvaKrolis | 13:4ba8f63e6ff4 | 257 | EMG0filtArray[0] = EMG0filt; //Save the filtered signal on the first place in the array |
tverouden | 41:5aecc1a27ce6 | 258 | |
tverouden | 41:5aecc1a27ce6 | 259 | for(int i = 0 ; i < Parts ; i++) { //Moving Average filter |
EvaKrolis | 13:4ba8f63e6ff4 | 260 | Sum0 += EMG0filtArray[i]; //Sum the new value and the previous 49 |
EvaKrolis | 13:4ba8f63e6ff4 | 261 | } |
EvaKrolis | 13:4ba8f63e6ff4 | 262 | EMG0Calibrate[ReadCal0] = (float)Sum0/Parts; //Divide the sum by 50 |
tverouden | 41:5aecc1a27ce6 | 263 | |
EvaKrolis | 13:4ba8f63e6ff4 | 264 | ReadCal0++; |
EvaKrolis | 13:4ba8f63e6ff4 | 265 | } |
EvaKrolis | 13:4ba8f63e6ff4 | 266 | |
EvaKrolis | 13:4ba8f63e6ff4 | 267 | //Function to make an array during the calibration |
tverouden | 41:5aecc1a27ce6 | 268 | void CalibrateEMG1() |
tverouden | 41:5aecc1a27ce6 | 269 | { |
tverouden | 41:5aecc1a27ce6 | 270 | for(int i = Parts ; i > 0 ; i--) { //Make a first in, first out array |
EvaKrolis | 13:4ba8f63e6ff4 | 271 | EMG1filtArray[i] = EMG1filtArray[i-1]; //Every value moves one up |
EvaKrolis | 13:4ba8f63e6ff4 | 272 | } |
tverouden | 41:5aecc1a27ce6 | 273 | |
EvaKrolis | 13:4ba8f63e6ff4 | 274 | Sum1 = 0; |
EvaKrolis | 13:4ba8f63e6ff4 | 275 | EMG1 = EMG1In; //Save EMG input in float |
EvaKrolis | 13:4ba8f63e6ff4 | 276 | EMG1filt = filter1.step(EMG1); //Filter the signal |
EvaKrolis | 13:4ba8f63e6ff4 | 277 | EMG1filt = abs(EMG1filt); //Take the absolute value |
EvaKrolis | 13:4ba8f63e6ff4 | 278 | EMG1filtArray[0] = EMG1filt; //Save the filtered signal on the first place in the array |
tverouden | 41:5aecc1a27ce6 | 279 | |
tverouden | 41:5aecc1a27ce6 | 280 | for(int i = 0 ; i < Parts ; i++) { //Moving Average filter |
EvaKrolis | 13:4ba8f63e6ff4 | 281 | Sum1 += EMG1filtArray[i]; //Sum the new value and the previous 49 |
EvaKrolis | 13:4ba8f63e6ff4 | 282 | } |
EvaKrolis | 13:4ba8f63e6ff4 | 283 | EMG1Calibrate[ReadCal1] = (float)Sum1/Parts; //Divide the sum by 50 |
tverouden | 41:5aecc1a27ce6 | 284 | |
EvaKrolis | 13:4ba8f63e6ff4 | 285 | ReadCal1++; |
EvaKrolis | 13:4ba8f63e6ff4 | 286 | } |
EvaKrolis | 13:4ba8f63e6ff4 | 287 | |
EvaKrolis | 13:4ba8f63e6ff4 | 288 | //Function to find the max value during the calibration |
tverouden | 41:5aecc1a27ce6 | 289 | void FindMax0() |
tverouden | 41:5aecc1a27ce6 | 290 | { |
EvaKrolis | 13:4ba8f63e6ff4 | 291 | MaxValue0 = *max_element(EMG0Calibrate+500,EMG0Calibrate+Length); //Find max value, but discard the first 100 values |
EvaKrolis | 13:4ba8f63e6ff4 | 292 | Threshold0 = 0.30f*MaxValue0; //The threshold is a percentage of the max value |
EvaKrolis | 13:4ba8f63e6ff4 | 293 | pc.printf("The calibration value of the first EMG is %f.\n\r The threshold is %f. \n\r",MaxValue0,Threshold0); //Print the max value and the threshold |
EvaKrolis | 13:4ba8f63e6ff4 | 294 | FindMax0_timer.detach(); //Detach the timer, so you only use this once |
EvaKrolis | 13:4ba8f63e6ff4 | 295 | } |
EvaKrolis | 13:4ba8f63e6ff4 | 296 | |
EvaKrolis | 13:4ba8f63e6ff4 | 297 | //Function to find the max value during the calibration |
tverouden | 41:5aecc1a27ce6 | 298 | void FindMax1() |
tverouden | 41:5aecc1a27ce6 | 299 | { |
EvaKrolis | 13:4ba8f63e6ff4 | 300 | MaxValue1 = *max_element(EMG1Calibrate+500,EMG1Calibrate+Length); //Find max value, but discard the first 100 values |
EvaKrolis | 13:4ba8f63e6ff4 | 301 | Threshold1 = 0.30f*MaxValue1; //The threshold is a percentage of the max value |
EvaKrolis | 13:4ba8f63e6ff4 | 302 | pc.printf("The calibration value of the second EMG is %f.\n\r The threshold is %f. \n\r",MaxValue1,Threshold1); //Print the Max value and the threshold |
EvaKrolis | 13:4ba8f63e6ff4 | 303 | FindMax1_timer.detach(); //Detach the timer, so you only use this once |
EvaKrolis | 13:4ba8f63e6ff4 | 304 | } |
tverouden | 4:5ce2c8864908 | 305 | |
tverouden | 12:323ac4e27a0d | 306 | // ========================= KINEMATICS FUNCTIONS ============================ |
tverouden | 12:323ac4e27a0d | 307 | |
tverouden | 41:5aecc1a27ce6 | 308 | //forward kinematics function , &xend and¥d are output. |
tverouden | 41:5aecc1a27ce6 | 309 | void kinematicsForward(float &xend_, float ¥d_, float theta1_, float theta4_) |
EvaKrolis | 14:2c0bf576a0e7 | 310 | { |
tverouden | 41:5aecc1a27ce6 | 311 | |
tverouden | 41:5aecc1a27ce6 | 312 | //Below we have the forward kinematics formula. Input should be the measured angles theta1 &theta4. Output |
tverouden | 41:5aecc1a27ce6 | 313 | |
tverouden | 41:5aecc1a27ce6 | 314 | float xendsum_ = lb + xbase +ll*(cos(theta1_) - cos(theta4_)); |
tverouden | 41:5aecc1a27ce6 | 315 | float xendsqrt1_ = 2*sqrt(-xbase*xbase/4 + lu*lu + ll*(xbase*(cos(theta1_)+cos(theta4_))/2) -ll*(1+ cos(theta1_+theta4_)))*(-sin(theta1_)+sin(theta4_)); |
tverouden | 41:5aecc1a27ce6 | 316 | float xendsqrt2_ = sqrt(pow((-xbase/ll+cos(theta1_)+cos(theta4_)),2)+ pow(sin(theta1_) - sin(theta4_),2)); |
tverouden | 41:5aecc1a27ce6 | 317 | xend_ = (xendsum_ + xendsqrt1_/xendsqrt2_)/2; |
EvaKrolis | 14:2c0bf576a0e7 | 318 | |
tverouden | 41:5aecc1a27ce6 | 319 | float yendsum_ = -le + ll/2*(sin(theta1_)+sin(theta4_)); |
tverouden | 41:5aecc1a27ce6 | 320 | float yendsqrt1_ = (-xbase/ll + cos(theta1_)+cos(theta4_))*sqrt(-xbase*xbase/4 + lu*lu + ll/2*(xbase*(cos(theta1_)+cos(theta4_))- ll*(1+cos(theta1_+theta4_)))); |
tverouden | 41:5aecc1a27ce6 | 321 | float yendsqrt2_ = sqrt(pow((-xbase/ll + cos(theta1_)+ cos(theta4_)),2)+ pow((sin(theta1_)-sin(theta4_)),2)); |
tverouden | 41:5aecc1a27ce6 | 322 | yend_ = (yendsum_ + yendsqrt1_/yendsqrt2_); |
tverouden | 41:5aecc1a27ce6 | 323 | } |
tverouden | 41:5aecc1a27ce6 | 324 | |
tverouden | 41:5aecc1a27ce6 | 325 | //Below we have the inverse kinematics function. |
tverouden | 41:5aecc1a27ce6 | 326 | void kinematicsInverse(float prex, float prey) |
tverouden | 41:5aecc1a27ce6 | 327 | { |
tverouden | 41:5aecc1a27ce6 | 328 | |
tverouden | 41:5aecc1a27ce6 | 329 | theta1 += (prefx*(iJ[0][0])-iJ[0][1]*prey)*dt; //theta 1 is itself + the desired speeds in x and y direction, both |
