Nordic stack and drivers for the mbed BLE API Modified for HRM 1017 and correct DISCONNECT event processing
Fork of nRF51822 by
nordic/app_common/hci_mem_pool.c
- Committer:
- todotani
- Date:
- 2014-09-06
- Revision:
- 61:97823585e091
- Parent:
- 46:2bfbbe290083
File content as of revision 61:97823585e091:
/* Copyright (c) 2013 Nordic Semiconductor. All Rights Reserved. * * The information contained herein is property of Nordic Semiconductor ASA. * Terms and conditions of usage are described in detail in NORDIC * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT. * * Licensees are granted free, non-transferable use of the information. NO * WARRANTY of ANY KIND is provided. This heading must NOT be removed from * the file. * */ #include "hci_mem_pool.h" #include "hci_mem_pool_internal.h" #include <stdbool.h> #include <stdio.h> /**@brief RX buffer element instance structure. */ typedef struct { uint8_t rx_buffer[RX_BUF_SIZE]; /**< RX buffer memory array. */ uint32_t length; /**< Length of the RX buffer memory array. */ } rx_buffer_elem_t; /**@brief RX buffer queue element instance structure. */ typedef struct { rx_buffer_elem_t * p_buffer; /**< Pointer to RX buffer element. */ uint32_t free_window_count; /**< Free space element count. */ uint32_t free_available_count; /**< Free area element count. */ uint32_t read_available_count; /**< Read area element count. */ uint32_t write_index; /**< Write position index. */ uint32_t read_index; /**< Read position index. */ uint32_t free_index; /**< Free position index. */ } rx_buffer_queue_t; static bool m_is_tx_allocated; /**< Boolean value to determine if the TX buffer is allocated. */ static rx_buffer_elem_t m_rx_buffer_elem_queue[RX_BUF_QUEUE_SIZE]; /**< RX buffer element instances. */ static rx_buffer_queue_t m_rx_buffer_queue; /**< RX buffer queue element instance. */ uint32_t hci_mem_pool_open(void) { m_is_tx_allocated = false; m_rx_buffer_queue.p_buffer = m_rx_buffer_elem_queue; m_rx_buffer_queue.free_window_count = RX_BUF_QUEUE_SIZE; m_rx_buffer_queue.free_available_count = 0; m_rx_buffer_queue.read_available_count = 0; m_rx_buffer_queue.write_index = 0; m_rx_buffer_queue.read_index = 0; m_rx_buffer_queue.free_index = 0; return NRF_SUCCESS; } uint32_t hci_mem_pool_close(void) { return NRF_SUCCESS; } uint32_t hci_mem_pool_tx_alloc(void ** pp_buffer) { static uint8_t tx_buffer[TX_BUF_SIZE]; uint32_t err_code; if (pp_buffer == NULL) { return NRF_ERROR_NULL; } if (!m_is_tx_allocated) { m_is_tx_allocated = true; *pp_buffer = tx_buffer; err_code = NRF_SUCCESS; } else { err_code = NRF_ERROR_NO_MEM; } return err_code; } uint32_t hci_mem_pool_tx_free(void) { m_is_tx_allocated = false; return NRF_SUCCESS; } uint32_t hci_mem_pool_rx_produce(uint32_t length, void ** pp_buffer) { uint32_t err_code; if (pp_buffer == NULL) { return NRF_ERROR_NULL; } *pp_buffer = NULL; if (m_rx_buffer_queue.free_window_count != 0) { if (length <= RX_BUF_SIZE) { --(m_rx_buffer_queue.free_window_count); ++(m_rx_buffer_queue.read_available_count); *pp_buffer = m_rx_buffer_queue.p_buffer[m_rx_buffer_queue.write_index].rx_buffer; m_rx_buffer_queue.free_index |= (1u << m_rx_buffer_queue.write_index); // @note: Adjust the write_index making use of the fact that the buffer size is of // power of two and two's complement arithmetic. For details refer example to book // "Making embedded systems: Elicia White". m_rx_buffer_queue.write_index = (m_rx_buffer_queue.write_index + 1u) & (RX_BUF_QUEUE_SIZE - 1u); err_code = NRF_SUCCESS; } else { err_code = NRF_ERROR_DATA_SIZE; } } else { err_code = NRF_ERROR_NO_MEM; } return err_code; } uint32_t hci_mem_pool_rx_consume(uint8_t * p_buffer) { uint32_t err_code; uint32_t consume_index; uint32_t start_index; if (m_rx_buffer_queue.free_available_count != 0) { // Find the buffer that has been freed - // Start at read_index minus free_available_count and then increment until read index. err_code = NRF_ERROR_INVALID_ADDR; consume_index = (m_rx_buffer_queue.read_index - m_rx_buffer_queue.free_available_count) & (RX_BUF_QUEUE_SIZE - 1u); start_index = consume_index; do { if (m_rx_buffer_queue.p_buffer[consume_index].rx_buffer == p_buffer) { m_rx_buffer_queue.free_index ^= (1u << consume_index); err_code = NRF_SUCCESS; break; } else { consume_index = (consume_index + 1u) & (RX_BUF_QUEUE_SIZE - 1u); } } while (consume_index != m_rx_buffer_queue.read_index); while (!(m_rx_buffer_queue.free_index & (1 << start_index)) && (m_rx_buffer_queue.free_available_count != 0)) { --(m_rx_buffer_queue.free_available_count); ++(m_rx_buffer_queue.free_window_count); start_index = (consume_index + 1u) & (RX_BUF_QUEUE_SIZE - 1u); } } else { err_code = NRF_ERROR_NO_MEM; } return err_code; } uint32_t hci_mem_pool_rx_data_size_set(uint32_t length) { // @note: Adjust the write_index making use of the fact that the buffer size is of power // of two and two's complement arithmetic. For details refer example to book // "Making embedded systems: Elicia White". const uint32_t index = (m_rx_buffer_queue.write_index - 1u) & (RX_BUF_QUEUE_SIZE - 1u); m_rx_buffer_queue.p_buffer[index].length = length; return NRF_SUCCESS; } uint32_t hci_mem_pool_rx_extract(uint8_t ** pp_buffer, uint32_t * p_length) { uint32_t err_code; if ((pp_buffer == NULL) || (p_length == NULL)) { return NRF_ERROR_NULL; } if (m_rx_buffer_queue.read_available_count != 0) { --(m_rx_buffer_queue.read_available_count); ++(m_rx_buffer_queue.free_available_count); *pp_buffer = m_rx_buffer_queue.p_buffer[m_rx_buffer_queue.read_index].rx_buffer; *p_length = m_rx_buffer_queue.p_buffer[m_rx_buffer_queue.read_index].length; // @note: Adjust the write_index making use of the fact that the buffer size is of power // of two and two's complement arithmetic. For details refer example to book // "Making embedded systems: Elicia White". m_rx_buffer_queue.read_index = (m_rx_buffer_queue.read_index + 1u) & (RX_BUF_QUEUE_SIZE - 1u); err_code = NRF_SUCCESS; } else { err_code = NRF_ERROR_NO_MEM; } return err_code; }