Tommie Verouden / Mbed 2 deprecated StateMachine

Dependencies:   biquadFilter FastPWM MODSERIAL QEI mbed

Committer:
efvanmarrewijk
Date:
Thu Nov 01 14:26:16 2018 +0000
Revision:
35:3c937770aa41
Parent:
34:fb6889c5ca22
Child:
37:317e14b9d551
Motor flip code added

Who changed what in which revision?

UserRevisionLine numberNew contents of line
tverouden 0:c0c35b95765f 1 // ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ PREPARATION ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡
tverouden 0:c0c35b95765f 2 // Libraries
tverouden 0:c0c35b95765f 3 #include "mbed.h"
tverouden 2:d70795e4e0bf 4 #include "BiQuad.h"
tverouden 0:c0c35b95765f 5 #include "FastPWM.h"
tverouden 0:c0c35b95765f 6 #include "MODSERIAL.h"
efvanmarrewijk 25:ac139331fe51 7 #include "QEI.h"
EvaKrolis 13:4ba8f63e6ff4 8 #include <algorithm>
EvaKrolis 14:2c0bf576a0e7 9 #define PI 3.14159265
tverouden 0:c0c35b95765f 10
tverouden 8:8cef1050ebd9 11 // LEDs
tverouden 23:e282bdb9e9b7 12 DigitalOut ledRed(LED_RED,1); // red LED K64F
tverouden 23:e282bdb9e9b7 13 DigitalOut ledGreen(LED_GREEN,1); // green LED K64F
tverouden 23:e282bdb9e9b7 14 DigitalOut ledBlue(LED_BLUE,1); // blue LED K64F
tverouden 8:8cef1050ebd9 15
tverouden 23:e282bdb9e9b7 16 Ticker blinkTimer; // LED ticker
tverouden 8:8cef1050ebd9 17
tverouden 8:8cef1050ebd9 18 // Buttons/inputs
tverouden 23:e282bdb9e9b7 19 InterruptIn buttonBio1(D0); // button 1 BioRobotics shield
tverouden 23:e282bdb9e9b7 20 InterruptIn buttonBio2(D1); // button 2 BioRobotics shield
tverouden 23:e282bdb9e9b7 21 InterruptIn buttonEmergency(SW2); // emergency button on K64F
tverouden 24:0abc564349e1 22 InterruptIn buttonHome(SW3); // button on K64F
tverouden 0:c0c35b95765f 23
efvanmarrewijk 25:ac139331fe51 24 // Potmeters
efvanmarrewijk 25:ac139331fe51 25 AnalogIn pot1(A1);
efvanmarrewijk 25:ac139331fe51 26 AnalogIn pot2(A2);
efvanmarrewijk 25:ac139331fe51 27
efvanmarrewijk 25:ac139331fe51 28 // Motor pins input
efvanmarrewijk 25:ac139331fe51 29 DigitalIn pin8(D8); // Encoder L B
efvanmarrewijk 25:ac139331fe51 30 DigitalIn pin9(D9); // Encoder L A
efvanmarrewijk 25:ac139331fe51 31 DigitalIn pin10(D10); // Encoder R B
efvanmarrewijk 25:ac139331fe51 32 DigitalIn pin11(D11); // Encoder R A
efvanmarrewijk 25:ac139331fe51 33 DigitalIn pin12(D12); // Encoder F B
efvanmarrewijk 25:ac139331fe51 34 DigitalIn pin13(D13); // Encoder F A
tverouden 8:8cef1050ebd9 35
efvanmarrewijk 25:ac139331fe51 36 // Motor pins output
efvanmarrewijk 25:ac139331fe51 37 DigitalOut pin2(D2); // Motor F direction = motor flip
efvanmarrewijk 25:ac139331fe51 38 FastPWM pin3(A5); // Motor F pwm = motor flip
efvanmarrewijk 25:ac139331fe51 39 DigitalOut pin4(D4); // Motor R direction = motor right
efvanmarrewijk 25:ac139331fe51 40 FastPWM pin5(D5); // Motor R pwm = motor right
efvanmarrewijk 25:ac139331fe51 41 FastPWM pin6(D6); // Motor L pwm = motor left
tverouden 32:a00ff9898574 42 DigitalOut pin7(D7); // Motor L direction = motor left
efvanmarrewijk 25:ac139331fe51 43
efvanmarrewijk 25:ac139331fe51 44 // Utilisation of libraries
tverouden 32:a00ff9898574 45 MODSERIAL pc(USBTX, USBRX); // communication with pc
efvanmarrewijk 25:ac139331fe51 46 QEI encoderL(D9,D8,NC,4200); // Encoder input of motor L
efvanmarrewijk 25:ac139331fe51 47 QEI encoderR(D10,D11,NC,4200); // Encoder input of motor R
efvanmarrewijk 25:ac139331fe51 48 QEI encoderF(D12,D13,NC,4200); // Encoder input of motor F
efvanmarrewijk 25:ac139331fe51 49 Ticker motorL;
efvanmarrewijk 25:ac139331fe51 50 Ticker motorR;
efvanmarrewijk 25:ac139331fe51 51 Ticker motorF;
tverouden 4:5ce2c8864908 52
tverouden 0:c0c35b95765f 53 // Define & initialise state machine
efvanmarrewijk 26:247be0bea9b1 54 const float dt = 0.002f;
tverouden 11:2d1dfebae948 55 enum states { calibratingMotors, calibratingEMG,
tverouden 17:b04e1938491a 56 homing, reading, operating, failing, demoing
tverouden 2:d70795e4e0bf 57 };
tverouden 23:e282bdb9e9b7 58 states currentState = calibratingMotors; // start in waiting mode
tverouden 23:e282bdb9e9b7 59 bool changeState = true; // initialise the first state
tverouden 2:d70795e4e0bf 60
tverouden 23:e282bdb9e9b7 61 Ticker stateTimer; // state machine ticker
tverouden 19:2797bb471f9f 62
EvaKrolis 14:2c0bf576a0e7 63 //------------------------ Parameters for the EMG ----------------------------
tverouden 3:9c63fc5f157e 64
tverouden 23:e282bdb9e9b7 65 // EMG inputs
tverouden 23:e282bdb9e9b7 66 AnalogIn EMG0In(A0); // EMG input 0
tverouden 23:e282bdb9e9b7 67 AnalogIn EMG1In(A1); // EMG input 1
EvaKrolis 13:4ba8f63e6ff4 68
tverouden 23:e282bdb9e9b7 69 // Timers
tverouden 23:e282bdb9e9b7 70 Ticker ReadUseEMG0_timer; // Timer to read, filter and use the EMG
tverouden 23:e282bdb9e9b7 71 Ticker EMGCalibration0_timer; // Timer for the calibration of the EMG
tverouden 23:e282bdb9e9b7 72 Ticker FindMax0_timer; // Timer for finding the max muscle
tverouden 23:e282bdb9e9b7 73 Ticker ReadUseEMG1_timer; // Timer to read, filter and use the EMG
tverouden 23:e282bdb9e9b7 74 Ticker EMGCalibration1_timer; // Timer for the calibration of the EMG
tverouden 23:e282bdb9e9b7 75 Ticker FindMax1_timer; // Timer for finding the max muscle
tverouden 23:e282bdb9e9b7 76 Ticker SwitchState_timer; // Timer to switch from the Calibration to the working mode
EvaKrolis 13:4ba8f63e6ff4 77
tverouden 23:e282bdb9e9b7 78 // Constants
tverouden 23:e282bdb9e9b7 79 const int Length = 10000; // Length of the array for the calibration
tverouden 23:e282bdb9e9b7 80 const int Parts = 50; // Mean average filter over 50 values
EvaKrolis 13:4ba8f63e6ff4 81
tverouden 23:e282bdb9e9b7 82 // Parameters for the first EMG signal
tverouden 23:e282bdb9e9b7 83 float EMG0; // float for EMG input
tverouden 23:e282bdb9e9b7 84 float EMG0filt; // float for filtered EMG
tverouden 23:e282bdb9e9b7 85 float EMG0filtArray[Parts]; // Array for the filtered array
tverouden 23:e282bdb9e9b7 86 float EMG0Average; // float for the value after Moving Average Filter
tverouden 23:e282bdb9e9b7 87 float Sum0 = 0; // Sum0 for the moving average filter
tverouden 23:e282bdb9e9b7 88 float EMG0Calibrate[Length]; // Array for the calibration
tverouden 23:e282bdb9e9b7 89 int ReadCal0 = 0; // Integer to read over the calibration array
tverouden 23:e282bdb9e9b7 90 float MaxValue0 = 0; // float to save the max muscle
tverouden 23:e282bdb9e9b7 91 float Threshold0 = 0; // Threshold for the first EMG signal
EvaKrolis 13:4ba8f63e6ff4 92
tverouden 23:e282bdb9e9b7 93 // Parameters for the second EMG signal
tverouden 23:e282bdb9e9b7 94 float EMG1; // float for EMG input
tverouden 23:e282bdb9e9b7 95 float EMG1filt; // float for filtered EMG
tverouden 23:e282bdb9e9b7 96 float EMG1filtArray[Parts]; // Array for the filtered array
tverouden 23:e282bdb9e9b7 97 float EMG1Average; // float for the value after Moving Average Filter
tverouden 23:e282bdb9e9b7 98 float Sum1 = 0; // Sum0 for the moving average filter
