Nordic stack and drivers for the mbed BLE API Modified for HRM 1017 and correct DISCONNECT event processing
Fork of nRF51822 by
nordic/ble/ble_advdata.cpp
- Committer:
- bogdanm
- Date:
- 2014-03-26
- Revision:
- 0:eff01767de02
File content as of revision 0:eff01767de02:
/* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved. * * The information contained herein is property of Nordic Semiconductor ASA. * Terms and conditions of usage are described in detail in NORDIC * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT. * * Licensees are granted free, non-transferable use of the information. NO * WARRANTY of ANY KIND is provided. This heading must NOT be removed from * the file. * */ #include "ble_advdata.h" #include "nordic_common.h" #include "nrf_error.h" #include "ble_gap.h" #include "ble_srv_common.h" #include "app_util.h" // Offset from where advertisement data other than flags information can start. #define ADV_FLAG_OFFSET 2 // Offset for Advertising Data. // Offset is 2 as each Advertising Data contain 1 octet of Adveritising Data Type and // one octet Advertising Data Length. #define ADV_DATA_OFFSET 2 // NOTE: For now, Security Manager TK Value and Security Manager Out of Band Flags (OOB) are omitted // from the advertising data. static uint32_t name_encode(const ble_advdata_t * p_advdata, uint8_t * p_encoded_data, uint8_t * p_len) { uint32_t err_code; uint16_t rem_adv_data_len; uint16_t actual_length; uint8_t adv_data_format; uint8_t adv_offset; adv_offset = *p_len; // Check for buffer overflow. if ((adv_offset + ADV_DATA_OFFSET > BLE_GAP_ADV_MAX_SIZE) || ((p_advdata->short_name_len + ADV_DATA_OFFSET) > BLE_GAP_ADV_MAX_SIZE)) { return NRF_ERROR_DATA_SIZE; } actual_length = rem_adv_data_len = (BLE_GAP_ADV_MAX_SIZE - adv_offset - ADV_FLAG_OFFSET); // Get GAP device name and length err_code = sd_ble_gap_device_name_get(&p_encoded_data[adv_offset + ADV_DATA_OFFSET], &actual_length); if (err_code != NRF_SUCCESS) { return err_code; } // Check if device internd to use short name and it can fit available data size. if ((p_advdata->name_type == BLE_ADVDATA_FULL_NAME) && (actual_length <= rem_adv_data_len)) { // Complete device name can fit, setting Complete Name in Adv Data. adv_data_format = BLE_GAP_AD_TYPE_COMPLETE_LOCAL_NAME; rem_adv_data_len = actual_length; } else { // Else short name needs to be used. Or application has requested use of short name. adv_data_format = BLE_GAP_AD_TYPE_SHORT_LOCAL_NAME; // If application has set a preference on the short name size, it needs to be considered, // else fit what can be fit. if ((p_advdata->short_name_len != 0) && (p_advdata->short_name_len <= rem_adv_data_len)) { // Short name fits available size. rem_adv_data_len = p_advdata->short_name_len; } // Else whatever can fit the data buffer will be packed. else { rem_adv_data_len = actual_length; } } // Complete name field in encoded data. p_encoded_data[adv_offset++] = rem_adv_data_len + 1; p_encoded_data[adv_offset++] = adv_data_format; (*p_len) += (rem_adv_data_len + ADV_DATA_OFFSET); return NRF_SUCCESS; } static uint32_t appearance_encode(uint8_t * p_encoded_data, uint8_t * p_len) { uint32_t err_code; uint16_t appearance; // Check for buffer overflow. if ((*p_len) + 4 > BLE_GAP_ADV_MAX_SIZE) { return NRF_ERROR_DATA_SIZE; } // Get GAP appearance field. err_code = sd_ble_gap_appearance_get(&appearance); if (err_code != NRF_SUCCESS) { return err_code; } // Encode Length, AD Type and Appearance. p_encoded_data[(*p_len)++] = 3; p_encoded_data[(*p_len)++] = BLE_GAP_AD_TYPE_APPEARANCE; (*p_len) += uint16_encode(appearance, &p_encoded_data[*p_len]); return