tverouden | 41:5aecc1a27ce6 | 330 | theta4 += (prefx*iJ[1][0]-iJ[1][1]*prey)*dt; //multiplied with a prefactor which comes out of the motor |
tverouden | 41:5aecc1a27ce6 | 331 | //the iJ values are defined in the "kinematics" function |
tverouden | 41:5aecc1a27ce6 | 332 | |
tverouden | 41:5aecc1a27ce6 | 333 | //Calling the forward kinematics, to calculate xend and yend |
tverouden | 41:5aecc1a27ce6 | 334 | kinematicsForward(xend,yend,theta1,theta4); |
EvaKrolis | 14:2c0bf576a0e7 | 335 | |
EvaKrolis | 14:2c0bf576a0e7 | 336 | } |
EvaKrolis | 14:2c0bf576a0e7 | 337 | |
EvaKrolis | 14:2c0bf576a0e7 | 338 | void kinematics() |
EvaKrolis | 14:2c0bf576a0e7 | 339 | { |
tverouden | 41:5aecc1a27ce6 | 340 | float xend1,xend2,xend3,yend1,yend2,yend3; |
EvaKrolis | 14:2c0bf576a0e7 | 341 | |
tverouden | 41:5aecc1a27ce6 | 342 | const float dq = 0.001; //benadering van 'delta' hoek |
tverouden | 41:5aecc1a27ce6 | 343 | |
tverouden | 41:5aecc1a27ce6 | 344 | kinematicsForward(xend1,yend1,theta1,theta4); |
tverouden | 41:5aecc1a27ce6 | 345 | kinematicsForward(xend2,yend2,theta1+dq,theta4); |
tverouden | 41:5aecc1a27ce6 | 346 | kinematicsForward(xend3,yend3,theta1,theta4+dq); |
EvaKrolis | 14:2c0bf576a0e7 | 347 | |
tverouden | 41:5aecc1a27ce6 | 348 | float a,b,c,d; |
tverouden | 41:5aecc1a27ce6 | 349 | a = xend2-xend1; |
tverouden | 41:5aecc1a27ce6 | 350 | b = xend3-xend1; |
tverouden | 41:5aecc1a27ce6 | 351 | c = yend2-yend1; |
tverouden | 41:5aecc1a27ce6 | 352 | d = yend3-yend1; |
tverouden | 41:5aecc1a27ce6 | 353 | |
tverouden | 41:5aecc1a27ce6 | 354 | float Q = 1/(a*d-b*c)/dq; |
EvaKrolis | 14:2c0bf576a0e7 | 355 | |
tverouden | 41:5aecc1a27ce6 | 356 | iJ[0][0] = d*Q; |
tverouden | 41:5aecc1a27ce6 | 357 | iJ[0][1]= -c*Q; |
tverouden | 41:5aecc1a27ce6 | 358 | iJ[1][0] = -b*Q; |
tverouden | 41:5aecc1a27ce6 | 359 | iJ[1][1] = a*Q; |
EvaKrolis | 14:2c0bf576a0e7 | 360 | |
tverouden | 41:5aecc1a27ce6 | 361 | prefx = 0.001*xMove; //sw3, Prefx has multiplier one, // Gain aanpassen eventueel?? |
tverouden | 41:5aecc1a27ce6 | 362 | // but that has to become a value |
tverouden | 41:5aecc1a27ce6 | 363 | // dependant on the motor |
tverouden | 41:5aecc1a27ce6 | 364 | prefy = 0.001*yMove; //sw2, |
tverouden | 41:5aecc1a27ce6 | 365 | kinematicsInverse(prefx, prefy); |
tverouden | 41:5aecc1a27ce6 | 366 | } |
tverouden | 41:5aecc1a27ce6 | 367 | |
tverouden | 41:5aecc1a27ce6 | 368 | // these values are printed for controlling purposes (can later be removed) |
tverouden | 41:5aecc1a27ce6 | 369 | void printvalue() |
tverouden | 41:5aecc1a27ce6 | 370 | { |
tverouden | 41:5aecc1a27ce6 | 371 | pc.printf("X-value: %f \t Y-value: %f \n\r \t theta 1 = %f \t theta4 = %f\n\r",xend, yend,theta1,theta4); |
tverouden | 41:5aecc1a27ce6 | 372 | //pc.printf("%f\n\r",xend1); |
EvaKrolis | 14:2c0bf576a0e7 | 373 | } |
tverouden | 12:323ac4e27a0d | 374 | |
efvanmarrewijk | 25:ac139331fe51 | 375 | // ============================ MOTOR FUNCTIONS =============================== |
efvanmarrewijk | 25:ac139331fe51 | 376 | // angleDesired now defined as angle of potmeter and not the angle as output from the kinematics |
efvanmarrewijk | 25:ac139331fe51 | 377 | // So, the angleDesired needs to be defined again and the part in which the potmeter value is calculated needs to be commented |
efvanmarrewijk | 25:ac139331fe51 | 378 | |
efvanmarrewijk | 25:ac139331fe51 | 379 | // ------------------------ General motor functions ---------------------------- |
tverouden | 41:5aecc1a27ce6 | 380 | int countsInputL() // Gets the counts from encoder 1 |
tverouden | 41:5aecc1a27ce6 | 381 | { |
tverouden | 41:5aecc1a27ce6 | 382 | int countsL; |
tverouden | 41:5aecc1a27ce6 | 383 | countsL = encoderL.getPulses(); |
tverouden | 41:5aecc1a27ce6 | 384 | return countsL; |
tverouden | 41:5aecc1a27ce6 | 385 | } |
tverouden | 41:5aecc1a27ce6 | 386 | int countsInputR() // Gets the counts from encoder 2 |
tverouden | 41:5aecc1a27ce6 | 387 | { |
tverouden | 41:5aecc1a27ce6 | 388 | int countsR; |
tverouden | 41:5aecc1a27ce6 | 389 | countsR = encoderR.getPulses(); |
tverouden | 41:5aecc1a27ce6 | 390 | return countsR; |
tverouden | 41:5aecc1a27ce6 | 391 | } |
tverouden | 41:5aecc1a27ce6 | 392 | int countsInputF() // Gets the counts from encoder 3 |
tverouden | 41:5aecc1a27ce6 | 393 | { |
tverouden | 41:5aecc1a27ce6 | 394 | int countsF; |
tverouden | 41:5aecc1a27ce6 | 395 | countsF = encoderF.getPulses(); |
tverouden | 41:5aecc1a27ce6 | 396 | return countsF; |
tverouden | 41:5aecc1a27ce6 | 397 | } |
efvanmarrewijk | 25:ac139331fe51 | 398 | |
tverouden | 41:5aecc1a27ce6 | 399 | float angleCurrent(float counts) // Calculates the current angle of the motor (between -2*PI to 2*PI) based on the counts from the encoder |
tverouden | 41:5aecc1a27ce6 | 400 | { |
tverouden | 41:5aecc1a27ce6 | 401 | float angle = ((float)counts*2.0f*PI)/countsRad; |
tverouden | 41:5aecc1a27ce6 | 402 | while (angle > 2.0f*PI) { |
tverouden | 41:5aecc1a27ce6 | 403 | angle = angle-2.0f*PI; |
tverouden | 41:5aecc1a27ce6 | 404 | } |
tverouden | 41:5aecc1a27ce6 | 405 | while (angle < -2.0f*PI) { |
tverouden | 41:5aecc1a27ce6 | 406 | angle = angle+2.0f*PI; |
efvanmarrewijk | 25:ac139331fe51 | 407 | } |
tverouden | 41:5aecc1a27ce6 | 408 | return angle; |
tverouden | 41:5aecc1a27ce6 | 409 | } |
efvanmarrewijk | 25:ac139331fe51 | 410 | |
tverouden | 41:5aecc1a27ce6 | 411 | float errorCalc(float angleReference,float angleCurrent) // Calculates the error of the system, based on the current angle and the reference value |
tverouden | 41:5aecc1a27ce6 | 412 | { |
tverouden | 41:5aecc1a27ce6 | 413 | float error = angleReference - angleCurrent; |
tverouden | 41:5aecc1a27ce6 | 414 | return error; |
tverouden | 41:5aecc1a27ce6 | 415 | } |
efvanmarrewijk | 25:ac139331fe51 | 416 | |
efvanmarrewijk | 25:ac139331fe51 | 417 | // ------------------------- MOTOR FUNCTIONS FOR MOTOR LEFT -------------------- |
tverouden | 41:5aecc1a27ce6 | 418 | float PIDControllerL(float angleReference,float angleCurrent) // PID controller for the motors, based on the reference value and the current angle of the motor |