tverouden 23:e282bdb9e9b7 99 float EMG1Calibrate[Length]; // Array for the calibration
tverouden 23:e282bdb9e9b7 100 int ReadCal1 = 0; // Integer to read over the calibration array
tverouden 23:e282bdb9e9b7 101 float MaxValue1 = 0; // float to save the max muscle
tverouden 23:e282bdb9e9b7 102 float Threshold1 = 0; // Threshold for the second EMG signal
EvaKrolis 13:4ba8f63e6ff4 103
EvaKrolis 13:4ba8f63e6ff4 104 //Filter variables
EvaKrolis 13:4ba8f63e6ff4 105 BiQuad Notch50_0(0.7887,0,0.7887,0,0.5774); //Make Notch filter around 50 Hz
tverouden 23:e282bdb9e9b7 106 BiQuad Notch50_1(0.7887,0,0.7887,0,0.5774); // Make Notch filter around 50 Hz
EvaKrolis 13:4ba8f63e6ff4 107 BiQuad High0(0.8006,-1.6012,0.8006,-1.561,0.6414); //Make high-pass filter
EvaKrolis 13:4ba8f63e6ff4 108 BiQuad High1(0.8006,-1.6012,0.8006,-1.561,0.6414); //Make high-pass filter
EvaKrolis 13:4ba8f63e6ff4 109 BiQuadChain filter0; //Make chain of filters for the first EMG signal
EvaKrolis 13:4ba8f63e6ff4 110 BiQuadChain filter1; //Make chain of filters for the second EMG signal
EvaKrolis 13:4ba8f63e6ff4 111
EvaKrolis 13:4ba8f63e6ff4 112 //Bool for movement
EvaKrolis 13:4ba8f63e6ff4 113 bool xMove = false; //Bool for the x-movement
EvaKrolis 13:4ba8f63e6ff4 114 bool yMove = false; //Bool for the y-movement
tverouden 3:9c63fc5f157e 115
EvaKrolis 14:2c0bf576a0e7 116 // -------------------- Parameters for the kinematics -------------------------
EvaKrolis 14:2c0bf576a0e7 117
EvaKrolis 14:2c0bf576a0e7 118 //Constants
EvaKrolis 14:2c0bf576a0e7 119 const double ll = 230; //Length of the lower arm
EvaKrolis 14:2c0bf576a0e7 120 const double lu = 198; //Length of the upper arm
EvaKrolis 14:2c0bf576a0e7 121 const double lb = 50; //Length of the part between the upper arms
EvaKrolis 14:2c0bf576a0e7 122 const double le = 79; //Length of the end-effector beam
EvaKrolis 14:2c0bf576a0e7 123 const double xbase = 450-lb; //Length between the motors
EvaKrolis 14:2c0bf576a0e7 124
EvaKrolis 14:2c0bf576a0e7 125 //General parameters
EvaKrolis 14:2c0bf576a0e7 126 double theta1 = PI*0.49; //Angle of the left motor
EvaKrolis 14:2c0bf576a0e7 127 double theta4 = PI*0.49; //Angle of the right motor
EvaKrolis 14:2c0bf576a0e7 128 double thetaflip = 0; //Angle of the flipping motor
EvaKrolis 14:2c0bf576a0e7 129 double prefx; //Desired x velocity
EvaKrolis 14:2c0bf576a0e7 130 double prefy; //Desired y velocity "
EvaKrolis 14:2c0bf576a0e7 131 double deltat = 0.01; //Time step (dependent on sample frequency)
EvaKrolis 14:2c0bf576a0e7 132
EvaKrolis 14:2c0bf576a0e7 133 //Kinematics parameters for x
EvaKrolis 14:2c0bf576a0e7 134 double xendsum;
EvaKrolis 14:2c0bf576a0e7 135 double xendsqrt1;
EvaKrolis 14:2c0bf576a0e7 136 double xendsqrt2;
EvaKrolis 14:2c0bf576a0e7 137 double xend;
EvaKrolis 14:2c0bf576a0e7 138 double jacobiana;
EvaKrolis 14:2c0bf576a0e7 139 double jacobianc;
EvaKrolis 14:2c0bf576a0e7 140
EvaKrolis 14:2c0bf576a0e7 141 //Kinematics parameters for y
EvaKrolis 14:2c0bf576a0e7 142 double yendsum;
EvaKrolis 14:2c0bf576a0e7 143 double yendsqrt1;
EvaKrolis 14:2c0bf576a0e7 144 double yendsqrt2;
EvaKrolis 14:2c0bf576a0e7 145 double yend;
EvaKrolis 14:2c0bf576a0e7 146 double jacobianb;
EvaKrolis 14:2c0bf576a0e7 147 double jacobiand;
EvaKrolis 14:2c0bf576a0e7 148
EvaKrolis 14:2c0bf576a0e7 149 //Tickers
EvaKrolis 14:2c0bf576a0e7 150 Ticker kin; //Timer for calculating x,y,theta1,theta4
EvaKrolis 14:2c0bf576a0e7 151 Ticker simulateval; //Timer that prints the values for x,y, and angles
EvaKrolis 14:2c0bf576a0e7 152
EvaKrolis 14:2c0bf576a0e7 153 // ---------------------- Parameters for the motors ---------------------------
efvanmarrewijk 26:247be0bea9b1 154 const float countsRad = 4200.0f;
efvanmarrewijk 26:247be0bea9b1 155 int countsL;
efvanmarrewijk 26:247be0bea9b1 156 int countsR;
efvanmarrewijk 26:247be0bea9b1 157 int countsF;
efvanmarrewijk 26:247be0bea9b1 158 int countsCalibratedL;
efvanmarrewijk 26:247be0bea9b1 159 int countsCalibratedR;
efvanmarrewijk 26:247be0bea9b1 160 int countsCalibratedF;
efvanmarrewijk 26:247be0bea9b1 161 float angleCurrentL;
efvanmarrewijk 26:247be0bea9b1 162 float angleCurrentR;
efvanmarrewijk 26:247be0bea9b1 163 float angleCurrentF;
efvanmarrewijk 26:247be0bea9b1 164 float errorL;
efvanmarrewijk 26:247be0bea9b1 165 float errorR;
efvanmarrewijk 26:247be0bea9b1 166 float errorF;
efvanmarrewijk 26:247be0bea9b1 167 float errorCalibratedL;
efvanmarrewijk 26:247be0bea9b1 168 float errorCalibratedR;
efvanmarrewijk 26:247be0bea9b1 169 float errorCalibratedF;
EvaKrolis 14:2c0bf576a0e7 170
efvanmarrewijk 26:247be0bea9b1 171 int countsCalibration = 4200/4;
efvanmarrewijk 25:ac139331fe51 172
tverouden 4:5ce2c8864908 173 // ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ FUNCTIONS ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡
tverouden 6:f32352bc5078 174 // ============================ GENERAL FUNCTIONS =============================
tverouden 6:f32352bc5078 175 void stopProgram(void)
tverouden 6:f32352bc5078 176 {
tverouden 6:f32352bc5078 177 // Error message
tverouden 6:f32352bc5078 178 pc.printf("[ERROR] emergency button pressed\r\n");
tverouden 6:f32352bc5078 179 currentState = failing; // change to state
tverouden 6:f32352bc5078 180 changeState = true; // next loop, switch states
tverouden 6:f32352bc5078 181 }
tverouden 8:8cef1050ebd9 182
tverouden 15:6566c5dedeeb 183 void blinkLedRed(void)
tverouden 15:6566c5dedeeb 184 {
tverouden 15:6566c5dedeeb 185 ledRed =! ledRed; // toggle LED
tverouden 10:584b7d2c2d63 186 }
tverouden 15:6566c5dedeeb 187 void blinkLedGreen(void)
tverouden 15:6566c5dedeeb 188 {
tverouden 15:6566c5dedeeb 189 ledGreen =! ledGreen; // toggle LED
tverouden 15:6566c5dedeeb 190 }
tverouden 15:6566c5dedeeb 191 void blinkLedBlue(void)
tverouden 15:6566c5dedeeb 192 {
tverouden 15:6566c5dedeeb 193 ledBlue =! ledBlue; // toggle LED
tverouden 15:6566c5dedeeb 194 }
tverouden 15:6566c5dedeeb 195
tverouden 4:5ce2c8864908 196 // ============================= EMG FUNCTIONS ===============================
tverouden 4:5ce2c8864908 197
EvaKrolis 13:4ba8f63e6ff4 198 //Function to read and filter the EMG
EvaKrolis 13:4ba8f63e6ff4 199 void ReadUseEMG0(){
EvaKrolis 13:4ba8f63e6ff4 200 for(int i = Parts ; i > 0 ; i--){ //Make a first in, first out array
EvaKrolis 13:4ba8f63e6ff4 201 EMG0filtArray[i] = EMG0filtArray[i-1]; //Every value moves one up
EvaKrolis 13:4ba8f63e6ff4 202 }
EvaKrolis 13:4ba8f63e6ff4 203
EvaKrolis 13:4ba8f63e6ff4 204 Sum0 = 0;
EvaKrolis 13:4ba8f63e6ff4 205 EMG0 = EMG0In; //Save EMG input in float
EvaKrolis 13:4ba8f63e6ff4 206 EMG0filt = filter0.step(EMG0); //Filter the signal
EvaKrolis 13:4ba8f63e6ff4 207 EMG0filt = abs(EMG0filt); //Take the absolute value
EvaKrolis 13:4ba8f63e6ff4 208 EMG0filtArray[0] = EMG0filt; //Save the filtered signal on the first place in the array
EvaKrolis 13:4ba8f63e6ff4 209
EvaKrolis 13:4ba8f63e6ff4 210 for(int i = 0 ; i < Parts ; i++){ //Moving Average filter
