Nordic stack and drivers for the mbed BLE API

Fork of nRF51822 by Nordic Semiconductor

Committer:
bogdanm
Date:
Wed Mar 26 14:38:17 2014 +0000
Revision:
0:eff01767de02
Child:
5:b11766b636aa
Initial import of the nRF51822 code

Who changed what in which revision?

UserRevisionLine numberNew contents of line
bogdanm 0:eff01767de02 1 /* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved.
bogdanm 0:eff01767de02 2 *
bogdanm 0:eff01767de02 3 * The information contained herein is property of Nordic Semiconductor ASA.
bogdanm 0:eff01767de02 4 * Terms and conditions of usage are described in detail in NORDIC
bogdanm 0:eff01767de02 5 * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
bogdanm 0:eff01767de02 6 *
bogdanm 0:eff01767de02 7 * Licensees are granted free, non-transferable use of the information. NO
bogdanm 0:eff01767de02 8 * WARRANTY of ANY KIND is provided. This heading must NOT be removed from
bogdanm 0:eff01767de02 9 * the file.
bogdanm 0:eff01767de02 10 *
bogdanm 0:eff01767de02 11 */
bogdanm 0:eff01767de02 12
bogdanm 0:eff01767de02 13 /** @file
bogdanm 0:eff01767de02 14 *
bogdanm 0:eff01767de02 15 * @defgroup app_util Utility Functions and Definitions
bogdanm 0:eff01767de02 16 * @{
bogdanm 0:eff01767de02 17 * @ingroup app_common
bogdanm 0:eff01767de02 18 *
bogdanm 0:eff01767de02 19 * @brief Various types and definitions available to all applications.
bogdanm 0:eff01767de02 20 */
bogdanm 0:eff01767de02 21
bogdanm 0:eff01767de02 22 #ifndef APP_UTIL_H__
bogdanm 0:eff01767de02 23 #define APP_UTIL_H__
bogdanm 0:eff01767de02 24
bogdanm 0:eff01767de02 25 #include <stdint.h>
bogdanm 0:eff01767de02 26 #include "nordic_global.h"
bogdanm 0:eff01767de02 27 #include "compiler_abstraction.h"
bogdanm 0:eff01767de02 28 #include "nrf51.h"
bogdanm 0:eff01767de02 29 #include "app_error.h"
bogdanm 0:eff01767de02 30
bogdanm 0:eff01767de02 31 /**@brief The interrupt priorities available to the application while the softdevice is active. */
bogdanm 0:eff01767de02 32 typedef enum
bogdanm 0:eff01767de02 33 {
bogdanm 0:eff01767de02 34 APP_IRQ_PRIORITY_HIGH = 1,
bogdanm 0:eff01767de02 35 APP_IRQ_PRIORITY_LOW = 3
bogdanm 0:eff01767de02 36 } app_irq_priority_t;
bogdanm 0:eff01767de02 37
bogdanm 0:eff01767de02 38 enum
bogdanm 0:eff01767de02 39 {
bogdanm 0:eff01767de02 40 UNIT_0_625_MS = 625, /**< Number of microseconds in 0.625 milliseconds. */
bogdanm 0:eff01767de02 41 UNIT_1_25_MS = 1250, /**< Number of microseconds in 1.25 milliseconds. */
bogdanm 0:eff01767de02 42 UNIT_10_MS = 10000 /**< Number of microseconds in 10 milliseconds. */
bogdanm 0:eff01767de02 43 };
bogdanm 0:eff01767de02 44
bogdanm 0:eff01767de02 45 #define NRF_APP_PRIORITY_THREAD 4 /**< "Interrupt level" when running in Thread Mode. */
bogdanm 0:eff01767de02 46
bogdanm 0:eff01767de02 47 /**@cond NO_DOXYGEN */
bogdanm 0:eff01767de02 48 #define EXTERNAL_INT_VECTOR_OFFSET 16
bogdanm 0:eff01767de02 49 /**@endcond */
bogdanm 0:eff01767de02 50
bogdanm 0:eff01767de02 51 #define PACKED(TYPE) __packed TYPE
bogdanm 0:eff01767de02 52
bogdanm 0:eff01767de02 53 /**@brief Macro for doing static (i.e. compile time) assertion.