tverouden | 41:5aecc1a27ce6 | 419 | { |
tverouden | 41:5aecc1a27ce6 | 420 | float Kp = 19.24f; |
tverouden | 41:5aecc1a27ce6 | 421 | float Ki = 1.02f; |
tverouden | 41:5aecc1a27ce6 | 422 | float Kd = 0.827f; |
tverouden | 41:5aecc1a27ce6 | 423 | float error = errorCalc(angleReference,angleCurrent); |
tverouden | 41:5aecc1a27ce6 | 424 | static float errorIntegralL = 0.0; |
tverouden | 41:5aecc1a27ce6 | 425 | static float errorPreviousL = error; // initialization with this value only done once! |
tverouden | 41:5aecc1a27ce6 | 426 | static BiQuad PIDFilterL(0.0640, 0.1279, 0.0640, -1.1683, 0.4241); |
tverouden | 41:5aecc1a27ce6 | 427 | // Proportional part: |
tverouden | 41:5aecc1a27ce6 | 428 | float u_k = Kp * error; |
tverouden | 41:5aecc1a27ce6 | 429 | // Integral part |
tverouden | 41:5aecc1a27ce6 | 430 | errorIntegralL = errorIntegralL + error * dt; |
tverouden | 41:5aecc1a27ce6 | 431 | float u_i = Ki * errorIntegralL; |
tverouden | 41:5aecc1a27ce6 | 432 | // Derivative part |
tverouden | 41:5aecc1a27ce6 | 433 | float errorDerivative = (error - errorPreviousL)/dt; |
tverouden | 41:5aecc1a27ce6 | 434 | float errorDerivativeFiltered = PIDFilterL.step(errorDerivative); |
tverouden | 41:5aecc1a27ce6 | 435 | float u_d = Kd * errorDerivativeFiltered; |
tverouden | 41:5aecc1a27ce6 | 436 | errorPreviousL = error; |
tverouden | 41:5aecc1a27ce6 | 437 | // Sum all parts and return it |
tverouden | 41:5aecc1a27ce6 | 438 | return u_k + u_i + u_d; |
tverouden | 41:5aecc1a27ce6 | 439 | } |
efvanmarrewijk | 25:ac139331fe51 | 440 | |
tverouden | 42:bb43f1b67787 | 441 | //float angleDesiredL() // Sets the desired angle for the controller dependent on the scaled angle of potmeter 1 |
tverouden | 42:bb43f1b67787 | 442 | //{ float angle = (pot2*2.0f*PI)-PI; |
tverouden | 42:bb43f1b67787 | 443 | // return angle; |
tverouden | 42:bb43f1b67787 | 444 | //} |
tverouden | 41:5aecc1a27ce6 | 445 | |
tverouden | 41:5aecc1a27ce6 | 446 | float countsCalibrCalcL(int countsOffsetL) |
tverouden | 41:5aecc1a27ce6 | 447 | { |
tverouden | 41:5aecc1a27ce6 | 448 | countsCalibratedL = countsL - countsOffsetL + countsCalibration; |
tverouden | 41:5aecc1a27ce6 | 449 | return countsCalibratedL; |
tverouden | 41:5aecc1a27ce6 | 450 | } |
EvaKrolis | 13:4ba8f63e6ff4 | 451 | |
efvanmarrewijk | 25:ac139331fe51 | 452 | void calibrationL() // Partially the same as motorTurnL, only with potmeter input |
efvanmarrewijk | 25:ac139331fe51 | 453 | // How it works: manually turn motor using potmeters until the robot arm touches the bookholder. |
efvanmarrewijk | 25:ac139331fe51 | 454 | // This program sets the counts from the motor to the reference counts (an angle of PI/4.0) |
efvanmarrewijk | 25:ac139331fe51 | 455 | // Do this for every motor and after calibrated all motors, press a button |
tverouden | 41:5aecc1a27ce6 | 456 | { |
tverouden | 41:5aecc1a27ce6 | 457 | float angleReferenceL = angleDesiredL(); // insert kinematics output here instead of angleDesiredL() |
efvanmarrewijk | 25:ac139331fe51 | 458 | angleReferenceL = -angleReferenceL; // different minus sign per motor |
efvanmarrewijk | 25:ac139331fe51 | 459 | angleCurrentL = angleCurrent(countsL); // different minus sign per motor |
efvanmarrewijk | 25:ac139331fe51 | 460 | errorL = errorCalc(angleReferenceL,angleCurrentL); // same for every motor |
tverouden | 41:5aecc1a27ce6 | 461 | |
tverouden | 41:5aecc1a27ce6 | 462 | if (fabs(errorL) >= 0.01f) { |
tverouden | 41:5aecc1a27ce6 | 463 | float PIDControlL = PIDControllerL(angleReferenceL,angleCurrentL); // same for every motor |
efvanmarrewijk | 25:ac139331fe51 | 464 | pin6 = fabs(PIDControlL); // different pins for every motor |
efvanmarrewijk | 25:ac139331fe51 | 465 | pin7 = PIDControlL > 0.0f; // different pins for every motor |
tverouden | 41:5aecc1a27ce6 | 466 | } else if (fabs(errorL) < 0.01f) { |
tverouden | 41:5aecc1a27ce6 | 467 | int countsOffsetL = countsL; |
efvanmarrewijk | 25:ac139331fe51 | 468 | countsCalibrCalcL(countsOffsetL); |
tverouden | 41:5aecc1a27ce6 | 469 | pin6 = 0.0f; |
tverouden | 41:5aecc1a27ce6 | 470 | // BUTTON PRESS: TO NEXT STATE |
tverouden | 41:5aecc1a27ce6 | 471 | } |
tverouden | 41:5aecc1a27ce6 | 472 | } |
tverouden | 41:5aecc1a27ce6 | 473 | |
efvanmarrewijk | 25:ac139331fe51 | 474 | void motorTurnL() // main function for movement of motor 1, all above functions with an extra tab are called |
tverouden | 41:5aecc1a27ce6 | 475 | { |
efvanmarrewijk | 38:317b8eaaf1a2 | 476 | float angleReferenceL = theta1; // insert kinematics output here instead of angleDesiredL() |
efvanmarrewijk | 25:ac139331fe51 | 477 | angleReferenceL = -angleReferenceL; // different minus sign per motor |
efvanmarrewijk | 25:ac139331fe51 | 478 | int countsL = countsInputL(); // different encoder pins per motor |
efvanmarrewijk | 25:ac139331fe51 | 479 | angleCurrentL = angleCurrent(countsCalibratedL); // different minus sign per motor |
efvanmarrewijk | 25:ac139331fe51 | 480 | errorCalibratedL = errorCalc(angleReferenceL,angleCurrentL); // same for every motor |
tverouden | 41:5aecc1a27ce6 | 481 | |
efvanmarrewijk | 25:ac139331fe51 | 482 | float PIDControlL = PIDControllerL(angleReferenceL,angleCurrentL); // same for every motor |
efvanmarrewijk | 25:ac139331fe51 | 483 | pin6 = fabs(PIDControlL); // different pins for every motor |
efvanmarrewijk | 25:ac139331fe51 | 484 | pin7 = PIDControlL > 0.0f; // different pins for every motor |
efvanmarrewijk | 25:ac139331fe51 | 485 | } |
efvanmarrewijk | 25:ac139331fe51 | 486 | |
efvanmarrewijk | 25:ac139331fe51 | 487 | // ------------------------ MOTOR FUNCTIONS FOR MOTOR RIGHT -------------------- |
tverouden | 41:5aecc1a27ce6 | 488 | float PIDControllerR(float angleReference,float angleCurrent) // PID controller for the motors, based on the reference value and the current angle of the motor |
tverouden | 41:5aecc1a27ce6 | 489 | { |
tverouden | 41:5aecc1a27ce6 | 490 | float Kp = 19.24f; |
tverouden | 41:5aecc1a27ce6 | 491 | float Ki = 1.02f; |
tverouden | 41:5aecc1a27ce6 | 492 | float Kd = 0.827f; |