EvaKrolis 13:4ba8f63e6ff4 211 Sum0 += EMG0filtArray[i]; //Sum the new value and the previous 49
EvaKrolis 13:4ba8f63e6ff4 212 }
EvaKrolis 13:4ba8f63e6ff4 213 EMG0Average = (float)Sum0/Parts; //Divide the sum by 50
EvaKrolis 13:4ba8f63e6ff4 214
EvaKrolis 13:4ba8f63e6ff4 215 if (EMG0Average > Threshold0){ //If the value is higher than the threshold value
EvaKrolis 13:4ba8f63e6ff4 216 xMove = true; //Set movement to true
EvaKrolis 13:4ba8f63e6ff4 217 }
EvaKrolis 13:4ba8f63e6ff4 218 else{
EvaKrolis 13:4ba8f63e6ff4 219 xMove = false; //Otherwise set movement to false
EvaKrolis 13:4ba8f63e6ff4 220 }
EvaKrolis 13:4ba8f63e6ff4 221 }
EvaKrolis 13:4ba8f63e6ff4 222
EvaKrolis 13:4ba8f63e6ff4 223 //Function to read and filter the EMG
EvaKrolis 13:4ba8f63e6ff4 224 void ReadUseEMG1(){
EvaKrolis 13:4ba8f63e6ff4 225 for(int i = Parts ; i > 0 ; i--){ //Make a first in, first out array
EvaKrolis 13:4ba8f63e6ff4 226 EMG1filtArray[i] = EMG1filtArray[i-1]; //Every value moves one up
EvaKrolis 13:4ba8f63e6ff4 227 }
EvaKrolis 13:4ba8f63e6ff4 228
EvaKrolis 13:4ba8f63e6ff4 229 Sum1 = 0;
EvaKrolis 13:4ba8f63e6ff4 230 EMG1 = EMG1In; //Save EMG input in float
EvaKrolis 13:4ba8f63e6ff4 231 EMG1filt = filter1.step(EMG1); //Filter the signal
EvaKrolis 13:4ba8f63e6ff4 232 EMG1filt = abs(EMG1filt); //Take the absolute value
EvaKrolis 13:4ba8f63e6ff4 233 EMG1filtArray[0] = EMG1filt; //Save the filtered signal on the first place in the array
EvaKrolis 13:4ba8f63e6ff4 234
EvaKrolis 13:4ba8f63e6ff4 235 for(int i = 0 ; i < Parts ; i++){ //Moving Average filter
EvaKrolis 13:4ba8f63e6ff4 236 Sum1 += EMG1filtArray[i]; //Sum the new value and the previous 49
EvaKrolis 13:4ba8f63e6ff4 237 }
EvaKrolis 13:4ba8f63e6ff4 238 EMG1Average = (float)Sum1/Parts; //Divide the sum by 50
EvaKrolis 13:4ba8f63e6ff4 239
EvaKrolis 13:4ba8f63e6ff4 240 if (EMG1Average > Threshold1){ //If the value is higher than the threshold value
EvaKrolis 13:4ba8f63e6ff4 241 yMove = true; //Set y movement to true
EvaKrolis 13:4ba8f63e6ff4 242 }
EvaKrolis 13:4ba8f63e6ff4 243 else{
EvaKrolis 13:4ba8f63e6ff4 244 yMove = false; //Otherwise set y movement to false
EvaKrolis 13:4ba8f63e6ff4 245 }
EvaKrolis 13:4ba8f63e6ff4 246 }
EvaKrolis 13:4ba8f63e6ff4 247
EvaKrolis 13:4ba8f63e6ff4 248 //Function to make an array during the calibration
EvaKrolis 13:4ba8f63e6ff4 249 void CalibrateEMG0(){
EvaKrolis 13:4ba8f63e6ff4 250 for(int i = Parts ; i > 0 ; i--){ //Make a first in, first out array
EvaKrolis 13:4ba8f63e6ff4 251 EMG0filtArray[i] = EMG0filtArray[i-1]; //Every value moves one up
EvaKrolis 13:4ba8f63e6ff4 252 }
EvaKrolis 13:4ba8f63e6ff4 253
EvaKrolis 13:4ba8f63e6ff4 254 Sum0 = 0;
EvaKrolis 13:4ba8f63e6ff4 255 EMG0 = EMG0In; //Save EMG input in float
EvaKrolis 13:4ba8f63e6ff4 256 EMG0filt = filter0.step(EMG0); //Filter the signal
EvaKrolis 13:4ba8f63e6ff4 257 EMG0filt = abs(EMG0filt); //Take the absolute value
EvaKrolis 13:4ba8f63e6ff4 258 EMG0filtArray[0] = EMG0filt; //Save the filtered signal on the first place in the array
EvaKrolis 13:4ba8f63e6ff4 259
EvaKrolis 13:4ba8f63e6ff4 260 for(int i = 0 ; i < Parts ; i++){ //Moving Average filter
EvaKrolis 13:4ba8f63e6ff4 261 Sum0 += EMG0filtArray[i]; //Sum the new value and the previous 49
EvaKrolis 13:4ba8f63e6ff4 262 }
EvaKrolis 13:4ba8f63e6ff4 263 EMG0Calibrate[ReadCal0] = (float)Sum0/Parts; //Divide the sum by 50
EvaKrolis 13:4ba8f63e6ff4 264
EvaKrolis 13:4ba8f63e6ff4 265 ReadCal0++;
EvaKrolis 13:4ba8f63e6ff4 266 }
EvaKrolis 13:4ba8f63e6ff4 267
EvaKrolis 13:4ba8f63e6ff4 268 //Function to make an array during the calibration
EvaKrolis 13:4ba8f63e6ff4 269 void CalibrateEMG1(){
EvaKrolis 13:4ba8f63e6ff4 270 for(int i = Parts ; i > 0 ; i--){ //Make a first in, first out array
EvaKrolis 13:4ba8f63e6ff4 271 EMG1filtArray[i] = EMG1filtArray[i-1]; //Every value moves one up
EvaKrolis 13:4ba8f63e6ff4 272 }
EvaKrolis 13:4ba8f63e6ff4 273
EvaKrolis 13:4ba8f63e6ff4 274 Sum1 = 0;
EvaKrolis 13:4ba8f63e6ff4 275 EMG1 = EMG1In; //Save EMG input in float
EvaKrolis 13:4ba8f63e6ff4 276 EMG1filt = filter1.step(EMG1); //Filter the signal
EvaKrolis 13:4ba8f63e6ff4 277 EMG1filt = abs(EMG1filt); //Take the absolute value
EvaKrolis 13:4ba8f63e6ff4 278 EMG1filtArray[0] = EMG1filt; //Save the filtered signal on the first place in the array
EvaKrolis 13:4ba8f63e6ff4 279
EvaKrolis 13:4ba8f63e6ff4 280 for(int i = 0 ; i < Parts ; i++){ //Moving Average filter
EvaKrolis 13:4ba8f63e6ff4 281 Sum1 += EMG1filtArray[i]; //Sum the new value and the previous 49
EvaKrolis 13:4ba8f63e6ff4 282 }
EvaKrolis 13:4ba8f63e6ff4 283 EMG1Calibrate[ReadCal1] = (float)Sum1/Parts; //Divide the sum by 50
EvaKrolis 13:4ba8f63e6ff4 284
EvaKrolis 13:4ba8f63e6ff4 285 ReadCal1++;
EvaKrolis 13:4ba8f63e6ff4 286 }
EvaKrolis 13:4ba8f63e6ff4 287
EvaKrolis 13:4ba8f63e6ff4 288 //Function to find the max value during the calibration
EvaKrolis 13:4ba8f63e6ff4 289 void FindMax0(){
EvaKrolis 13:4ba8f63e6ff4 290 MaxValue0 = *max_element(EMG0Calibrate+500,EMG0Calibrate+Length); //Find max value, but discard the first 100 values
EvaKrolis 13:4ba8f63e6ff4 291 Threshold0 = 0.30f*MaxValue0; //The threshold is a percentage of the max value
EvaKrolis 13:4ba8f63e6ff4 292 pc.printf("The calibration value of the first EMG is %f.\n\r The threshold is %f. \n\r",MaxValue0,Threshold0); //Print the max value and the threshold
EvaKrolis 13:4ba8f63e6ff4 293 FindMax0_timer.detach(); //Detach the timer, so you only use this once
EvaKrolis 13:4ba8f63e6ff4 294 }
EvaKrolis 13:4ba8f63e6ff4 295
EvaKrolis 13:4ba8f63e6ff4 296 //Function to find the max value during the calibration
EvaKrolis 13:4ba8f63e6ff4 297 void FindMax1(){
EvaKrolis 13:4ba8f63e6ff4 298 MaxValue1 = *max_element(EMG1Calibrate+500,EMG1Calibrate+Length); //Find max value, but discard the first 100 values
EvaKrolis 13:4ba8f63e6ff4 299 Threshold1 = 0.30f*MaxValue1; //The threshold is a percentage of the max value
EvaKrolis 13:4ba8f63e6ff4 300 pc.printf("The calibration value of the second EMG is %f.\n\r The threshold is %f. \n\r",MaxValue1,Threshold1); //Print the Max value and the threshold
EvaKrolis 13:4ba8f63e6ff4 301 FindMax1_timer.detach(); //Detach the timer, so you only use this once
EvaKrolis 13:4ba8f63e6ff4 302 }
tverouden 4:5ce2c8864908 303
tverouden 12:323ac4e27a0d 304 // ========================= KINEMATICS FUNCTIONS ============================
tverouden 12:323ac4e27a0d 305
EvaKrolis 14:2c0bf576a0e7 306 // Function to calculate the inverse kinematics
EvaKrolis 14:2c0bf576a0e7 307 void inverse(double prex, double prey)
EvaKrolis 14:2c0bf576a0e7 308 {
EvaKrolis 14:2c0bf576a0e7 309 /*
EvaKrolis 14:2c0bf576a0e7 310 qn = qn-1 + (jacobian^-1)*dPref/dt *deltaT
EvaKrolis 14:2c0bf576a0e7 311 ofwel
EvaKrolis 14:2c0bf576a0e7 312 thetai+1 = thetai +(jacobian)^-1*vector(deltaX, DeltaY)
EvaKrolis 14:2c0bf576a0e7 313 waar Pref = emg signaal
EvaKrolis 14:2c0bf576a0e7 314 */ //achtergrondinfo hierboven...