bogdanm 0:eff01767de02 54 *
bogdanm 0:eff01767de02 55 * @note If the assertion fails when compiling using Keil, the compiler will report error message
bogdanm 0:eff01767de02 56 * "error: #94: the size of an array must be greater than zero" (while gcc will list the
bogdanm 0:eff01767de02 57 * symbol static_assert_failed, making the error message more readable).
bogdanm 0:eff01767de02 58 * If the supplied expression can not be evaluated at compile time, Keil will report
bogdanm 0:eff01767de02 59 * "error: #28: expression must have a constant value".
bogdanm 0:eff01767de02 60 *
bogdanm 0:eff01767de02 61 * @note The macro is intentionally implemented not using do while(0), allowing it to be used
bogdanm 0:eff01767de02 62 * outside function blocks (e.g. close to global type- and variable declarations).
bogdanm 0:eff01767de02 63 * If used in a code block, it must be used before any executable code in this block.
bogdanm 0:eff01767de02 64 *
bogdanm 0:eff01767de02 65 * @param[in] EXPR Constant expression to be verified.
bogdanm 0:eff01767de02 66 */
bogdanm 0:eff01767de02 67
bogdanm 0:eff01767de02 68 #define STATIC_ASSERT(EXPR) typedef char static_assert_failed[(EXPR) ? 1 : -1]
bogdanm 0:eff01767de02 69
bogdanm 0:eff01767de02 70 /**@brief type for holding an encoded (i.e. little endian) 16 bit unsigned integer. */
bogdanm 0:eff01767de02 71 typedef uint8_t uint16_le_t[2];
bogdanm 0:eff01767de02 72
bogdanm 0:eff01767de02 73 /**@brief type for holding an encoded (i.e. little endian) 32 bit unsigned integer. */
bogdanm 0:eff01767de02 74 typedef uint8_t uint32_le_t[4];
bogdanm 0:eff01767de02 75
bogdanm 0:eff01767de02 76 /**@brief Byte array type. */
bogdanm 0:eff01767de02 77 typedef struct
bogdanm 0:eff01767de02 78 {
bogdanm 0:eff01767de02 79 uint16_t size; /**< Number of array entries. */
bogdanm 0:eff01767de02 80 uint8_t * p_data; /**< Pointer to array entries. */
bogdanm 0:eff01767de02 81 } uint8_array_t;
bogdanm 0:eff01767de02 82
bogdanm 0:eff01767de02 83 /**@brief Macro for entering a critical region.
bogdanm 0:eff01767de02 84 *
bogdanm 0:eff01767de02 85 * @note Due to implementation details, there must exist one and only one call to
bogdanm 0:eff01767de02 86 * CRITICAL_REGION_EXIT() for each call to CRITICAL_REGION_ENTER(), and they must be located
bogdanm 0:eff01767de02 87 * in the same scope.
bogdanm 0:eff01767de02 88 */
bogdanm 0:eff01767de02 89 #define CRITICAL_REGION_ENTER() \
bogdanm 0:eff01767de02 90 { \
bogdanm 0:eff01767de02 91 uint8_t IS_NESTED_CRITICAL_REGION = 0; \
bogdanm 0:eff01767de02 92 uint32_t CURRENT_INT_PRI = current_int_priority_get(); \
bogdanm 0:eff01767de02 93 if (CURRENT_INT_PRI != APP_IRQ_PRIORITY_HIGH) \
bogdanm 0:eff01767de02 94 { \
bogdanm 0:eff01767de02 95 uint32_t ERR_CODE = sd_nvic_critical_region_enter(&IS_NESTED_CRITICAL_REGION); \
bogdanm 0:eff01767de02 96 if (ERR_CODE == NRF_ERROR_SOFTDEVICE_NOT_ENABLED) \
bogdanm 0:eff01767de02 97 { \
bogdanm 0:eff01767de02 98 __disable_irq(); \
bogdanm 0:eff01767de02 99 } \
bogdanm 0:eff01767de02 100 else \
bogdanm 0:eff01767de02 101 { \
bogdanm 0:eff01767de02 102 APP_ERROR_CHECK(ERR_CODE); \
bogdanm 0:eff01767de02 103 } \
bogdanm 0:eff01767de02 104 }
bogdanm 0:eff01767de02 105
bogdanm 0:eff01767de02 106 /**@brief Macro for leaving a critical region.