tverouden | 41:5aecc1a27ce6 | 493 | float error = errorCalc(angleReference,angleCurrent); |
tverouden | 41:5aecc1a27ce6 | 494 | static float errorIntegralR = 0.0; |
tverouden | 41:5aecc1a27ce6 | 495 | static float errorPreviousR = error; // initialization with this value only done once! |
tverouden | 41:5aecc1a27ce6 | 496 | static BiQuad PIDFilterR(0.0640, 0.1279, 0.0640, -1.1683, 0.4241); |
tverouden | 41:5aecc1a27ce6 | 497 | // Proportional part: |
tverouden | 41:5aecc1a27ce6 | 498 | float u_k = Kp * error; |
tverouden | 41:5aecc1a27ce6 | 499 | // Integral part |
tverouden | 41:5aecc1a27ce6 | 500 | errorIntegralR = errorIntegralR + error * dt; |
tverouden | 41:5aecc1a27ce6 | 501 | float u_i = Ki * errorIntegralR; |
tverouden | 41:5aecc1a27ce6 | 502 | // Derivative part |
tverouden | 41:5aecc1a27ce6 | 503 | float errorDerivative = (error - errorPreviousR)/dt; |
tverouden | 41:5aecc1a27ce6 | 504 | float errorDerivativeFiltered = PIDFilterR.step(errorDerivative); |
tverouden | 41:5aecc1a27ce6 | 505 | float u_d = Kd * errorDerivativeFiltered; |
tverouden | 41:5aecc1a27ce6 | 506 | errorPreviousR = error; |
tverouden | 41:5aecc1a27ce6 | 507 | // Sum all parts and return it |
tverouden | 41:5aecc1a27ce6 | 508 | return u_k + u_i + u_d; |
tverouden | 41:5aecc1a27ce6 | 509 | } |
efvanmarrewijk | 25:ac139331fe51 | 510 | |
tverouden | 42:bb43f1b67787 | 511 | //float angleDesiredR() // Sets the desired angle for the controller dependent on the scaled angle of potmeter 1 |
tverouden | 42:bb43f1b67787 | 512 | //{ float angle = (pot2*2.0f*PI)-PI; |
tverouden | 42:bb43f1b67787 | 513 | // return angle; |
tverouden | 42:bb43f1b67787 | 514 | //} |
tverouden | 41:5aecc1a27ce6 | 515 | |
tverouden | 41:5aecc1a27ce6 | 516 | float countsCalibrCalcR(int countsOffsetR) |
tverouden | 41:5aecc1a27ce6 | 517 | { |
tverouden | 41:5aecc1a27ce6 | 518 | countsCalibratedR = countsR - countsOffsetR + countsCalibration; |
tverouden | 41:5aecc1a27ce6 | 519 | return countsCalibratedR; |
tverouden | 41:5aecc1a27ce6 | 520 | } |
efvanmarrewijk | 25:ac139331fe51 | 521 | |
efvanmarrewijk | 25:ac139331fe51 | 522 | void calibrationR() // Partially the same as motorTurnR, only with potmeter input |
efvanmarrewijk | 25:ac139331fe51 | 523 | // How it works: manually turn motor using potmeters until the robot arm touches the bookholder. |
efvanmarrewijk | 25:ac139331fe51 | 524 | // This program sets the counts from the motor to the reference counts (an angle of PI/4.0) |
efvanmarrewijk | 25:ac139331fe51 | 525 | // Do this for every motor and after calibrated all motors, press a button |
tverouden | 41:5aecc1a27ce6 | 526 | { |
tverouden | 41:5aecc1a27ce6 | 527 | float angleReferenceR = angleDesiredR(); // insert kinematics output here instead of angleDesiredR() |
efvanmarrewijk | 25:ac139331fe51 | 528 | angleReferenceR = -angleReferenceR; // different minus sign per motor |
efvanmarrewijk | 25:ac139331fe51 | 529 | angleCurrentR = angleCurrent(countsR); // different minus sign per motor |
efvanmarrewijk | 25:ac139331fe51 | 530 | errorR = errorCalc(angleReferenceR,angleCurrentR); // same for every motor |
tverouden | 41:5aecc1a27ce6 | 531 | |
tverouden | 41:5aecc1a27ce6 | 532 | if (fabs(errorR) >= 0.01f) { |
tverouden | 41:5aecc1a27ce6 | 533 | float PIDControlR = PIDControllerR(angleReferenceR,angleCurrentR); // same for every motor |
efvanmarrewijk | 25:ac139331fe51 | 534 | pin6 = fabs(PIDControlR); // different pins for every motor |
efvanmarrewijk | 25:ac139331fe51 | 535 | pin7 = PIDControlR > 0.0f; // different pins for every motor |
tverouden | 41:5aecc1a27ce6 | 536 | } else if (fabs(errorR) < 0.01f) { |
tverouden | 41:5aecc1a27ce6 | 537 | int countsOffsetR = countsR; |
efvanmarrewijk | 25:ac139331fe51 | 538 | countsCalibrCalcR(countsOffsetR); |
tverouden | 41:5aecc1a27ce6 | 539 | pin6 = 0.0f; |
tverouden | 41:5aecc1a27ce6 | 540 | // BUTTON PRESS: NAAR VOLGENDE STATE |
tverouden | 41:5aecc1a27ce6 | 541 | } |
tverouden | 41:5aecc1a27ce6 | 542 | } |
tverouden | 41:5aecc1a27ce6 | 543 | |
efvanmarrewijk | 25:ac139331fe51 | 544 | void motorTurnR() // main function for movement of motor 1, all above functions with an extra tab are called |
tverouden | 41:5aecc1a27ce6 | 545 | { |
efvanmarrewijk | 38:317b8eaaf1a2 | 546 | float angleReferenceR = theta4; // insert kinematics output here instead of angleDesiredR() |
efvanmarrewijk | 25:ac139331fe51 | 547 | angleReferenceR = -angleReferenceR; // different minus sign per motor |
efvanmarrewijk | 25:ac139331fe51 | 548 | int countsR = countsInputR(); // different encoder pins per motor |
efvanmarrewijk | 25:ac139331fe51 | 549 | angleCurrentR = angleCurrent(countsCalibratedR); // different minus sign per motor |
efvanmarrewijk | 25:ac139331fe51 | 550 | errorCalibratedR = errorCalc(angleReferenceR,angleCurrentR); // same for every motor |
tverouden | 41:5aecc1a27ce6 | 551 | |
efvanmarrewijk | 25:ac139331fe51 | 552 | float PIDControlR = PIDControllerR(angleReferenceR,angleCurrentR); // same for every motor |
efvanmarrewijk | 25:ac139331fe51 | 553 | pin6 = fabs(PIDControlR); // different pins for every motor |
efvanmarrewijk | 25:ac139331fe51 | 554 | pin7 = PIDControlR > 0.0f; // different pins for every motor |
efvanmarrewijk | 25:ac139331fe51 | 555 | } |
efvanmarrewijk | 25:ac139331fe51 | 556 | |
efvanmarrewijk | 25:ac139331fe51 | 557 | // ------------------------- MOTOR FUNCTIONS FOR MOTOR FLIP -------------------- |
tverouden | 41:5aecc1a27ce6 | 558 | float PIDControllerF(float angleReference,float angleCurrent) // PID controller for the motors, based on the reference value and the current angle of the motor |
tverouden | 41:5aecc1a27ce6 | 559 | { |
tverouden | 41:5aecc1a27ce6 | 560 | float Kp = 19.24f; |
tverouden | 41:5aecc1a27ce6 | 561 | float Ki = 1.02f; |
tverouden | 41:5aecc1a27ce6 | 562 | float Kd = 0.827f; |
tverouden | 41:5aecc1a27ce6 | 563 | float error = errorCalc(angleReference,angleCurrent); |
tverouden | 41:5aecc1a27ce6 | 564 | static float errorIntegralF = 0.0; |
tverouden | 41:5aecc1a27ce6 | 565 | static float errorPreviousF = error; // initialization with this value only done once! |