EvaKrolis 14:2c0bf576a0e7 315 //
EvaKrolis 14:2c0bf576a0e7 316
EvaKrolis 14:2c0bf576a0e7 317 theta1 += (prefx*jacobiana+jacobianb*prey)*deltat; //theta 1 is zichzelf plus wat hier staat (is kinematics)
EvaKrolis 14:2c0bf576a0e7 318 theta4 += (prefx*jacobianc+jacobiand*prey)*deltat;//" "
EvaKrolis 14:2c0bf576a0e7 319 //Hier worden xend en yend doorgerekend, die formules kan je overslaan
EvaKrolis 14:2c0bf576a0e7 320 xendsum = lb + xbase +ll*(cos(theta1) - cos(theta4));
EvaKrolis 14:2c0bf576a0e7 321 xendsqrt1 = 2*sqrt(-xbase*xbase/4 + lu*lu + ll*(xbase*(cos(theta1)+cos(theta4))/2) -ll*(1+ cos(theta1+theta4)))*(-sin(theta1)+sin(theta4));
EvaKrolis 14:2c0bf576a0e7 322 xendsqrt2 = sqrt(pow((-xbase/ll+cos(theta1)+cos(theta4)),2)+ pow(sin(theta1) - sin(theta4),2));
EvaKrolis 14:2c0bf576a0e7 323 xend = (xendsum + xendsqrt1/xendsqrt2)/2;
EvaKrolis 14:2c0bf576a0e7 324 //hieronder rekenen we yendeffector door;
EvaKrolis 14:2c0bf576a0e7 325 yendsum = -le + ll/2*(sin(theta1)+sin(theta4));
EvaKrolis 14:2c0bf576a0e7 326 yendsqrt1 = (-xbase/ll + cos(theta1)+cos(theta4))*sqrt(-xbase*xbase/4 + lu*lu + ll/2*(xbase*(cos(theta1)+cos(theta4))- ll*(1+cos(theta1+theta4))));
EvaKrolis 14:2c0bf576a0e7 327 yendsqrt2 = sqrt(pow((-xbase/ll + cos(theta1)+ cos(theta4)),2)+ pow((sin(theta1)-sin(theta4)),2));
EvaKrolis 14:2c0bf576a0e7 328 yend = (yendsum + yendsqrt1/yendsqrt2);
EvaKrolis 14:2c0bf576a0e7 329
EvaKrolis 14:2c0bf576a0e7 330 }
EvaKrolis 14:2c0bf576a0e7 331
EvaKrolis 14:2c0bf576a0e7 332 // Function for the Jacobian
EvaKrolis 14:2c0bf576a0e7 333 void kinematics()
EvaKrolis 14:2c0bf576a0e7 334 {
EvaKrolis 14:2c0bf576a0e7 335
EvaKrolis 14:2c0bf576a0e7 336 jacobiana = (500*(-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 337 sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. +
EvaKrolis 14:2c0bf576a0e7 338 ((-xbase + ll*(cos(theta1) + cos(0.002 + theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.002 + theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 339 (ll*sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) + (ll*(sin(theta1) + sin(0.002 + theta4)))/2.))/
EvaKrolis 14:2c0bf576a0e7 340 (-125000*(-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 341 sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) +
EvaKrolis 14:2c0bf576a0e7 342 ((-xbase + ll*(cos(0.002 + theta1) + cos(theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.002 + theta1) + cos(theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 343 (ll*sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. + (ll*(sin(0.002 + theta1) + sin(theta4)))/2.)*
EvaKrolis 14:2c0bf576a0e7 344 (ll*(-cos(theta1) + cos(theta4)) + ll*(cos(theta1) - cos(0.002 + theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
EvaKrolis 14:2c0bf576a0e7 345 (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
EvaKrolis 14:2c0bf576a0e7 346 (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(0.002 + theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(theta1) + sin(0.002 + theta4)))/
EvaKrolis 14:2c0bf576a0e7 347 sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) +
EvaKrolis 14:2c0bf576a0e7 348 125000*(ll*(cos(0.002 + theta1) - cos(theta4)) + ll*(-cos(theta1) + cos(theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
EvaKrolis 14:2c0bf576a0e7 349 (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
EvaKrolis 14:2c0bf576a0e7 350 (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(0.002 + theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(0.002 + theta1) + sin(theta4)))/
EvaKrolis 14:2c0bf576a0e7 351 sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2)))*
EvaKrolis 14:2c0bf576a0e7 352 (-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 353 sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. +
EvaKrolis 14:2c0bf576a0e7 354 ((-xbase + ll*(cos(theta1) + cos(0.002 + theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.002 + theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 355 (ll*sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) + (ll*(sin(theta1) + sin(0.002 + theta4)))/2.));
EvaKrolis 14:2c0bf576a0e7 356
EvaKrolis 14:2c0bf576a0e7 357 jacobianb = (-250*(ll*(-cos(theta1) + cos(theta4)) + ll*(cos(theta1) - cos(0.002 + theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
EvaKrolis 14:2c0bf576a0e7 358 (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
EvaKrolis 14:2c0bf576a0e7 359 (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(0.002 + theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(theta1) + sin(0.002 + theta4)))/
EvaKrolis 14:2c0bf576a0e7 360 sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))))/
EvaKrolis 14:2c0bf576a0e7 361 (-125000*(-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 362 sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) +
EvaKrolis 14:2c0bf576a0e7 363 ((-xbase + ll*(cos(0.002 + theta1) + cos(theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.002 + theta1) + cos(theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 364 (ll*sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. + (ll*(sin(0.002 + theta1) + sin(theta4)))/2.)*
EvaKrolis 14:2c0bf576a0e7 365 (ll*(-cos(theta1) + cos(theta4)) + ll*(cos(theta1) - cos(0.002 + theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
EvaKrolis 14:2c0bf576a0e7 366 (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
EvaKrolis 14:2c0bf576a0e7 367 (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(0.002 + theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(theta1) + sin(0.002 + theta4)))/
EvaKrolis 14:2c0bf576a0e7 368 sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) +
EvaKrolis 14:2c0bf576a0e7 369 125000*(ll*(cos(0.002 + theta1) - cos(theta4)) + ll*(-cos(theta1) + cos(theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
EvaKrolis 14:2c0bf576a0e7 370 (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
EvaKrolis 14:2c0bf576a0e7 371 (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(0.002 + theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(0.002 + theta1) + sin(theta4)))/
EvaKrolis 14:2c0bf576a0e7 372 sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2)))*
EvaKrolis 14:2c0bf576a0e7 373 (-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 374 sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. +
EvaKrolis 14:2c0bf576a0e7 375 ((-xbase + ll*(cos(theta1) + cos(0.002 + theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.002 + theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 376 (ll*sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) + (ll*(sin(theta1) + sin(0.002 + theta4)))/2.));
EvaKrolis 14:2c0bf576a0e7 377
EvaKrolis 14:2c0bf576a0e7 378 jacobianc = (-500*(-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 379 sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) +
EvaKrolis 14:2c0bf576a0e7 380 ((-xbase + ll*(cos(0.002 + theta1) + cos(theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.002 + theta1) + cos(theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 381 (ll*sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. + (ll*(sin(0.002 + theta1) + sin(theta4)))/2.))/
EvaKrolis 14:2c0bf576a0e7 382 (-125000*(-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 383 sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) +
EvaKrolis 14:2c0bf576a0e7 384 ((-xbase + ll*(cos(0.002 + theta1) + cos(theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.002 + theta1) + cos(theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 385 (ll*sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. + (ll*(sin(0.002 + theta1) + sin(theta4)))/2.)*
EvaKrolis 14:2c0bf576a0e7 386 (ll*(-cos(theta1) + cos(theta4)) + ll*(cos(theta1) - cos(0.002 + theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
EvaKrolis 14:2c0bf576a0e7 387 (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
EvaKrolis 14:2c0bf576a0e7 388 (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(0.002 + theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(theta1) + sin(0.002 + theta4)))/
EvaKrolis 14:2c0bf576a0e7 389 sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) +
EvaKrolis 14:2c0bf576a0e7 390 125000*(ll*(cos(0.002 + theta1) - cos(theta4)) + ll*(-cos(theta1) + cos(theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
EvaKrolis 14:2c0bf576a0e7 391 (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
EvaKrolis 14:2c0bf576a0e7 392 (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(0.002 + theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(0.002 + theta1) + sin(theta4)))/
EvaKrolis 14:2c0bf576a0e7 393 sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2)))*
EvaKrolis 14:2c0bf576a0e7 394 (-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 395 sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. +
EvaKrolis 14:2c0bf576a0e7 396 ((-xbase + ll*(cos(theta1) + cos(0.002 + theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.002 + theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 397 (ll*sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) + (ll*(sin(theta1) + sin(0.002 + theta4)))/2.));
EvaKrolis 14:2c0bf576a0e7 398
EvaKrolis 14:2c0bf576a0e7 399 jacobiand = (250*(ll*(cos(0.002 + theta1) - cos(theta4)) + ll*(-cos(theta1) + cos(theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
EvaKrolis 14:2c0bf576a0e7 400 (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
EvaKrolis 14:2c0bf576a0e7 401 (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(0.002 + theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(0.002 + theta1) + sin(theta4)))/
EvaKrolis 14:2c0bf576a0e7 402 sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2))))/
EvaKrolis 14:2c0bf576a0e7 403 (-125000*(-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 404 sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) +
EvaKrolis 14:2c0bf576a0e7 405 ((-xbase + ll*(cos(0.002 + theta1) + cos(theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.002 + theta1) + cos(theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 406 (ll*sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. + (ll*(sin(0.002 + theta1) + sin(theta4)))/2.)*
EvaKrolis 14:2c0bf576a0e7 407 (ll*(-cos(theta1) + cos(theta4)) + ll*(cos(theta1) - cos(0.002 + theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
EvaKrolis 14:2c0bf576a0e7 408 (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