bogdanm 0:eff01767de02 107 *
bogdanm 0:eff01767de02 108 * @note Due to implementation details, there must exist one and only one call to
bogdanm 0:eff01767de02 109 * CRITICAL_REGION_EXIT() for each call to CRITICAL_REGION_ENTER(), and they must be located
bogdanm 0:eff01767de02 110 * in the same scope.
bogdanm 0:eff01767de02 111 */
bogdanm 0:eff01767de02 112 #define CRITICAL_REGION_EXIT() \
bogdanm 0:eff01767de02 113 if (CURRENT_INT_PRI != APP_IRQ_PRIORITY_HIGH) \
bogdanm 0:eff01767de02 114 { \
bogdanm 0:eff01767de02 115 uint32_t ERR_CODE; \
bogdanm 0:eff01767de02 116 __enable_irq(); \
bogdanm 0:eff01767de02 117 ERR_CODE = sd_nvic_critical_region_exit(IS_NESTED_CRITICAL_REGION); \
bogdanm 0:eff01767de02 118 if (ERR_CODE != NRF_ERROR_SOFTDEVICE_NOT_ENABLED) \
bogdanm 0:eff01767de02 119 { \
bogdanm 0:eff01767de02 120 APP_ERROR_CHECK(ERR_CODE); \
bogdanm 0:eff01767de02 121 } \
bogdanm 0:eff01767de02 122 } \
bogdanm 0:eff01767de02 123 }
bogdanm 0:eff01767de02 124
bogdanm 0:eff01767de02 125 /**@brief Perform rounded integer division (as opposed to truncating the result).
bogdanm 0:eff01767de02 126 *
bogdanm 0:eff01767de02 127 * @param[in] A Numerator.
bogdanm 0:eff01767de02 128 * @param[in] B Denominator.
bogdanm 0:eff01767de02 129 *
bogdanm 0:eff01767de02 130 * @return Rounded (integer) result of dividing A by B.
bogdanm 0:eff01767de02 131 */
bogdanm 0:eff01767de02 132 #define ROUNDED_DIV(A, B) (((A) + ((B) / 2)) / (B))
bogdanm 0:eff01767de02 133
bogdanm 0:eff01767de02 134 /**@brief Check if the integer provided is a power of two.
bogdanm 0:eff01767de02 135 *
bogdanm 0:eff01767de02 136 * @param[in] A Number to be tested.
bogdanm 0:eff01767de02 137 *
bogdanm 0:eff01767de02 138 * @return true if value is power of two.
bogdanm 0:eff01767de02 139 * @return false if value not power of two.
bogdanm 0:eff01767de02 140 */
bogdanm 0:eff01767de02 141 #define IS_POWER_OF_TWO(A) ( ((A) != 0) && ((((A) - 1) & (A)) == 0) )
bogdanm 0:eff01767de02 142
bogdanm 0:eff01767de02 143 /**@brief To convert ticks to millisecond
bogdanm 0:eff01767de02 144 * @param[in] time Number of millseconds that needs to be converted.
bogdanm 0:eff01767de02 145 * @param[in] resolution Units to be converted.
bogdanm 0:eff01767de02 146 */
bogdanm 0:eff01767de02 147 #define MSEC_TO_UNITS(TIME, RESOLUTION) (((TIME) * 1000) / (RESOLUTION))
bogdanm 0:eff01767de02 148
bogdanm 0:eff01767de02 149
bogdanm 0:eff01767de02 150 /**@brief Perform integer division, making sure the result is rounded up.