tverouden | 41:5aecc1a27ce6 | 566 | static BiQuad PIDFilterF(0.0640, 0.1279, 0.0640, -1.1683, 0.4241); |
tverouden | 41:5aecc1a27ce6 | 567 | // Proportional part: |
tverouden | 41:5aecc1a27ce6 | 568 | float u_k = Kp * error; |
tverouden | 41:5aecc1a27ce6 | 569 | // Integral part |
tverouden | 41:5aecc1a27ce6 | 570 | errorIntegralF = errorIntegralF + error * dt; |
tverouden | 41:5aecc1a27ce6 | 571 | float u_i = Ki * errorIntegralF; |
tverouden | 41:5aecc1a27ce6 | 572 | // Derivative part |
tverouden | 41:5aecc1a27ce6 | 573 | float errorDerivative = (error - errorPreviousF)/dt; |
tverouden | 41:5aecc1a27ce6 | 574 | float errorDerivativeFiltered = PIDFilterF.step(errorDerivative); |
tverouden | 41:5aecc1a27ce6 | 575 | float u_d = Kd * errorDerivativeFiltered; |
tverouden | 41:5aecc1a27ce6 | 576 | errorPreviousF = error; |
tverouden | 41:5aecc1a27ce6 | 577 | // Sum all parts and return it |
tverouden | 41:5aecc1a27ce6 | 578 | return u_k + u_i + u_d; |
tverouden | 41:5aecc1a27ce6 | 579 | } |
efvanmarrewijk | 35:3c937770aa41 | 580 | |
tverouden | 41:5aecc1a27ce6 | 581 | float angleDesiredF() // Sets the desired angle for the controller dependent on the scaled angle of potmeter 1 |
tverouden | 41:5aecc1a27ce6 | 582 | { |
tverouden | 41:5aecc1a27ce6 | 583 | float angle = (pot1*2.0f*PI)-PI; |
tverouden | 41:5aecc1a27ce6 | 584 | return angle; |
tverouden | 41:5aecc1a27ce6 | 585 | } |
tverouden | 41:5aecc1a27ce6 | 586 | |
tverouden | 41:5aecc1a27ce6 | 587 | float countsCalibrCalcF(int countsOffsetF) |
tverouden | 41:5aecc1a27ce6 | 588 | { |
tverouden | 41:5aecc1a27ce6 | 589 | countsCalibratedF = countsF - countsOffsetF + countsCalibration; |
tverouden | 41:5aecc1a27ce6 | 590 | return countsCalibratedF; |
tverouden | 41:5aecc1a27ce6 | 591 | } |
efvanmarrewijk | 35:3c937770aa41 | 592 | |
efvanmarrewijk | 35:3c937770aa41 | 593 | void calibrationF() // Partially the same as motorTurnF, only with potmeter input |
efvanmarrewijk | 35:3c937770aa41 | 594 | // How it works: manually turn motor using potmeters until the robot arm touches the bookholder. |
efvanmarrewijk | 35:3c937770aa41 | 595 | // This program sets the counts from the motor to the reference counts (an angle of PI/4.0) |
efvanmarrewijk | 35:3c937770aa41 | 596 | // Do this for every motor and after calibrated all motors, press a button |
tverouden | 42:bb43f1b67787 | 597 | { |
tverouden | 42:bb43f1b67787 | 598 | float angleReferenceF = 0.0f; |
tverouden | 42:bb43f1b67787 | 599 | //float angleReferenceF = angleDesiredF(); // insert kinematics output here instead of angleDesiredF() |
tverouden | 42:bb43f1b67787 | 600 | angleReferenceF = -angleReferenceF; // different minus sign per motor |
tverouden | 42:bb43f1b67787 | 601 | angleCurrentF = angleCurrent(countsF); // different minus sign per motor |
tverouden | 42:bb43f1b67787 | 602 | errorF = errorCalc(angleReferenceF,angleCurrentF); // same for every motor |
tverouden | 41:5aecc1a27ce6 | 603 | |
tverouden | 42:bb43f1b67787 | 604 | if (fabs(errorF) >= 0.01f) { |
tverouden | 42:bb43f1b67787 | 605 | float PIDControlF = PIDControllerF(angleReferenceF,angleCurrentF); // same for every motor |
tverouden | 42:bb43f1b67787 | 606 | pin6 = fabs(PIDControlF); // different pins for every motor |
tverouden | 42:bb43f1b67787 | 607 | pin7 = PIDControlF > 0.0f; // different pins for every motor |
tverouden | 42:bb43f1b67787 | 608 | } else if (fabs(errorF) < 0.01f) { |
tverouden | 42:bb43f1b67787 | 609 | int countsOffsetF = countsF; |
tverouden | 42:bb43f1b67787 | 610 | countsCalibrCalcF(countsOffsetF); |
tverouden | 42:bb43f1b67787 | 611 | pin6 = 0.0f; |
tverouden | 42:bb43f1b67787 | 612 | // BUTTON PRESS: TO NEXT STATE |
tverouden | 42:bb43f1b67787 | 613 | } |
efvanmarrewijk | 35:3c937770aa41 | 614 | } |
tverouden | 41:5aecc1a27ce6 | 615 | |
tverouden | 42:bb43f1b67787 | 616 | void motorTurnF() // main function for movement of motor 1, all above functions with an extra tab are called |
tverouden | 42:bb43f1b67787 | 617 | { |
tverouden | 42:bb43f1b67787 | 618 | float angleReferenceF = 0.0f; |
tverouden | 42:bb43f1b67787 | 619 | //float angleReferenceF = angleDesiredF(); // insert kinematics output here instead of angleDesiredF() |
tverouden | 42:bb43f1b67787 | 620 | angleReferenceF = -angleReferenceF; // different minus sign per motor |
tverouden | 42:bb43f1b67787 | 621 | int countsF = countsInputF(); // different encoder pins per motor |
tverouden | 42:bb43f1b67787 | 622 | angleCurrentF = angleCurrent(countsCalibratedF); // different minus sign per motor |
tverouden | 42:bb43f1b67787 | 623 | errorCalibratedF = errorCalc(angleReferenceF,angleCurrentF); // same for every motor |
tverouden | 41:5aecc1a27ce6 | 624 | |
tverouden | 42:bb43f1b67787 | 625 | float PIDControlF = PIDControllerF(angleReferenceF,angleCurrentF); // same for every motor |
tverouden | 42:bb43f1b67787 | 626 | pin6 = fabs(PIDControlF); // different pins for every motor |
tverouden | 42:bb43f1b67787 | 627 | pin7 = PIDControlF > 0.0f; // different pins for every motor |
tverouden | 42:bb43f1b67787 | 628 | } |
EvaKrolis | 13:4ba8f63e6ff4 | 629 | |
tverouden | 2:d70795e4e0bf | 630 | // ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ STATE MACHINE ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ |
tverouden | 42:bb43f1b67787 | 631 | void stateMachine(void) { |
tverouden | 42:bb43f1b67787 | 632 | switch (currentState) { // determine which state Odin is in |
tverouden | 3:9c63fc5f157e | 633 | |
tverouden | 4:5ce2c8864908 | 634 | // ========================= MOTOR CALIBRATION MODE ========================== |
tverouden | 42:bb43f1b67787 | 635 | case calibratingMotors: |
tverouden | 4:5ce2c8864908 | 636 | // ------------------------- initialisation -------------------------- |
tverouden | 42:bb43f1b67787 | 637 | if (changeState) { // when entering the state |
tverouden | 42:bb43f1b67787 | 638 | pc.printf("[MODE] calibrating motors...\r\n"); |
tverouden | 42:bb43f1b67787 | 639 | // print current state |