EvaKrolis 14:2c0bf576a0e7 409 (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(0.002 + theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(theta1) + sin(0.002 + theta4)))/
EvaKrolis 14:2c0bf576a0e7 410 sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) +
EvaKrolis 14:2c0bf576a0e7 411 125000*(ll*(cos(0.002 + theta1) - cos(theta4)) + ll*(-cos(theta1) + cos(theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
EvaKrolis 14:2c0bf576a0e7 412 (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
EvaKrolis 14:2c0bf576a0e7 413 (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(0.002 + theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(0.002 + theta1) + sin(theta4)))/
EvaKrolis 14:2c0bf576a0e7 414 sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2)))*
EvaKrolis 14:2c0bf576a0e7 415 (-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 416 sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. +
EvaKrolis 14:2c0bf576a0e7 417 ((-xbase + ll*(cos(theta1) + cos(0.002 + theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.002 + theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
EvaKrolis 14:2c0bf576a0e7 418 (ll*sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) + (ll*(sin(theta1) + sin(0.002 + theta4)))/2.));
EvaKrolis 14:2c0bf576a0e7 419
EvaKrolis 14:2c0bf576a0e7 420 prefx = 1*xMove; //If the EMG is true, the x will move with 1
EvaKrolis 14:2c0bf576a0e7 421 prefy = 1*yMove; //If the EMG is true, the y will move with 1
EvaKrolis 14:2c0bf576a0e7 422 inverse(prefx, prefy);
EvaKrolis 14:2c0bf576a0e7 423 }
tverouden 12:323ac4e27a0d 424
efvanmarrewijk 25:ac139331fe51 425 // ============================ MOTOR FUNCTIONS ===============================
efvanmarrewijk 25:ac139331fe51 426 // angleDesired now defined as angle of potmeter and not the angle as output from the kinematics
efvanmarrewijk 25:ac139331fe51 427 // So, the angleDesired needs to be defined again and the part in which the potmeter value is calculated needs to be commented
efvanmarrewijk 25:ac139331fe51 428
efvanmarrewijk 25:ac139331fe51 429 // ------------------------ General motor functions ----------------------------
efvanmarrewijk 25:ac139331fe51 430 int countsInputL() // Gets the counts from encoder 1
efvanmarrewijk 25:ac139331fe51 431 { int countsL;
efvanmarrewijk 25:ac139331fe51 432 countsL = encoderL.getPulses();
efvanmarrewijk 25:ac139331fe51 433 return countsL;
efvanmarrewijk 25:ac139331fe51 434 }
efvanmarrewijk 25:ac139331fe51 435 int countsInputR() // Gets the counts from encoder 2
efvanmarrewijk 25:ac139331fe51 436 { int countsR;
efvanmarrewijk 25:ac139331fe51 437 countsR = encoderR.getPulses();
efvanmarrewijk 25:ac139331fe51 438 return countsR;
efvanmarrewijk 25:ac139331fe51 439 }
efvanmarrewijk 25:ac139331fe51 440 int countsInputF() // Gets the counts from encoder 3
efvanmarrewijk 25:ac139331fe51 441 { int countsF;
efvanmarrewijk 25:ac139331fe51 442 countsF = encoderF.getPulses();
efvanmarrewijk 25:ac139331fe51 443 return countsF;
efvanmarrewijk 25:ac139331fe51 444 }
efvanmarrewijk 25:ac139331fe51 445
efvanmarrewijk 25:ac139331fe51 446 float angleCurrent(float counts) // Calculates the current angle of the motor (between -2*PI to 2*PI) based on the counts from the encoder
efvanmarrewijk 25:ac139331fe51 447 { float angle = ((float)counts*2.0f*PI)/countsRad;
efvanmarrewijk 25:ac139331fe51 448 while (angle > 2.0f*PI)
efvanmarrewijk 25:ac139331fe51 449 { angle = angle-2.0f*PI;
efvanmarrewijk 25:ac139331fe51 450 }
efvanmarrewijk 25:ac139331fe51 451 while (angle < -2.0f*PI)
efvanmarrewijk 25:ac139331fe51 452 { angle = angle+2.0f*PI;
efvanmarrewijk 25:ac139331fe51 453 }
efvanmarrewijk 25:ac139331fe51 454 return angle;
efvanmarrewijk 25:ac139331fe51 455 }
efvanmarrewijk 25:ac139331fe51 456
efvanmarrewijk 25:ac139331fe51 457 float errorCalc(float angleReference,float angleCurrent) // Calculates the error of the system, based on the current angle and the reference value
efvanmarrewijk 25:ac139331fe51 458 { float error = angleReference - angleCurrent;
efvanmarrewijk 25:ac139331fe51 459 return error;
efvanmarrewijk 25:ac139331fe51 460 }
efvanmarrewijk 25:ac139331fe51 461
efvanmarrewijk 25:ac139331fe51 462 // ------------------------- MOTOR FUNCTIONS FOR MOTOR LEFT --------------------
efvanmarrewijk 25:ac139331fe51 463 float PIDControllerL(float angleReference,float angleCurrent) // PID controller for the motors, based on the reference value and the current angle of the motor
efvanmarrewijk 25:ac139331fe51 464 { float Kp = 19.24f;
efvanmarrewijk 25:ac139331fe51 465 float Ki = 1.02f;
efvanmarrewijk 25:ac139331fe51 466 float Kd = 0.827f;
efvanmarrewijk 25:ac139331fe51 467 float error = errorCalc(angleReference,angleCurrent);
efvanmarrewijk 25:ac139331fe51 468 static float errorIntegralL = 0.0;
efvanmarrewijk 25:ac139331fe51 469 static float errorPreviousL = error; // initialization with this value only done once!
efvanmarrewijk 25:ac139331fe51 470 static BiQuad PIDFilterL(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
efvanmarrewijk 25:ac139331fe51 471 // Proportional part:
efvanmarrewijk 25:ac139331fe51 472 float u_k = Kp * error;
efvanmarrewijk 25:ac139331fe51 473 // Integral part
efvanmarrewijk 25:ac139331fe51 474 errorIntegralL = errorIntegralL + error * dt;
efvanmarrewijk 25:ac139331fe51 475 float u_i = Ki * errorIntegralL;
efvanmarrewijk 25:ac139331fe51 476 // Derivative part
efvanmarrewijk 25:ac139331fe51 477 float errorDerivative = (error - errorPreviousL)/dt;
efvanmarrewijk 25:ac139331fe51 478 float errorDerivativeFiltered = PIDFilterL.step(errorDerivative);
efvanmarrewijk 25:ac139331fe51 479 float u_d = Kd * errorDerivativeFiltered;
efvanmarrewijk 25:ac139331fe51 480 errorPreviousL = error;
efvanmarrewijk 25:ac139331fe51 481 // Sum all parts and return it
efvanmarrewijk 25:ac139331fe51 482 return u_k + u_i + u_d;
efvanmarrewijk 25:ac139331fe51 483 }
efvanmarrewijk 25:ac139331fe51 484
efvanmarrewijk 25:ac139331fe51 485 float angleDesiredL() // Sets the desired angle for the controller dependent on the scaled angle of potmeter 1
efvanmarrewijk 25:ac139331fe51 486 { float angle = (pot1*2.0f*PI)-PI;
efvanmarrewijk 25:ac139331fe51 487 return angle;
efvanmarrewijk 25:ac139331fe51 488 }
efvanmarrewijk 25:ac139331fe51 489
efvanmarrewijk 25:ac139331fe51 490 float countsCalibrCalcL(int countsOffsetL)
efvanmarrewijk 25:ac139331fe51 491 {
efvanmarrewijk 25:ac139331fe51 492 countsCalibratedL = countsL - countsOffsetL + countsCalibration;
efvanmarrewijk 25:ac139331fe51 493 return countsCalibratedL;
efvanmarrewijk 25:ac139331fe51 494 }
EvaKrolis 13:4ba8f63e6ff4 495
efvanmarrewijk 25:ac139331fe51 496 void calibrationL() // Partially the same as motorTurnL, only with potmeter input
efvanmarrewijk 25:ac139331fe51 497 // How it works: manually turn motor using potmeters until the robot arm touches the bookholder.
efvanmarrewijk 25:ac139331fe51 498 // This program sets the counts from the motor to the reference counts (an angle of PI/4.0)
efvanmarrewijk 25:ac139331fe51 499 // Do this for every motor and after calibrated all motors, press a button
efvanmarrewijk 25:ac139331fe51 500 { float angleReferenceL = angleDesiredL(); // insert kinematics output here instead of angleDesiredL()
efvanmarrewijk 25:ac139331fe51 501 angleReferenceL = -angleReferenceL; // different minus sign per motor
efvanmarrewijk 25:ac139331fe51 502 angleCurrentL = angleCurrent(countsL); // different minus sign per motor
efvanmarrewijk 25:ac139331fe51 503 errorL = errorCalc(angleReferenceL,angleCurrentL); // same for every motor
efvanmarrewijk 25:ac139331fe51 504
efvanmarrewijk 25:ac139331fe51 505 if (fabs(errorL) >= 0.01f)
efvanmarrewijk 25:ac139331fe51 506 { float PIDControlL = PIDControllerL(angleReferenceL,angleCurrentL); // same for every motor
efvanmarrewijk 25:ac139331fe51 507 pin6 = fabs(PIDControlL); // different pins for every motor
efvanmarrewijk 25:ac139331fe51 508 pin7 = PIDControlL > 0.0f; // different pins for every motor
efvanmarrewijk 25:ac139331fe51 509 }
efvanmarrewijk 25:ac139331fe51 510 else if (fabs(errorL) < 0.01f)
efvanmarrewijk 25:ac139331fe51 511 { int countsOffsetL = countsL;
efvanmarrewijk 25:ac139331fe51 512 countsCalibrCalcL(countsOffsetL);
efvanmarrewijk 25:ac139331fe51 513 pin6 = 0.0f;
efvanmarrewijk 25:ac139331fe51 514 // BUTTON PRESS: TO NEXT STATE
efvanmarrewijk 25:ac139331fe51 515 }
efvanmarrewijk 25:ac139331fe51 516 }
efvanmarrewijk 25:ac139331fe51 517
efvanmarrewijk 25:ac139331fe51 518 void motorTurnL() // main function for movement of motor 1, all above functions with an extra tab are called
efvanmarrewijk 25:ac139331fe51 519 {
efvanmarrewijk 25:ac139331fe51 520 float angleReferenceL = angleDesiredL(); // insert kinematics output here instead of angleDesiredL()
efvanmarrewijk 25:ac139331fe51 521 angleReferenceL = -angleReferenceL; // different minus sign per motor
efvanmarrewijk 25:ac139331fe51 522 int countsL = countsInputL(); // different encoder pins per motor
efvanmarrewijk 25:ac139331fe51 523 angleCurrentL = angleCurrent(countsCalibratedL); // different minus sign per motor
efvanmarrewijk 25:ac139331fe51 524 errorCalibratedL = errorCalc(angleReferenceL,angleCurrentL); // same for every motor
efvanmarrewijk 25:ac139331fe51 525
efvanmarrewijk 25:ac139331fe51 526 float PIDControlL = PIDControllerL(angleReferenceL,angleCurrentL); // same for every motor
efvanmarrewijk 25:ac139331fe51 527 pin6 = fabs(PIDControlL); // different pins for every motor
efvanmarrewijk 25:ac139331fe51 528 pin7 = PIDControlL > 0.0f; // different pins for every motor
efvanmarrewijk 25:ac139331fe51 529 }
efvanmarrewijk 25:ac139331fe51 530
efvanmarrewijk 25:ac139331fe51 531 // ------------------------ MOTOR FUNCTIONS FOR MOTOR RIGHT --------------------
efvanmarrewijk 25:ac139331fe51 532 float PIDControllerR(float angleReference,float angleCurrent) // PID controller for the motors, based on the reference value and the current angle of the motor
efvanmarrewijk 25:ac139331fe51 533 { float Kp = 19.24f;
efvanmarrewijk 25:ac139331fe51 534 float Ki = 1.02f;
efvanmarrewijk 25:ac139331fe51 535 float Kd = 0.827f;
efvanmarrewijk 25:ac139331fe51 536 float error = errorCalc(angleReference,angleCurrent);
efvanmarrewijk 25:ac139331fe51 537 static float errorIntegralR = 0.0;
efvanmarrewijk 25:ac139331fe51 538 static float errorPreviousR = error; // initialization with this value only done once!