NRF_SUCCESS; } static uint32_t uint8_array_encode(const uint8_array_t * p_uint8_array, uint8_t adv_type, uint8_t * p_encoded_data, uint8_t * p_len) { // Check parameter consistency. if (p_uint8_array->p_data == NULL) { return NRF_ERROR_INVALID_PARAM; } // Check for buffer overflow. if ((*p_len) + ADV_DATA_OFFSET + p_uint8_array->size > BLE_GAP_ADV_MAX_SIZE) { return NRF_ERROR_DATA_SIZE; } // Encode Length and AD Type. p_encoded_data[(*p_len)++] = 1 + p_uint8_array->size; p_encoded_data[(*p_len)++] = adv_type; // Encode array. memcpy(&p_encoded_data[*p_len], p_uint8_array->p_data, p_uint8_array->size); (*p_len) += p_uint8_array->size; return NRF_SUCCESS; } static uint32_t tx_power_level_encode(int8_t tx_power_level, uint8_t * p_encoded_data, uint8_t * p_len) { // Check for buffer overflow. if ((*p_len) + 3 > BLE_GAP_ADV_MAX_SIZE) { return NRF_ERROR_DATA_SIZE; } // Encode TX Power Level. p_encoded_data[(*p_len)++] = 2; p_encoded_data[(*p_len)++] = BLE_GAP_AD_TYPE_TX_POWER_LEVEL; p_encoded_data[(*p_len)++] = (uint8_t)tx_power_level; return NRF_SUCCESS; } static uint32_t uuid_list_sized_encode(const ble_advdata_uuid_list_t * p_uuid_list, uint8_t adv_type, uint8_t uuid_size, uint8_t * p_encoded_data, uint8_t * p_len) { int i; bool is_heading_written = false; uint8_t start_pos = *p_len; for (i = 0; i < p_uuid_list->uuid_cnt; i++) { uint32_t err_code; uint8_t encoded_size; ble_uuid_t uuid = p_uuid_list->p_uuids[i]; // Find encoded uuid size. err_code = sd_ble_uuid_encode(&uuid, &encoded_size, NULL); if (err_code != NRF_SUCCESS) { return err_code; } // Check size. if (encoded_size == uuid_size) { uint8_t heading_bytes = (is_heading_written) ? 0 : 2; // Check for buffer overflow if (*p_len + encoded_size + heading_bytes > BLE_GAP_ADV_MAX_SIZE) { return NRF_ERROR_DATA_SIZE; } if (!is_heading_written) { // Write AD structure heading. (*p_len)++; p_encoded_data[(*p_len)++] = adv_type; is_heading_written = true; } // Write UUID. err_code = sd_ble_uuid_encode(&uuid, &encoded_size, &p_encoded_data[*p_len]); if (err_code != NRF_SUCCESS) { return err_code; } (*p_len) += encoded_size; } } if (is_heading_written) { // Write length. p_encoded_data[start_pos] = (*p_len) - (start_pos + 1); } return NRF_SUCCESS; } static uint32_t uuid_list_encode(const ble_advdata_uuid_list_t * p_uuid_list, uint8_t adv_type_16, uint8_t adv_type_128, uint8_t * p_encoded_data, uint8_t * p_len) { uint32_t err_code; // Encode 16 bit UUIDs. err_code = uuid_list_sized_encode(p_uuid_list, adv_type_16, sizeof(uint16_le_t), p_encoded_data, p_len); if (err_code != NRF_SUCCESS) { return err_code; } // Encode 128 bit UUIDs. err_code = uuid_list_sized_encode(p_uuid_list, adv_type_128, sizeof(ble_uuid128_t), p_encoded_data, p_len); if (err_code != NRF_SUCCESS) { return err_code; } return NRF_SUCCESS; } static uint32_t conn_int_check(const ble_advdata_conn_int_t *p_conn_int) { // Check Minimum Connection Interval. if ((p_conn_int->min_conn_interval < 0x0006) || ( (p_conn_int->min_conn_interval > 0x0c80) && (p_conn_int->min_conn_interval != 0xffff) ) ) { return NRF_ERROR_INVALID_PARAM; } // Check Maximum Connection Interval. if ((p_conn_int->max_conn_interval < 0x0006) || ( (p_conn_int->max_conn_interval > 0x0c80) && (p_conn_int->max_conn_interval != 0xffff) ) ) { return NRF_ERROR_INVALID_PARAM; } // Make sure Minimum Connection Interval is not bigger than Maximum Connection Interval. if ((p_conn_int->min_conn_interval != 0xffff) && (p_conn_int->max_conn_interval != 0xffff) && (p_conn_int->min_conn_interval > p_conn_int->max_conn_interval) ) { return NRF_ERROR_INVALID_PARAM; } return NRF_SUCCESS; } static uint32_t conn_int_encode(const ble_advdata_conn_int_t * p_conn_int, uint8_t * p_encoded_data, uint8_t * p_len) { uint32_t err_code; // Check for buffer overflow. if ((*p_len) + ADV_DATA_OFFSET + 2 * sizeof(uint16_le_t) > BLE_GAP_ADV_MAX_SIZE) { return NRF_ERROR_DATA_SIZE; } // Check parameters. err_code = conn_int_check(p_conn_int); if (err_code != NRF_SUCCESS) { return err_code; } // Encode Length and AD Type. p_encoded_data[(*p_len)++] = 1 + 2 * sizeof(uint16_le_t); p_encoded_data[(*p_len)++] = BLE_GAP_AD_TYPE_SLAVE_CONNECTION_INTERVAL_RANGE; // Encode Minimum and Maximum Connection Intervals. (*p_len) += uint16_encode(p_conn_int->min_conn_interval, &p_encoded_data[*p_len]); (*p_len) += uint16_encode(p_conn_int->max_conn_interval, &p_encoded_data[*p_len]); return NRF_SUCCESS; } static uint32_t manuf_specific_data_encode(const ble_advdata_manuf_data_t * p_manuf_sp_data, uint8_t * p_encoded_data, uint8_t * p_len) { uint8_t data_size = sizeof(uint16_le_t) + p_manuf_sp_data->data.size; // Check for buffer overflow. if ((*p_len) + ADV_DATA_OFFSET + data_size > BLE_GAP_ADV_MAX_SIZE) { return NRF_ERROR_DATA_SIZE; } // Encode Length and AD Type. p_encoded_data[(*p_len)++] = 1 + data_size; p_encoded_data[(*p_len)++] = BLE_GAP_AD_TYPE_MANUFACTURER_SPECIFIC_DATA; // Encode Company Identifier. (*p_len) += uint16_encode(p_manuf_sp_data->company_identifier, &p_encoded_data[*p_len]); // Encode additional manufacturer specific data. if (p_manuf_sp_data->data.size > 0) { if (p_manuf_sp_data->data.p_data == NULL) { return NRF_ERROR_INVALID_PARAM; } memcpy(&p_encoded_data[*p_len], p_manuf_sp_data->data.p_data, p_manuf_sp_data->data.size); (*p_len) += p_manuf_sp_data->data.size; } return NRF_SUCCESS; } static uint32_t service_data_encode(const ble_advdata_t * p_advdata, uint8_t * p_encoded_data, uint8_t * p_len) { uint8_t i; // Check parameter consistency. if (p_advdata->p_service_data_array == NULL) { return NRF_ERROR_INVALID_PARAM; } for (i = 0; i < p_advdata->service_data_count; i++) { ble_advdata_service_data_t * p_service_data; uint8_t data_size; p_service_data = &p_advdata->p_service_data_array[i]; data_size = sizeof(uint16_le_t) + p_service_data->data.size; // Encode Length and AD Type. p_encoded_data[(*p_len)++] = 1 + data_size; p_encoded_data[(*p_len)++] = BLE_GAP_AD_TYPE_SERVICE_DATA; // Encode service UUID. (*p_len) += uint16_encode(p_service_data->service_uuid, &p_encoded_data[*p_len]); // Encode additional service data. if (p_service_data->data.size > 0) { if (p_service_data->data.p_data == NULL) { return NRF_ERROR_INVALID_PARAM; } memcpy(&p_encoded_data[*p_len], p_service_data->data.p_data, p_service_data->data.size); (*p_len) += p_service_data->data.size; } } return NRF_SUCCESS; } static uint32_t adv_data_encode(const ble_advdata_t * p_advdata, uint8_t * p_encoded_data, uint8_t * p_len) { uint32_t err_code = NRF_SUCCESS; *p_len = 0; // Encode name. if (p_advdata->name_type != BLE_ADVDATA_NO_NAME) { err_code = name_encode(p_advdata, p_encoded_data, p_len); if (err_code != NRF_SUCCESS) { return err_code; } } // Encode appearance. if (p_advdata->include_appearance) { err_code = appearance_encode(p_encoded_data, p_len); if (err_code != NRF_SUCCESS) { return err_code; } } // Encode flags. if (p_advdata->flags.size > 0) { err_code = uint8_array_encode(&p_advdata->flags, BLE_GAP_AD_TYPE_FLAGS, p_encoded_data, p_len); if (err_code != NRF_SUCCESS) { return err_code; } } // Encode TX power level. if (p_advdata->p_tx_power_level != NULL) { err_code = tx_power_level_encode(*p_advdata->p_tx_power_level, p_encoded_data, p_len); if (err_code != NRF_SUCCESS) { return err_code; } } // Encode 'more available' uuid list. if (p_advdata->uuids_more_available.uuid_cnt > 0) { err_code = uuid_list_encode(&p_advdata->uuids_more_available, BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_MORE_AVAILABLE, BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_MORE_AVAILABLE, p_encoded_data, p_len); if (err_code != NRF_SUCCESS) { return err_code; } } // Encode 'complete' uuid list. if (p_advdata->uuids_complete.uuid_cnt > 0) { err_code = uuid_list_encode(&p_advdata->uuids_complete, BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_COMPLETE, BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_COMPLETE, p_encoded_data, p_len); if (err_code != NRF_SUCCESS) { return err_code; } } // Encode 'solicited service' uuid list. if (p_advdata->uuids_solicited.uuid_cnt > 0) { err_code = uuid_list_encode(&p_advdata->uuids_solicited, BLE_GAP_AD_TYPE_SOLICITED_SERVICE_UUIDS_16BIT, BLE_GAP_AD_TYPE_SOLICITED_SERVICE_UUIDS_128BIT, p_encoded_data, p_len); if (err_code != NRF_SUCCESS) { return err_code; } } // Encode Slave Connection Interval Range. if (p_advdata->p_slave_conn_int != NULL) { err_code = conn_int_encode(p_advdata->p_slave_conn_int, p_encoded_data, p_len); if (err_code != NRF_SUCCESS) { return err_code; } } // Encode Manufacturer Specific Data. if (p_advdata->p_manuf_specific_data != NULL) { err_code = manuf_specific_data_encode(p_advdata->p_manuf_specific_data, p_encoded_data, p_len); if (err_code != NRF_SUCCESS) { return err_code; } } // Encode Service Data. if (p_advdata->service_data_count > 0) { err_code = service_data_encode(p_advdata, p_encoded_data, p_len); if (err_code != NRF_SUCCESS) { return err_code; } } return err_code; } static uint32_t advdata_check(const ble_advdata_t * p_advdata) { // Flags must be included in advertising data, and the BLE_GAP_ADV_FLAG_BR_EDR_NOT_SUPPORTED flag must be set. if ((p_advdata->flags.size == 0) || (p_advdata->flags.p_data == NULL) || ((p_advdata->flags.p_data[0] & BLE_GAP_ADV_FLAG_BR_EDR_NOT_SUPPORTED) == 0) ) { return NRF_ERROR_INVALID_PARAM; } return NRF_SUCCESS; } static uint32_t srdata_check(const ble_advdata_t * p_srdata) { // Flags shall not be included in the scan response data. if (p_srdata->flags.size > 0) { return NRF_ERROR_INVALID_PARAM; } return NRF_SUCCESS; } uint32_t ble_advdata_set(const ble_advdata_t * p_advdata, const ble_advdata_t * p_srdata) { uint32_t err_code; uint8_t len_advdata = 0; uint8_t len_srdata = 0; uint8_t encoded_advdata[BLE_GAP_ADV_MAX_SIZE]; uint8_t encoded_srdata[BLE_GAP_ADV_MAX_SIZE]; uint8_t * p_encoded_advdata; uint8_t * p_encoded_srdata; // Encode advertising data (if supplied). if (p_advdata != NULL) { err_code = advdata_check(p_advdata); if (err_code != NRF_SUCCESS) { return err_code; } err_code = adv_data_encode(p_advdata, encoded_advdata, &len_advdata); if (err_code != NRF_SUCCESS) { return err_code; } p_encoded_advdata = encoded_advdata; } else { p_encoded_advdata = NULL; } // Encode scan response data (if supplied). if (p_srdata != NULL) { err_code = srdata_check(p_srdata); if (err_code != NRF_SUCCESS) { return err_code; } err_code = adv_data_encode(p_srdata, encoded_srdata, &len_srdata); if (err_code != NRF_SUCCESS) { return err_code; } p_encoded_srdata = encoded_srdata; } else { p_encoded_srdata = NULL; } // Pass encoded advertising data and/or scan response data to the stack. return sd_ble_gap_adv_data_set(p_encoded_advdata, len_advdata, p_encoded_srdata, len_srdata); }