tverouden | 42:bb43f1b67787 | 640 | changeState = false; // stay in this state |
tverouden | 4:5ce2c8864908 | 641 | |
tverouden | 42:bb43f1b67787 | 642 | // Actions when entering state |
tverouden | 42:bb43f1b67787 | 643 | ledRed = 1; // cyan-green blinking LED |
tverouden | 42:bb43f1b67787 | 644 | ledGreen = 0; |
tverouden | 42:bb43f1b67787 | 645 | ledBlue = 0; |
tverouden | 42:bb43f1b67787 | 646 | blinkTimer.attach(&blinkLedBlue,0.5); |
tverouden | 4:5ce2c8864908 | 647 | |
tverouden | 42:bb43f1b67787 | 648 | } |
tverouden | 4:5ce2c8864908 | 649 | // ----------------------------- action ------------------------------ |
tverouden | 42:bb43f1b67787 | 650 | // Actions for each loop iteration |
tverouden | 42:bb43f1b67787 | 651 | /* */ |
tverouden | 4:5ce2c8864908 | 652 | |
tverouden | 4:5ce2c8864908 | 653 | // --------------------------- transition ---------------------------- |
tverouden | 42:bb43f1b67787 | 654 | // Transition condition: when all motor errors smaller than 0.01, |
tverouden | 42:bb43f1b67787 | 655 | // start calibrating EMG |
tverouden | 42:bb43f1b67787 | 656 | if (errorMotorL < 0.01 && errorMotorR < 0.01 |
tverouden | 42:bb43f1b67787 | 657 | && errorMotorF < 0.01 && buttonHome == false) { |
tverouden | 23:e282bdb9e9b7 | 658 | |
tverouden | 42:bb43f1b67787 | 659 | // Actions when leaving state |
tverouden | 42:bb43f1b67787 | 660 | blinkTimer.detach(); |
tverouden | 5:04b26b2f536a | 661 | |
tverouden | 42:bb43f1b67787 | 662 | currentState = calibratingEMG; // change to state |
tverouden | 42:bb43f1b67787 | 663 | changeState = true; // next loop, switch states |
tverouden | 42:bb43f1b67787 | 664 | } |
tverouden | 5:04b26b2f536a | 665 | |
tverouden | 42:bb43f1b67787 | 666 | break; // end case |
tverouden | 4:5ce2c8864908 | 667 | |
tverouden | 7:ef5966469621 | 668 | // =========================== EMG CALIBRATION MODE =========================== |
tverouden | 42:bb43f1b67787 | 669 | case calibratingEMG: |
tverouden | 4:5ce2c8864908 | 670 | // ------------------------- initialisation -------------------------- |
tverouden | 42:bb43f1b67787 | 671 | if (changeState) { // when entering the state |
tverouden | 42:bb43f1b67787 | 672 | pc.printf("[MODE] calibrating EMG...\r\n"); |
tverouden | 42:bb43f1b67787 | 673 | // print current state |
tverouden | 42:bb43f1b67787 | 674 | changeState = false; // stay in this state |
tverouden | 4:5ce2c8864908 | 675 | |
tverouden | 42:bb43f1b67787 | 676 | // Actions when entering state |
tverouden | 42:bb43f1b67787 | 677 | ledRed = 1; // cyan-blue blinking LED |
tverouden | 42:bb43f1b67787 | 678 | ledGreen = 0; |
tverouden | 42:bb43f1b67787 | 679 | ledBlue = 0; |
tverouden | 42:bb43f1b67787 | 680 | blinkTimer.attach(&blinkLedGreen,0.5); |
tverouden | 4:5ce2c8864908 | 681 | |
tverouden | 42:bb43f1b67787 | 682 | FindMax0_timer.attach(&FindMax0,15); //Find the maximum value after 15 seconds |
tverouden | 42:bb43f1b67787 | 683 | FindMax1_timer.attach(&FindMax1,15); //Find the maximum value after 15 seconds |
tverouden | 41:5aecc1a27ce6 | 684 | |
tverouden | 42:bb43f1b67787 | 685 | EMGtransition_timer.reset(); |
tverouden | 42:bb43f1b67787 | 686 | EMGtransition_timer.start(); |
tverouden | 42:bb43f1b67787 | 687 | } |
tverouden | 4:5ce2c8864908 | 688 | // ----------------------------- action ------------------------------ |
tverouden | 42:bb43f1b67787 | 689 | // Actions for each loop iteration |
tverouden | 42:bb43f1b67787 | 690 | CalibrateEMG0(); //start emg calibration every 0.005 seconds |
tverouden | 42:bb43f1b67787 | 691 | CalibrateEMG1(); //Start EMG calibration every 0.005 seconds |
tverouden | 42:bb43f1b67787 | 692 | /* */ |
tverouden | 41:5aecc1a27ce6 | 693 | |
tverouden | 4:5ce2c8864908 | 694 | |
tverouden | 4:5ce2c8864908 | 695 | // --------------------------- transition ---------------------------- |
tverouden | 42:bb43f1b67787 | 696 | // Transition condition: after 20 sec in state |
tverouden | 42:bb43f1b67787 | 697 | if (local_timer.read() > 20) { |
tverouden | 42:bb43f1b67787 | 698 | // Actions when leaving state |
tverouden | 42:bb43f1b67787 | 699 | blinkTimer.detach(); |
tverouden | 5:04b26b2f536a | 700 | |
tverouden | 42:bb43f1b67787 | 701 | currentState = homing; // change to state |
tverouden | 42:bb43f1b67787 | 702 | changeState = true; // next loop, switch states |
tverouden | 42:bb43f1b67787 | 703 | } |
tverouden | 42:bb43f1b67787 | 704 | break; // end case |
tverouden | 4:5ce2c8864908 | 705 | |
tverouden | 4:5ce2c8864908 | 706 | // ============================== HOMING MODE ================================ |
tverouden | 42:bb43f1b67787 | 707 | case homing: |
tverouden | 41:5aecc1a27ce6 | 708 | // ------------------------- initialisation -------------------------- |
tverouden | 42:bb43f1b67787 | 709 | if (changeState) { // when entering the state |
tverouden | 42:bb43f1b67787 | 710 | pc.printf("[MODE] homing...\r\n"); |
tverouden | 42:bb43f1b67787 | 711 | // print current state |
tverouden | 42:bb43f1b67787 | 712 | changeState = false; // stay in this state |
tverouden | 4:5ce2c8864908 | 713 | |
tverouden | 4:5ce2c8864908 | 714 | |
tverouden | 42:bb43f1b67787 | 715 | // Actions when entering state |
tverouden | 42:bb43f1b67787 | 716 | ledRed = 1; // cyan LED on |
tverouden | 42:bb43f1b67787 | 717 | ledGreen = 0; |
tverouden | 42:bb43f1b67787 | 718 | ledBlue = 0; |
tverouden | 4:5ce2c8864908 | 719 | |
tverouden | 42:bb43f1b67787 | 720 | } |
tverouden | 4:5ce2c8864908 | 721 | // ----------------------------- action ------------------------------ |
tverouden | 42:bb43f1b67787 | 722 | // Actions for each loop iteration |
tverouden | 42:bb43f1b67787 | 723 | /* */ |
tverouden | 4:5ce2c8864908 | 724 | |
tverouden | 41:5aecc1a27ce6 | 725 | // --------------------------- transition ---------------------------- |
tverouden | 42:bb43f1b67787 | 726 | // Transition condition #1: with button press, enter demo mode, |
tverouden | 42:bb43f1b67787 | 727 | // but only when velocity == 0 |
tverouden | 42:bb43f1b67787 | 728 | if (errorMotorL < 0.01 && errorMotorR < 0.01 |