bogdanm 0:eff01767de02 151 *
bogdanm 0:eff01767de02 152 * @details One typical use for this is to compute the number of objects with size B is needed to
bogdanm 0:eff01767de02 153 * hold A number of bytes.
bogdanm 0:eff01767de02 154 *
bogdanm 0:eff01767de02 155 * @param[in] A Numerator.
bogdanm 0:eff01767de02 156 * @param[in] B Denominator.
bogdanm 0:eff01767de02 157 *
bogdanm 0:eff01767de02 158 * @return Integer result of dividing A by B, rounded up.
bogdanm 0:eff01767de02 159 */
bogdanm 0:eff01767de02 160 #define CEIL_DIV(A, B) \
bogdanm 0:eff01767de02 161 /*lint -save -e573 */ \
bogdanm 0:eff01767de02 162 ((((A) - 1) / (B)) + 1) \
bogdanm 0:eff01767de02 163 /*lint -restore */
bogdanm 0:eff01767de02 164
bogdanm 0:eff01767de02 165 /**@brief Function for encoding a uint16 value.
bogdanm 0:eff01767de02 166 *
bogdanm 0:eff01767de02 167 * @param[in] value Value to be encoded.
bogdanm 0:eff01767de02 168 * @param[out] p_encoded_data Buffer where the encoded data is to be written.
bogdanm 0:eff01767de02 169 *
bogdanm 0:eff01767de02 170 * @return Number of bytes written.
bogdanm 0:eff01767de02 171 */
bogdanm 0:eff01767de02 172 static __INLINE uint8_t uint16_encode(uint16_t value, uint8_t * p_encoded_data)
bogdanm 0:eff01767de02 173 {
bogdanm 0:eff01767de02 174 p_encoded_data[0] = (uint8_t) ((value & 0x00FF) >> 0);
bogdanm 0:eff01767de02 175 p_encoded_data[1] = (uint8_t) ((value & 0xFF00) >> 8);
bogdanm 0:eff01767de02 176 return sizeof(uint16_t);
bogdanm 0:eff01767de02 177 }
bogdanm 0:eff01767de02 178
bogdanm 0:eff01767de02 179 /**@brief Function for encoding a uint32 value.
bogdanm 0:eff01767de02 180 *
bogdanm 0:eff01767de02 181 * @param[in] value Value to be encoded.
bogdanm 0:eff01767de02 182 * @param[out] p_encoded_data Buffer where the encoded data is to be written.
bogdanm 0:eff01767de02 183 *
bogdanm 0:eff01767de02 184 * @return Number of bytes written.
bogdanm 0:eff01767de02 185 */
bogdanm 0:eff01767de02 186 static __INLINE uint8_t uint32_encode(uint32_t value, uint8_t * p_encoded_data)
bogdanm 0:eff01767de02 187 {
bogdanm 0:eff01767de02 188 p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0);
bogdanm 0:eff01767de02 189 p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8);
bogdanm 0:eff01767de02 190 p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16);
bogdanm 0:eff01767de02 191 p_encoded_data[3] = (uint8_t) ((value & 0xFF000000) >> 24);
bogdanm 0:eff01767de02 192 return sizeof(uint32_t);
bogdanm 0:eff01767de02 193 }
bogdanm 0:eff01767de02 194
bogdanm 0:eff01767de02 195 /**@brief Function for decoding a uint16 value.
bogdanm 0:eff01767de02 196 *
bogdanm 0:eff01767de02 197 * @param[in] p_encoded_data Buffer where the encoded data is stored.
bogdanm 0:eff01767de02 198 *
bogdanm 0:eff01767de02 199 * @return Decoded value.