efvanmarrewijk 25:ac139331fe51 539 static BiQuad PIDFilterR(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
efvanmarrewijk 25:ac139331fe51 540 // Proportional part:
efvanmarrewijk 25:ac139331fe51 541 float u_k = Kp * error;
efvanmarrewijk 25:ac139331fe51 542 // Integral part
efvanmarrewijk 25:ac139331fe51 543 errorIntegralR = errorIntegralR + error * dt;
efvanmarrewijk 25:ac139331fe51 544 float u_i = Ki * errorIntegralR;
efvanmarrewijk 25:ac139331fe51 545 // Derivative part
efvanmarrewijk 25:ac139331fe51 546 float errorDerivative = (error - errorPreviousR)/dt;
efvanmarrewijk 25:ac139331fe51 547 float errorDerivativeFiltered = PIDFilterR.step(errorDerivative);
efvanmarrewijk 25:ac139331fe51 548 float u_d = Kd * errorDerivativeFiltered;
efvanmarrewijk 25:ac139331fe51 549 errorPreviousR = error;
efvanmarrewijk 25:ac139331fe51 550 // Sum all parts and return it
efvanmarrewijk 25:ac139331fe51 551 return u_k + u_i + u_d;
efvanmarrewijk 25:ac139331fe51 552 }
efvanmarrewijk 25:ac139331fe51 553
efvanmarrewijk 25:ac139331fe51 554 float angleDesiredR() // Sets the desired angle for the controller dependent on the scaled angle of potmeter 1
efvanmarrewijk 25:ac139331fe51 555 { float angle = (pot1*2.0f*PI)-PI;
efvanmarrewijk 25:ac139331fe51 556 return angle;
efvanmarrewijk 25:ac139331fe51 557 }
efvanmarrewijk 25:ac139331fe51 558
efvanmarrewijk 25:ac139331fe51 559 float countsCalibrCalcR(int countsOffsetR)
efvanmarrewijk 25:ac139331fe51 560 {
efvanmarrewijk 25:ac139331fe51 561 countsCalibratedR = countsR - countsOffsetR + countsCalibration;
efvanmarrewijk 25:ac139331fe51 562 return countsCalibratedR;
efvanmarrewijk 25:ac139331fe51 563 }
efvanmarrewijk 25:ac139331fe51 564
efvanmarrewijk 25:ac139331fe51 565 void calibrationR() // Partially the same as motorTurnR, only with potmeter input
efvanmarrewijk 25:ac139331fe51 566 // How it works: manually turn motor using potmeters until the robot arm touches the bookholder.
efvanmarrewijk 25:ac139331fe51 567 // This program sets the counts from the motor to the reference counts (an angle of PI/4.0)
efvanmarrewijk 25:ac139331fe51 568 // Do this for every motor and after calibrated all motors, press a button
efvanmarrewijk 25:ac139331fe51 569 { float angleReferenceR = angleDesiredR(); // insert kinematics output here instead of angleDesiredR()
efvanmarrewijk 25:ac139331fe51 570 angleReferenceR = -angleReferenceR; // different minus sign per motor
efvanmarrewijk 25:ac139331fe51 571 angleCurrentR = angleCurrent(countsR); // different minus sign per motor
efvanmarrewijk 25:ac139331fe51 572 errorR = errorCalc(angleReferenceR,angleCurrentR); // same for every motor
efvanmarrewijk 25:ac139331fe51 573
efvanmarrewijk 25:ac139331fe51 574 if (fabs(errorR) >= 0.01f)
efvanmarrewijk 25:ac139331fe51 575 { float PIDControlR = PIDControllerR(angleReferenceR,angleCurrentR); // same for every motor
efvanmarrewijk 25:ac139331fe51 576 pin6 = fabs(PIDControlR); // different pins for every motor
efvanmarrewijk 25:ac139331fe51 577 pin7 = PIDControlR > 0.0f; // different pins for every motor
efvanmarrewijk 25:ac139331fe51 578 }
efvanmarrewijk 25:ac139331fe51 579 else if (fabs(errorR) < 0.01f)
efvanmarrewijk 25:ac139331fe51 580 { int countsOffsetR = countsR;
efvanmarrewijk 25:ac139331fe51 581 countsCalibrCalcR(countsOffsetR);
efvanmarrewijk 25:ac139331fe51 582 pin6 = 0.0f;
efvanmarrewijk 25:ac139331fe51 583 // BUTTON PRESS: NAAR VOLGENDE STATE
efvanmarrewijk 25:ac139331fe51 584 }
efvanmarrewijk 25:ac139331fe51 585 }
efvanmarrewijk 25:ac139331fe51 586
efvanmarrewijk 25:ac139331fe51 587 void motorTurnR() // main function for movement of motor 1, all above functions with an extra tab are called
efvanmarrewijk 25:ac139331fe51 588 {
efvanmarrewijk 25:ac139331fe51 589 float angleReferenceR = angleDesiredR(); // insert kinematics output here instead of angleDesiredR()
efvanmarrewijk 25:ac139331fe51 590 angleReferenceR = -angleReferenceR; // different minus sign per motor
efvanmarrewijk 25:ac139331fe51 591 int countsR = countsInputR(); // different encoder pins per motor
efvanmarrewijk 25:ac139331fe51 592 angleCurrentR = angleCurrent(countsCalibratedR); // different minus sign per motor
efvanmarrewijk 25:ac139331fe51 593 errorCalibratedR = errorCalc(angleReferenceR,angleCurrentR); // same for every motor
efvanmarrewijk 25:ac139331fe51 594
efvanmarrewijk 25:ac139331fe51 595 float PIDControlR = PIDControllerR(angleReferenceR,angleCurrentR); // same for every motor
efvanmarrewijk 25:ac139331fe51 596 pin6 = fabs(PIDControlR); // different pins for every motor
efvanmarrewijk 25:ac139331fe51 597 pin7 = PIDControlR > 0.0f; // different pins for every motor
efvanmarrewijk 25:ac139331fe51 598 }
efvanmarrewijk 25:ac139331fe51 599
efvanmarrewijk 25:ac139331fe51 600 // ------------------------- MOTOR FUNCTIONS FOR MOTOR FLIP --------------------
efvanmarrewijk 35:3c937770aa41 601 float PIDControllerF(float angleReference,float angleCurrent) // PID controller for the motors, based on the reference value and the current angle of the motor
efvanmarrewijk 35:3c937770aa41 602 { float Kp = 19.24f;
efvanmarrewijk 35:3c937770aa41 603 float Ki = 1.02f;
efvanmarrewijk 35:3c937770aa41 604 float Kd = 0.827f;
efvanmarrewijk 35:3c937770aa41 605 float error = errorCalc(angleReference,angleCurrent);
efvanmarrewijk 35:3c937770aa41 606 static float errorIntegralF = 0.0;
efvanmarrewijk 35:3c937770aa41 607 static float errorPreviousF = error; // initialization with this value only done once!
efvanmarrewijk 35:3c937770aa41 608 static BiQuad PIDFilterF(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
efvanmarrewijk 35:3c937770aa41 609 // Proportional part:
efvanmarrewijk 35:3c937770aa41 610 float u_k = Kp * error;
efvanmarrewijk 35:3c937770aa41 611 // Integral part
efvanmarrewijk 35:3c937770aa41 612 errorIntegralF = errorIntegralF + error * dt;
efvanmarrewijk 35:3c937770aa41 613 float u_i = Ki * errorIntegralF;
efvanmarrewijk 35:3c937770aa41 614 // Derivative part
efvanmarrewijk 35:3c937770aa41 615 float errorDerivative = (error - errorPreviousF)/dt;
efvanmarrewijk 35:3c937770aa41 616 float errorDerivativeFiltered = PIDFilterF.step(errorDerivative);
efvanmarrewijk 35:3c937770aa41 617 float u_d = Kd * errorDerivativeFiltered;
efvanmarrewijk 35:3c937770aa41 618 errorPreviousF = error;
efvanmarrewijk 35:3c937770aa41 619 // Sum all parts and return it
efvanmarrewijk 35:3c937770aa41 620 return u_k + u_i + u_d;
efvanmarrewijk 35:3c937770aa41 621 }
efvanmarrewijk 35:3c937770aa41 622
efvanmarrewijk 35:3c937770aa41 623 float angleDesiredF() // Sets the desired angle for the controller dependent on the scaled angle of potmeter 1
efvanmarrewijk 35:3c937770aa41 624 { float angle = (pot1*2.0f*PI)-PI;
efvanmarrewijk 35:3c937770aa41 625 return angle;
efvanmarrewijk 35:3c937770aa41 626 }
efvanmarrewijk 35:3c937770aa41 627
efvanmarrewijk 35:3c937770aa41 628 float countsCalibrCalcF(int countsOffsetF)
efvanmarrewijk 35:3c937770aa41 629 {
efvanmarrewijk 35:3c937770aa41 630 countsCalibratedF = countsF - countsOffsetF + countsCalibration;
efvanmarrewijk 35:3c937770aa41 631 return countsCalibratedF;
efvanmarrewijk 35:3c937770aa41 632 }
efvanmarrewijk 35:3c937770aa41 633
efvanmarrewijk 35:3c937770aa41 634 void calibrationF() // Partially the same as motorTurnF, only with potmeter input
efvanmarrewijk 35:3c937770aa41 635 // How it works: manually turn motor using potmeters until the robot arm touches the bookholder.