tverouden | 42:bb43f1b67787 | 729 | && errorMotorF < 0.01 && buttonBio1 == true) { |
tverouden | 42:bb43f1b67787 | 730 | // Actions when leaving state |
tverouden | 42:bb43f1b67787 | 731 | /* */ |
tverouden | 24:0abc564349e1 | 732 | |
tverouden | 42:bb43f1b67787 | 733 | currentState = reading; // change to state |
tverouden | 42:bb43f1b67787 | 734 | changeState = true; // next loop, switch states |
tverouden | 42:bb43f1b67787 | 735 | } |
tverouden | 42:bb43f1b67787 | 736 | // Transition condition #2: with button press, enter operation mode |
tverouden | 42:bb43f1b67787 | 737 | // but only when velocity == 0 |
tverouden | 42:bb43f1b67787 | 738 | if (errorMotorL < 0.01 && errorMotorR < 0.01 |
tverouden | 42:bb43f1b67787 | 739 | && errorMotorF < 0.01 && buttonBio2 == true) { |
tverouden | 42:bb43f1b67787 | 740 | // Actions when leaving state |
tverouden | 42:bb43f1b67787 | 741 | /* */ |
tverouden | 5:04b26b2f536a | 742 | |
tverouden | 42:bb43f1b67787 | 743 | currentState = demoing; // change to state |
tverouden | 42:bb43f1b67787 | 744 | changeState = true; // next loop, switch states |
tverouden | 42:bb43f1b67787 | 745 | } |
tverouden | 42:bb43f1b67787 | 746 | break; // end case |
tverouden | 4:5ce2c8864908 | 747 | |
tverouden | 41:5aecc1a27ce6 | 748 | // ============================== READING MODE =============================== |
tverouden | 42:bb43f1b67787 | 749 | case reading: |
tverouden | 17:b04e1938491a | 750 | // ------------------------- initialisation -------------------------- |
tverouden | 42:bb43f1b67787 | 751 | if (changeState) { // when entering the state |
tverouden | 42:bb43f1b67787 | 752 | pc.printf("[MODE] reading...\r\n"); |
tverouden | 42:bb43f1b67787 | 753 | // print current state |
tverouden | 42:bb43f1b67787 | 754 | changeState = false; // stay in this state |
tverouden | 17:b04e1938491a | 755 | |
tverouden | 42:bb43f1b67787 | 756 | // Actions when entering state |
tverouden | 42:bb43f1b67787 | 757 | ledRed = 1; // blue LED on |
tverouden | 42:bb43f1b67787 | 758 | ledGreen = 1; |
tverouden | 42:bb43f1b67787 | 759 | ledBlue = 0; |
tverouden | 41:5aecc1a27ce6 | 760 | |
tverouden | 42:bb43f1b67787 | 761 | // TERUGKLAPPEN |
tverouden | 17:b04e1938491a | 762 | |
tverouden | 42:bb43f1b67787 | 763 | } |
tverouden | 17:b04e1938491a | 764 | // ----------------------------- action ------------------------------ |
tverouden | 42:bb43f1b67787 | 765 | // Actions for each loop iteration |
tverouden | 42:bb43f1b67787 | 766 | ReadUseEMG0(); //Start the use of EMG |
tverouden | 42:bb43f1b67787 | 767 | ReadUseEMG1(); //Start the use of EMG |
tverouden | 42:bb43f1b67787 | 768 | /* */ |
tverouden | 17:b04e1938491a | 769 | |
tverouden | 17:b04e1938491a | 770 | // --------------------------- transition ---------------------------- |
tverouden | 42:bb43f1b67787 | 771 | // Transition condition #1: when EMG signal detected, enter reading |
tverouden | 42:bb43f1b67787 | 772 | // mode |
tverouden | 42:bb43f1b67787 | 773 | if (xMove == true || yMove == true) { |
tverouden | 42:bb43f1b67787 | 774 | // Actions when leaving state |
tverouden | 42:bb43f1b67787 | 775 | /* */ |
tverouden | 24:0abc564349e1 | 776 | |
tverouden | 42:bb43f1b67787 | 777 | currentState = reading; // change to state |
tverouden | 42:bb43f1b67787 | 778 | changeState = true; // next loop, switch states |
tverouden | 42:bb43f1b67787 | 779 | } |
tverouden | 42:bb43f1b67787 | 780 | // Transition condition #2: with button press, back to homing mode |
tverouden | 42:bb43f1b67787 | 781 | if (buttonHome == false) { |
tverouden | 42:bb43f1b67787 | 782 | // Actions when leaving state |
tverouden | 42:bb43f1b67787 | 783 | /* */ |
tverouden | 17:b04e1938491a | 784 | |
tverouden | 42:bb43f1b67787 | 785 | currentState = homing; // change to state |
tverouden | 42:bb43f1b67787 | 786 | changeState = true; // next loop, switch states |
tverouden | 42:bb43f1b67787 | 787 | } |
tverouden | 42:bb43f1b67787 | 788 | break; // end case |
tverouden | 17:b04e1938491a | 789 | |
tverouden | 4:5ce2c8864908 | 790 | // ============================= OPERATING MODE ============================== |
tverouden | 42:bb43f1b67787 | 791 | case operating: |
tverouden | 4:5ce2c8864908 | 792 | // ------------------------- initialisation -------------------------- |
tverouden | 42:bb43f1b67787 | 793 | if (changeState) { // when entering the state |
tverouden | 42:bb43f1b67787 | 794 | pc.printf("[MODE] operating...\r\n"); |
tverouden | 42:bb43f1b67787 | 795 | // print current state |
tverouden | 42:bb43f1b67787 | 796 | changeState = false; // stay in this state |
tverouden | 5:04b26b2f536a | 797 | |
tverouden | 42:bb43f1b67787 | 798 | // Actions when entering state |
tverouden | 42:bb43f1b67787 | 799 | ledRed = 1; // blue fast blinking LED |
tverouden | 42:bb43f1b67787 | 800 | ledGreen = 1; |
tverouden | 42:bb43f1b67787 | 801 | ledBlue = 1; |
tverouden | 42:bb43f1b67787 | 802 | blinkTimer.attach(&blinkLedBlue,0.25); |
tverouden | 5:04b26b2f536a | 803 | |
tverouden | 42:bb43f1b67787 | 804 | } |
tverouden | 5:04b26b2f536a | 805 | // ----------------------------- action ------------------------------ |
tverouden | 42:bb43f1b67787 | 806 | // Actions for each loop iteration |
tverouden | 42:bb43f1b67787 | 807 | /* */ |
tverouden | 5:04b26b2f536a | 808 | |
tverouden | 5:04b26b2f536a | 809 | // --------------------------- transition ---------------------------- |
tverouden | 42:bb43f1b67787 | 810 | // Transition condition: when path is over, back to reading mode |
tverouden | 42:bb43f1b67787 | 811 | if (errorMotorL < 0.01 && errorMotorR < 0.01) { |
tverouden | 42:bb43f1b67787 | 812 | // Actions when leaving state |
tverouden | 42:bb43f1b67787 | 813 | blinkTimer.detach(); |
tverouden | 5:04b26b2f536a | 814 | |
tverouden | 42:bb43f1b67787 | 815 | currentState = reading; // change to state |
tverouden | 42:bb43f1b67787 | 816 | changeState = true; // next loop, switch states |
tverouden | 42:bb43f1b67787 | 817 | } |
tverouden | 42:bb43f1b67787 | 818 | break; // end case |
tverouden | 5:04b26b2f536a | 819 | |