bogdanm 0:eff01767de02 200 */
bogdanm 0:eff01767de02 201 static __INLINE uint16_t uint16_decode(const uint8_t * p_encoded_data)
bogdanm 0:eff01767de02 202 {
bogdanm 0:eff01767de02 203 return ( (((uint16_t)((uint8_t *)p_encoded_data)[0])) |
bogdanm 0:eff01767de02 204 (((uint16_t)((uint8_t *)p_encoded_data)[1]) << 8 ));
bogdanm 0:eff01767de02 205 }
bogdanm 0:eff01767de02 206
bogdanm 0:eff01767de02 207 /**@brief Function for decoding a uint32 value.
bogdanm 0:eff01767de02 208 *
bogdanm 0:eff01767de02 209 * @param[in] p_encoded_data Buffer where the encoded data is stored.
bogdanm 0:eff01767de02 210 *
bogdanm 0:eff01767de02 211 * @return Decoded value.
bogdanm 0:eff01767de02 212 */
bogdanm 0:eff01767de02 213 static __INLINE uint32_t uint32_decode(const uint8_t * p_encoded_data)
bogdanm 0:eff01767de02 214 {
bogdanm 0:eff01767de02 215 return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0) |
bogdanm 0:eff01767de02 216 (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8) |
bogdanm 0:eff01767de02 217 (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16) |
bogdanm 0:eff01767de02 218 (((uint32_t)((uint8_t *)p_encoded_data)[3]) << 24 ));
bogdanm 0:eff01767de02 219 }
bogdanm 0:eff01767de02 220
bogdanm 0:eff01767de02 221
bogdanm 0:eff01767de02 222 /**@brief Function for finding the current interrupt level.
bogdanm 0:eff01767de02 223 *
bogdanm 0:eff01767de02 224 * @return Current interrupt level.
bogdanm 0:eff01767de02 225 * @retval APP_IRQ_PRIORITY_HIGH We are running in Application High interrupt level.
bogdanm 0:eff01767de02 226 * @retval APP_IRQ_PRIORITY_LOW We are running in Application Low interrupt level.
bogdanm 0:eff01767de02 227 * @retval APP_IRQ_PRIORITY_THREAD We are running in Thread Mode.
bogdanm 0:eff01767de02 228 */
bogdanm 0:eff01767de02 229 static __INLINE uint8_t current_int_priority_get(void)
bogdanm 0:eff01767de02 230 {
bogdanm 0:eff01767de02 231 uint32_t isr_vector_num = (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk);
bogdanm 0:eff01767de02 232 if (isr_vector_num > 0)
bogdanm 0:eff01767de02 233 {
bogdanm 0:eff01767de02 234 int32_t irq_type = ((int32_t)isr_vector_num - EXTERNAL_INT_VECTOR_OFFSET);
bogdanm 0:eff01767de02 235 return (NVIC_GetPriority((IRQn_Type)irq_type) & 0xFF);
bogdanm 0:eff01767de02 236 }
bogdanm 0:eff01767de02 237 else
bogdanm 0:eff01767de02 238 {
bogdanm 0:eff01767de02 239 return NRF_APP_PRIORITY_THREAD;
bogdanm 0:eff01767de02 240 }
bogdanm 0:eff01767de02 241 }
bogdanm 0:eff01767de02 242
bogdanm 0:eff01767de02 243 /** @brief Function for converting the input voltage (in milli volts) into percentage of 3.0 Volts.
bogdanm 0:eff01767de02 244 *
bogdanm 0:eff01767de02 245 * @details The calculation is based on a linearized version of the battery's discharge
bogdanm 0:eff01767de02 246 * curve. 3.0V returns 100% battery level. The limit for power failure is 2.1V and
bogdanm 0:eff01767de02 247 * is considered to be the lower boundary.