efvanmarrewijk 35:3c937770aa41 636 // This program sets the counts from the motor to the reference counts (an angle of PI/4.0)
efvanmarrewijk 35:3c937770aa41 637 // Do this for every motor and after calibrated all motors, press a button
efvanmarrewijk 35:3c937770aa41 638 { float angleReferenceF = angleDesiredF(); // insert kinematics output here instead of angleDesiredF()
efvanmarrewijk 35:3c937770aa41 639 angleReferenceF = -angleReferenceF; // different minus sign per motor
efvanmarrewijk 35:3c937770aa41 640 angleCurrentF = angleCurrent(countsF); // different minus sign per motor
efvanmarrewijk 35:3c937770aa41 641 errorF = errorCalc(angleReferenceF,angleCurrentF); // same for every motor
efvanmarrewijk 35:3c937770aa41 642
efvanmarrewijk 35:3c937770aa41 643 if (fabs(errorF) >= 0.01f)
efvanmarrewijk 35:3c937770aa41 644 { float PIDControlF = PIDControllerF(angleReferenceF,angleCurrentF); // same for every motor
efvanmarrewijk 35:3c937770aa41 645 pin6 = fabs(PIDControlF); // different pins for every motor
efvanmarrewijk 35:3c937770aa41 646 pin7 = PIDControlF > 0.0f; // different pins for every motor
efvanmarrewijk 35:3c937770aa41 647 }
efvanmarrewijk 35:3c937770aa41 648 else if (fabs(errorF) < 0.01f)
efvanmarrewijk 35:3c937770aa41 649 { int countsOffsetF = countsF;
efvanmarrewijk 35:3c937770aa41 650 countsCalibrCalcF(countsOffsetF);
efvanmarrewijk 35:3c937770aa41 651 pin6 = 0.0f;
efvanmarrewijk 35:3c937770aa41 652 // BUTTON PRESS: TO NEXT STATE
efvanmarrewijk 35:3c937770aa41 653 }
efvanmarrewijk 35:3c937770aa41 654 }
efvanmarrewijk 35:3c937770aa41 655
efvanmarrewijk 35:3c937770aa41 656 void motorTurnF() // main function for movement of motor 1, all above functions with an extra tab are called
efvanmarrewijk 35:3c937770aa41 657 {
efvanmarrewijk 35:3c937770aa41 658 float angleReferenceF = angleDesiredF(); // insert kinematics output here instead of angleDesiredF()
efvanmarrewijk 35:3c937770aa41 659 angleReferenceF = -angleReferenceF; // different minus sign per motor
efvanmarrewijk 35:3c937770aa41 660 int countsF = countsInputF(); // different encoder pins per motor
efvanmarrewijk 35:3c937770aa41 661 angleCurrentF = angleCurrent(countsCalibratedF); // different minus sign per motor
efvanmarrewijk 35:3c937770aa41 662 errorCalibratedF = errorCalc(angleReferenceF,angleCurrentF); // same for every motor
efvanmarrewijk 35:3c937770aa41 663
efvanmarrewijk 35:3c937770aa41 664 float PIDControlF = PIDControllerF(angleReferenceF,angleCurrentF); // same for every motor
efvanmarrewijk 35:3c937770aa41 665 pin6 = fabs(PIDControlF); // different pins for every motor
efvanmarrewijk 35:3c937770aa41 666 pin7 = PIDControlF > 0.0f; // different pins for every motor
efvanmarrewijk 35:3c937770aa41 667 }
EvaKrolis 13:4ba8f63e6ff4 668
tverouden 2:d70795e4e0bf 669 // ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ STATE MACHINE ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡
tverouden 15:6566c5dedeeb 670 void stateMachine(void)
tverouden 3:9c63fc5f157e 671 {
tverouden 24:0abc564349e1 672 switch (currentState) { // determine which state Odin is in
tverouden 3:9c63fc5f157e 673
tverouden 4:5ce2c8864908 674 // ========================= MOTOR CALIBRATION MODE ==========================
tverouden 4:5ce2c8864908 675 case calibratingMotors:
tverouden 4:5ce2c8864908 676 // ------------------------- initialisation --------------------------
tverouden 4:5ce2c8864908 677 if (changeState) { // when entering the state
tverouden 15:6566c5dedeeb 678 pc.printf("[MODE] calibrating motors...\r\n");
tverouden 5:04b26b2f536a 679 // print current state
tverouden 4:5ce2c8864908 680 changeState = false; // stay in this state
tverouden 4:5ce2c8864908 681
tverouden 4:5ce2c8864908 682 // Actions when entering state
tverouden 15:6566c5dedeeb 683 ledRed = 1; // cyan-green blinking LED
tverouden 15:6566c5dedeeb 684 ledGreen = 0;
tverouden 15:6566c5dedeeb 685 ledBlue = 0;
tverouden 15:6566c5dedeeb 686 blinkTimer.attach(&blinkLedBlue,0.5);
tverouden 4:5ce2c8864908 687
tverouden 4:5ce2c8864908 688 }
tverouden 4:5ce2c8864908 689 // ----------------------------- action ------------------------------
tverouden 5:04b26b2f536a 690 // Actions for each loop iteration
tverouden 5:04b26b2f536a 691 /* */
tverouden 4:5ce2c8864908 692
tverouden 4:5ce2c8864908 693 // --------------------------- transition ----------------------------
tverouden 24:0abc564349e1 694 // Transition condition: when all motor errors smaller than 0.01,
tverouden 24:0abc564349e1 695 // start calibrating EMG
tverouden 23:e282bdb9e9b7 696 if (errorMotorL < 0.01 && errorMotorR < 0.01
tverouden 24:0abc564349e1 697 && errorMotorF < 0.01 && buttonHome == false) {
tverouden 24:0abc564349e1 698
tverouden 23:e282bdb9e9b7 699 // Actions when leaving state
tverouden 23:e282bdb9e9b7 700 blinkTimer.detach();
tverouden 23:e282bdb9e9b7 701
tverouden 23:e282bdb9e9b7 702 currentState = calibratingEMG; // change to state
tverouden 23:e282bdb9e9b7 703 changeState = true; // next loop, switch states
tverouden 23:e282bdb9e9b7 704 }
tverouden 5:04b26b2f536a 705
tverouden 4:5ce2c8864908 706 break; // end case
tverouden 4:5ce2c8864908 707
tverouden 7:ef5966469621 708 // =========================== EMG CALIBRATION MODE ===========================
tverouden 7:ef5966469621 709 case calibratingEMG:
tverouden 4:5ce2c8864908 710 // ------------------------- initialisation --------------------------
tverouden 3:9c63fc5f157e 711 if (changeState) { // when entering the state
tverouden 21:fbd900a55877 712 pc.printf("[MODE] calibrating EMG...\r\n");
tverouden 5:04b26b2f536a 713 // print current state
tverouden 4:5ce2c8864908 714 changeState = false; // stay in this state
tverouden 4:5ce2c8864908 715
tverouden 4:5ce2c8864908 716 // Actions when entering state
tverouden 15:6566c5dedeeb 717 ledRed = 1; // cyan-blue blinking LED
tverouden 15:6566c5dedeeb 718 ledGreen = 0;
tverouden 15:6566c5dedeeb 719 ledBlue = 0;
tverouden 15:6566c5dedeeb 720 blinkTimer.attach(&blinkLedGreen,0.5);
tverouden 15:6566c5dedeeb 721
tverouden 4:5ce2c8864908 722
tverouden 4:5ce2c8864908 723 }
tverouden 4:5ce2c8864908 724 // ----------------------------- action ------------------------------
tverouden 5:04b26b2f536a 725 // Actions for each loop iteration
tverouden 5:04b26b2f536a 726 /* */
tverouden 4:5ce2c8864908 727
tverouden 4:5ce2c8864908 728 // --------------------------- transition ----------------------------
tverouden 24:0abc564349e1 729 // Transition condition: after 20 sec in state
tverouden 24:0abc564349e1 730 if (1) { // CONDITION -> Eva, hoe moet ik de 20 seconden regelen?
tverouden 4:5ce2c8864908 731 // Actions when leaving state
tverouden 15:6566c5dedeeb 732 blinkTimer.detach();
tverouden 5:04b26b2f536a 733
tverouden 4:5ce2c8864908 734 currentState = homing; // change to state
tverouden 4:5ce2c8864908 735 changeState = true; // next loop, switch states
tverouden 5:04b26b2f536a 736 }
tverouden 5:04b26b2f536a 737 break; // end case
tverouden 4:5ce2c8864908 738
tverouden 4:5ce2c8864908 739 // ============================== HOMING MODE ================================
tverouden 4:5ce2c8864908 740 case homing:
tverouden 24:0abc564349e1 741 // ------------------------- initialisation --------------------------
tverouden 4:5ce2c8864908 742 if (changeState) { // when entering the state
tverouden 4:5ce2c8864908 743 pc.printf("[MODE] homing...\r\n");
tverouden 5:04b26b2f536a 744 // print current state
tverouden 4:5ce2c8864908 745 changeState = false; // stay in this state
tverouden 4:5ce2c8864908 746
tverouden 4:5ce2c8864908 747
tverouden 4:5ce2c8864908 748 // Actions when entering state
tverouden 15:6566c5dedeeb 749 ledRed = 1; // cyan LED on
tverouden 15:6566c5dedeeb 750 ledGreen = 0;
tverouden 15:6566c5dedeeb 751 ledBlue = 0;
tverouden 4:5ce2c8864908 752
tverouden 4:5ce2c8864908 753 }
tverouden 4:5ce2c8864908 754 // ----------------------------- action ------------------------------
tverouden 5:04b26b2f536a 755 // Actions for each loop iteration
tverouden 5:04b26b2f536a 756 /* */
tverouden 4:5ce2c8864908 757
tverouden 24:0abc564349e1 758 // --------------------------- transition ----------------------------
tverouden 24:0abc564349e1 759 // Transition condition #1: with button press, enter demo mode,
tverouden 24:0abc564349e1 760 // but only when velocity == 0
tverouden 24:0abc564349e1 761 if (errorMotorL < 0.01 && errorMotorR < 0.01
tverouden 24:0abc564349e1 762 && errorMotorF < 0.01 && buttonBio1 == true) {
tverouden 24:0abc564349e1 763 // Actions when leaving state
tverouden 24:0abc564349e1 764 /* */
tverouden 24:0abc564349e1 765
tverouden 24:0abc564349e1 766 currentState = reading; // change to state
tverouden 24:0abc564349e1 767 changeState = true; // next loop, switch states
tverouden 24:0abc564349e1 768 }
tverouden 24:0abc564349e1 769 // Transition condition #2: with button press, enter operation mode
tverouden 24:0abc564349e1 770 // but only when velocity == 0
tverouden 24:0abc564349e1 771 if (errorMotorL < 0.01 && errorMotorR < 0.01
tverouden 24:0abc564349e1 772 && errorMotorF < 0.01 && buttonBio2 == true) {
tverouden 4:5ce2c8864908 773 // Actions when leaving state
tverouden 4:5ce2c8864908 774 /* */
tverouden 5:04b26b2f536a 775
tverouden 4:5ce2c8864908 776 currentState = demoing; // change to state
tverouden 4:5ce2c8864908 777 changeState = true; // next loop, switch states
tverouden 4:5ce2c8864908 778 }
tverouden 4:5ce2c8864908 779 break; // end case
tverouden 4:5ce2c8864908 780
tverouden 24:0abc564349e1 781 // ============================== READING MODE ===============================
tverouden 17:b04e1938491a 782 case reading:
tverouden 17:b04e1938491a 783 // ------------------------- initialisation --------------------------
tverouden 17:b04e1938491a 784 if (changeState) { // when entering the state
tverouden 17:b04e1938491a 785 pc.printf("[MODE] reading...\r\n");
tverouden 17:b04e1938491a 786 // print current state
tverouden 17:b04e1938491a 787 changeState = false; // stay in this state
tverouden 17:b04e1938491a 788
tverouden 17:b04e1938491a 789 // Actions when entering state
tverouden 17:b04e1938491a 790 ledRed = 1; // blue LED on
tverouden 17:b04e1938491a 791 ledGreen = 1;
tverouden 17:b04e1938491a 792 ledBlue = 0;
tverouden 24:0abc564349e1 793
tverouden 24:0abc564349e1 794 // TERUGKLAPPEN
tverouden 17:b04e1938491a 795
tverouden 17:b04e1938491a 796 }
tverouden 17:b04e1938491a 797 // ----------------------------- action ------------------------------
tverouden 17:b04e1938491a 798 // Actions for each loop iteration
tverouden 17:b04e1938491a 799 /* */
tverouden 17:b04e1938491a 800
tverouden 17:b04e1938491a 801 // --------------------------- transition ----------------------------
tverouden 24:0abc564349e1 802 // Transition condition #1: when EMG signal detected, enter reading
tverouden 24:0abc564349e1 803 // mode
tverouden 24:0abc564349e1 804 if (moving_average(EMG1 > threshold_value || // Namen variabelen?