tverouden | 5:04b26b2f536a | 820 | // ============================== DEMOING MODE =============================== |
tverouden | 42:bb43f1b67787 | 821 | case demoing: |
tverouden | 5:04b26b2f536a | 822 | // ------------------------- initialisation -------------------------- |
tverouden | 42:bb43f1b67787 | 823 | if (changeState) { // when entering the state |
tverouden | 42:bb43f1b67787 | 824 | pc.printf("[MODE] demoing...\r\n"); |
tverouden | 42:bb43f1b67787 | 825 | // print current state |
tverouden | 42:bb43f1b67787 | 826 | changeState = false; // stay in this state |
tverouden | 5:04b26b2f536a | 827 | |
tverouden | 42:bb43f1b67787 | 828 | // Actions when entering state |
tverouden | 42:bb43f1b67787 | 829 | ledRed = 0; // yellow LED on |
tverouden | 42:bb43f1b67787 | 830 | ledGreen = 0; |
tverouden | 42:bb43f1b67787 | 831 | ledBlue = 1; |
tverouden | 5:04b26b2f536a | 832 | |
tverouden | 42:bb43f1b67787 | 833 | } |
tverouden | 5:04b26b2f536a | 834 | // ----------------------------- action ------------------------------ |
tverouden | 42:bb43f1b67787 | 835 | // Actions for each loop iteration |
tverouden | 42:bb43f1b67787 | 836 | /* */ |
tverouden | 42:bb43f1b67787 | 837 | ReadUseEMG0(); //Start the use of EMG |
tverouden | 42:bb43f1b67787 | 838 | ReadUseEMG1(); //Start the use of EMG |
tverouden | 5:04b26b2f536a | 839 | |
tverouden | 5:04b26b2f536a | 840 | // --------------------------- transition ---------------------------- |
tverouden | 42:bb43f1b67787 | 841 | // Transition condition: with button press, back to homing mode |
tverouden | 42:bb43f1b67787 | 842 | if (buttonHome == false) { |
tverouden | 42:bb43f1b67787 | 843 | // Actions when leaving state |
tverouden | 42:bb43f1b67787 | 844 | /* */ |
tverouden | 5:04b26b2f536a | 845 | |
tverouden | 42:bb43f1b67787 | 846 | currentState = homing; // change to state |
tverouden | 42:bb43f1b67787 | 847 | changeState = true; // next loop, switch states |
tverouden | 42:bb43f1b67787 | 848 | } |
tverouden | 42:bb43f1b67787 | 849 | break; // end case |
tverouden | 5:04b26b2f536a | 850 | |
tverouden | 5:04b26b2f536a | 851 | // =============================== FAILING MODE ================================ |
tverouden | 42:bb43f1b67787 | 852 | case failing: |
tverouden | 42:bb43f1b67787 | 853 | changeState = false; // stay in this state |
tverouden | 3:9c63fc5f157e | 854 | |
tverouden | 42:bb43f1b67787 | 855 | // Actions when entering state |
tverouden | 42:bb43f1b67787 | 856 | ledRed = 0; // red LED on |
tverouden | 42:bb43f1b67787 | 857 | ledGreen = 1; |
tverouden | 42:bb43f1b67787 | 858 | ledBlue = 1; |
tverouden | 4:5ce2c8864908 | 859 | |
tverouden | 42:bb43f1b67787 | 860 | pin3 = 0; // all motor forces to zero |
tverouden | 42:bb43f1b67787 | 861 | pin5 = 0; |
tverouden | 42:bb43f1b67787 | 862 | pin6 = 0; |
tverouden | 42:bb43f1b67787 | 863 | exit (0); // stop all current functions |
tverouden | 42:bb43f1b67787 | 864 | break; // end case |
tverouden | 4:5ce2c8864908 | 865 | |
tverouden | 4:5ce2c8864908 | 866 | // ============================== DEFAULT MODE ================================= |
tverouden | 42:bb43f1b67787 | 867 | default: |
tverouden | 4:5ce2c8864908 | 868 | // ---------------------------- enter failing mode ----------------------------- |
tverouden | 42:bb43f1b67787 | 869 | currentState = failing; // change to state |
tverouden | 42:bb43f1b67787 | 870 | changeState = true; // next loop, switch states |
tverouden | 42:bb43f1b67787 | 871 | // print current state |
tverouden | 42:bb43f1b67787 | 872 | pc.printf("[ERROR] unknown or unimplemented state reached\r\n"); |
tverouden | 3:9c63fc5f157e | 873 | |
tverouden | 42:bb43f1b67787 | 874 | } // end switch |
tverouden | 42:bb43f1b67787 | 875 | } // end stateMachine |
tverouden | 3:9c63fc5f157e | 876 | |
tverouden | 3:9c63fc5f157e | 877 | |
tverouden | 2:d70795e4e0bf | 878 | |
tverouden | 2:d70795e4e0bf | 879 | // ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ MAIN LOOP ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ |
tverouden | 2:d70795e4e0bf | 880 | |
tverouden | 42:bb43f1b67787 | 881 | int main() { |
tverouden | 8:8cef1050ebd9 | 882 | // ================================ EMERGENCY ================================ |
tverouden | 42:bb43f1b67787 | 883 | //If the emergency button is pressed, stop program via failing state |
tverouden | 42:bb43f1b67787 | 884 | buttonEmergency.rise(stopProgram); // Automatische triggers voor failure mode? -> ook error message in andere functies plaatsen! |
tverouden | 15:6566c5dedeeb | 885 | |
tverouden | 43:d332aa9f49e0 | 886 | // ============================= PC-COMMUNICATION ============================ |
tverouden | 42:bb43f1b67787 | 887 | pc.baud(115200); // communication with terminal |
tverouden | 42:bb43f1b67787 | 888 | pc.printf("\n\n[START] starting O.D.I.N\r\n"); |
tverouden | 6:f32352bc5078 | 889 | |
tverouden | 43:d332aa9f49e0 | 890 | // ============================= PIN DEFINE PERIOD =========================== |
tverouden | 42:bb43f1b67787 | 891 | // If you give a period on one pin, c++ gives all pins this period |
tverouden | 42:bb43f1b67787 | 892 | pin3.period_us(15); |
tverouden | 41:5aecc1a27ce6 | 893 | |
tverouden | 43:d332aa9f49e0 | 894 | // ==================================== LOOP ================================== |
tverouden | 42:bb43f1b67787 | 895 | // run state machine at 500 Hz |
tverouden | 42:bb43f1b67787 | 896 | stateTimer.attach(&stateMachine,dt); |
tverouden | 43:d332aa9f49e0 | 897 | |
tverouden | 43:d332aa9f49e0 | 898 | // =============================== ADD FILTERS =============================== |
tverouden | 43:d332aa9f49e0 | 899 | //Make filter chain for the first EMG |
tverouden | 43:d332aa9f49e0 | 900 | filter0.add(&Notch50_0).add(&Notch100_0).add(&Notch150_0).add(&Notch200_0).add(&Low_0).add(&High_0); |
tverouden | 43:d332aa9f49e0 | 901 | //Make filter chain for the second EMG |
tverouden | 43:d332aa9f49e0 | 902 | filter1.add(&Notch50_1).add(&Notch100_1).add(&Notch150_1).add(&Notch200_1).add(&Low_1).add(&High_1); |
tverouden | 42:bb43f1b67787 | 903 | } |