bogdanm 0:eff01767de02 248 *
bogdanm 0:eff01767de02 249 * The discharge curve for CR2032 is non-linear. In this model it is split into
bogdanm 0:eff01767de02 250 * 4 linear sections:
bogdanm 0:eff01767de02 251 * - Section 1: 3.0V - 2.9V = 100% - 42% (58% drop on 100 mV)
bogdanm 0:eff01767de02 252 * - Section 2: 2.9V - 2.74V = 42% - 18% (24% drop on 160 mV)
bogdanm 0:eff01767de02 253 * - Section 3: 2.74V - 2.44V = 18% - 6% (12% drop on 300 mV)
bogdanm 0:eff01767de02 254 * - Section 4: 2.44V - 2.1V = 6% - 0% (6% drop on 340 mV)
bogdanm 0:eff01767de02 255 *
bogdanm 0:eff01767de02 256 * These numbers are by no means accurate. Temperature and
bogdanm 0:eff01767de02 257 * load in the actual application is not accounted for!
bogdanm 0:eff01767de02 258 *
bogdanm 0:eff01767de02 259 * @param[in] mvolts The voltage in mV
bogdanm 0:eff01767de02 260 *
bogdanm 0:eff01767de02 261 * @return Battery level in percent.
bogdanm 0:eff01767de02 262 */
bogdanm 0:eff01767de02 263 static __INLINE uint8_t battery_level_in_percent(const uint16_t mvolts)
bogdanm 0:eff01767de02 264 {
bogdanm 0:eff01767de02 265 uint8_t battery_level;
bogdanm 0:eff01767de02 266
bogdanm 0:eff01767de02 267 if (mvolts >= 3000)
bogdanm 0:eff01767de02 268 {
bogdanm 0:eff01767de02 269 battery_level = 100;
bogdanm 0:eff01767de02 270 }
bogdanm 0:eff01767de02 271 else if (mvolts > 2900)
bogdanm 0:eff01767de02 272 {
bogdanm 0:eff01767de02 273 battery_level = 100 - ((3000 - mvolts) * 58) / 100;
bogdanm 0:eff01767de02 274 }
bogdanm 0:eff01767de02 275 else if (mvolts > 2740)
bogdanm 0:eff01767de02 276 {
bogdanm 0:eff01767de02 277 battery_level = 42 - ((2900 - mvolts) * 24) / 160;
bogdanm 0:eff01767de02 278 }
bogdanm 0:eff01767de02 279 else if (mvolts > 2440)
bogdanm 0:eff01767de02 280 {
bogdanm 0:eff01767de02 281 battery_level = 18 - ((2740 - mvolts) * 12) / 300;
bogdanm 0:eff01767de02 282 }
bogdanm 0:eff01767de02 283 else if (mvolts > 2100)
bogdanm 0:eff01767de02 284 {
bogdanm 0:eff01767de02 285 battery_level = 6 - ((2440 - mvolts) * 6) / 340;
bogdanm 0:eff01767de02 286 }
bogdanm 0:eff01767de02 287 else
bogdanm 0:eff01767de02 288 {
bogdanm 0:eff01767de02 289 battery_level = 0;
bogdanm 0:eff01767de02 290 }
bogdanm 0:eff01767de02 291
bogdanm 0:eff01767de02 292 return battery_level;
bogdanm 0:eff01767de02 293 }
bogdanm 0:eff01767de02 294
bogdanm 0:eff01767de02 295 /**@brief Function for checking if a pointer value is aligned to a 4 byte boundary.
bogdanm 0:eff01767de02 296 *
bogdanm 0:eff01767de02 297 * @param[in] p Pointer value to be checked.
bogdanm 0:eff01767de02 298 *
bogdanm 0:eff01767de02 299 * @return TRUE if pointer is aligned to a 4 byte boundary, FALSE otherwise.
bogdanm 0:eff01767de02 300 */
bogdanm 0:eff01767de02 301 static __INLINE bool is_word_aligned(void * p)
bogdanm 0:eff01767de02 302 {
bogdanm 0:eff01767de02 303 return (((uint32_t)p & 0x00000003) == 0);
bogdanm 0:eff01767de02 304 }
bogdanm 0:eff01767de02 305
bogdanm 0:eff01767de02 306 #endif // APP_UTIL_H__
bogdanm 0:eff01767de02 307
bogdanm 0:eff01767de02 308 /** @} */