tverouden 24:0abc564349e1 805 moving_average(EMG2 > threshold_value) {
tverouden 24:0abc564349e1 806 // Actions when leaving state
tverouden 24:0abc564349e1 807 /* */
tverouden 24:0abc564349e1 808
tverouden 24:0abc564349e1 809 currentState = reading; // change to state
tverouden 24:0abc564349e1 810 changeState = true; // next loop, switch states
tverouden 24:0abc564349e1 811 }
tverouden 24:0abc564349e1 812 // Transition condition #2: with button press, back to homing mode
tverouden 24:0abc564349e1 813 if (buttonHome == false) {
tverouden 24:0abc564349e1 814 // Actions when leaving state
tverouden 17:b04e1938491a 815 /* */
tverouden 17:b04e1938491a 816
tverouden 17:b04e1938491a 817 currentState = homing; // change to state
tverouden 17:b04e1938491a 818 changeState = true; // next loop, switch states
tverouden 17:b04e1938491a 819 }
tverouden 17:b04e1938491a 820 break; // end case
tverouden 17:b04e1938491a 821
tverouden 4:5ce2c8864908 822 // ============================= OPERATING MODE ==============================
tverouden 4:5ce2c8864908 823 case operating:
tverouden 4:5ce2c8864908 824 // ------------------------- initialisation --------------------------
tverouden 4:5ce2c8864908 825 if (changeState) { // when entering the state
tverouden 4:5ce2c8864908 826 pc.printf("[MODE] operating...\r\n");
tverouden 5:04b26b2f536a 827 // print current state
tverouden 5:04b26b2f536a 828 changeState = false; // stay in this state
tverouden 5:04b26b2f536a 829
tverouden 5:04b26b2f536a 830 // Actions when entering state
tverouden 15:6566c5dedeeb 831 ledRed = 1; // blue fast blinking LED
tverouden 15:6566c5dedeeb 832 ledGreen = 1;
tverouden 15:6566c5dedeeb 833 ledBlue = 1;
tverouden 15:6566c5dedeeb 834 blinkTimer.attach(&blinkLedBlue,0.25);
tverouden 5:04b26b2f536a 835
tverouden 5:04b26b2f536a 836 }
tverouden 5:04b26b2f536a 837 // ----------------------------- action ------------------------------
tverouden 5:04b26b2f536a 838 // Actions for each loop iteration
tverouden 5:04b26b2f536a 839 /* */
tverouden 5:04b26b2f536a 840
tverouden 5:04b26b2f536a 841 // --------------------------- transition ----------------------------
tverouden 24:0abc564349e1 842 // Transition condition: when path is over, back to reading mode
tverouden 24:0abc564349e1 843 if (errorMotorL < 0.01 && errorMotorR < 0.01) {
tverouden 5:04b26b2f536a 844 // Actions when leaving state
tverouden 15:6566c5dedeeb 845 blinkTimer.detach();
tverouden 5:04b26b2f536a 846
tverouden 24:0abc564349e1 847 currentState = reading; // change to state
tverouden 5:04b26b2f536a 848 changeState = true; // next loop, switch states
tverouden 5:04b26b2f536a 849 }
tverouden 5:04b26b2f536a 850 break; // end case
tverouden 5:04b26b2f536a 851
tverouden 5:04b26b2f536a 852 // ============================== DEMOING MODE ===============================
tverouden 5:04b26b2f536a 853 case demoing:
tverouden 5:04b26b2f536a 854 // ------------------------- initialisation --------------------------
tverouden 5:04b26b2f536a 855 if (changeState) { // when entering the state
tverouden 5:04b26b2f536a 856 pc.printf("[MODE] demoing...\r\n");
tverouden 5:04b26b2f536a 857 // print current state
tverouden 5:04b26b2f536a 858 changeState = false; // stay in this state
tverouden 5:04b26b2f536a 859
tverouden 5:04b26b2f536a 860 // Actions when entering state
tverouden 15:6566c5dedeeb 861 ledRed = 0; // yellow LED on
tverouden 15:6566c5dedeeb 862 ledGreen = 0;
tverouden 15:6566c5dedeeb 863 ledBlue = 1;
tverouden 5:04b26b2f536a 864
tverouden 5:04b26b2f536a 865 }
tverouden 5:04b26b2f536a 866 // ----------------------------- action ------------------------------
tverouden 5:04b26b2f536a 867 // Actions for each loop iteration
tverouden 5:04b26b2f536a 868 /* */
tverouden 5:04b26b2f536a 869
tverouden 5:04b26b2f536a 870 // --------------------------- transition ----------------------------
tverouden 24:0abc564349e1 871 // Transition condition: with button press, back to homing mode
tverouden 24:0abc564349e1 872 if (buttonHome == false) {
tverouden 5:04b26b2f536a 873 // Actions when leaving state
tverouden 5:04b26b2f536a 874 /* */
tverouden 5:04b26b2f536a 875
tverouden 5:04b26b2f536a 876 currentState = homing; // change to state
tverouden 5:04b26b2f536a 877 changeState = true; // next loop, switch states
tverouden 5:04b26b2f536a 878 }
tverouden 5:04b26b2f536a 879 break; // end case
tverouden 5:04b26b2f536a 880
tverouden 5:04b26b2f536a 881 // =============================== FAILING MODE ================================
tverouden 5:04b26b2f536a 882 case failing:
tverouden 24:0abc564349e1 883 changeState = false; // stay in this state
tverouden 3:9c63fc5f157e 884
tverouden 3:9c63fc5f157e 885 // Actions when entering state
tverouden 20:cf673a2cbc60 886 ledRed = 0; // red LED on
tverouden 20:cf673a2cbc60 887 ledGreen = 1;
tverouden 6:f32352bc5078 888 ledBlue = 1;
tverouden 4:5ce2c8864908 889
tverouden 34:fb6889c5ca22 890 pin3 = 0; // all motor forces to zero
tverouden 34:fb6889c5ca22 891 pin5 = 0;
tverouden 34:fb6889c5ca22 892 pin6 = 0;
tverouden 20:cf673a2cbc60 893 exit (0); // stop all current functions
tverouden 4:5ce2c8864908 894 break; // end case
tverouden 4:5ce2c8864908 895
tverouden 4:5ce2c8864908 896 // ============================== DEFAULT MODE =================================
tverouden 3:9c63fc5f157e 897 default:
tverouden 4:5ce2c8864908 898 // ---------------------------- enter failing mode -----------------------------
tverouden 4:5ce2c8864908 899 currentState = failing; // change to state
tverouden 4:5ce2c8864908 900 changeState = true; // next loop, switch states
tverouden 4:5ce2c8864908 901 // print current state
tverouden 4:5ce2c8864908 902 pc.printf("[ERROR] unknown or unimplemented state reached\r\n");
tverouden 3:9c63fc5f157e 903
tverouden 4:5ce2c8864908 904 } // end switch
tverouden 4:5ce2c8864908 905 } // end stateMachine
tverouden 3:9c63fc5f157e 906
tverouden 3:9c63fc5f157e 907
tverouden 2:d70795e4e0bf 908
tverouden 2:d70795e4e0bf 909 // ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ MAIN LOOP ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡
tverouden 2:d70795e4e0bf 910
tverouden 3:9c63fc5f157e 911 int main()
tverouden 3:9c63fc5f157e 912 {
tverouden 8:8cef1050ebd9 913 // ================================ EMERGENCY ================================
tverouden 15:6566c5dedeeb 914 //If the emergency button is pressed, stop program via failing state
tverouden 24:0abc564349e1 915 buttonEmergency.rise(stopProgram); // Automatische triggers voor failure mode? -> ook error message in andere functies plaatsen!
tverouden 15:6566c5dedeeb 916
tverouden 19:2797bb471f9f 917 // ============================= PC-COMMUNICATION =============================
tverouden 19:2797bb471f9f 918 pc.baud(115200); // communication with terminal
tverouden 19:2797bb471f9f 919 pc.printf("\n\n[START] starting O.D.I.N\r\n");
tverouden 6:f32352bc5078 920
efvanmarrewijk 25:ac139331fe51 921 // ============================= PIN DEFINE PERIOD ============================
efvanmarrewijk 25:ac139331fe51 922 // If you give a period on one pin, c++ gives all pins this period
efvanmarrewijk 25:ac139331fe51 923 pin3.period_us(15);
efvanmarrewijk 25:ac139331fe51 924
tverouden 2:d70795e4e0bf 925 // ==================================== LOOP ===================================
tverouden 24:0abc564349e1 926 // run state machine at 500 Hz
efvanmarrewijk 25:ac139331fe51 927 stateTimer.attach(&stateMachine,dt);
tverouden 2:d70795e4e0bf 928 }