Opencv 3.1 project on GR-PEACH board

Fork of gr-peach-opencv-project by the do

Committer:
thedo
Date:
Tue Jul 04 06:23:13 2017 +0000
Revision:
170:54ff26da7eb6
Parent:
166:3a9487d57a5c
project opencv 3.1 on GR PEACH board, no use SD card.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
thedo 166:3a9487d57a5c 1 /*M///////////////////////////////////////////////////////////////////////////////////////
thedo 166:3a9487d57a5c 2 //
thedo 166:3a9487d57a5c 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
thedo 166:3a9487d57a5c 4 //
thedo 166:3a9487d57a5c 5 // By downloading, copying, installing or using the software you agree to this license.
thedo 166:3a9487d57a5c 6 // If you do not agree to this license, do not download, install,
thedo 166:3a9487d57a5c 7 // copy or use the software.
thedo 166:3a9487d57a5c 8 //
thedo 166:3a9487d57a5c 9 //
thedo 166:3a9487d57a5c 10 // License Agreement
thedo 166:3a9487d57a5c 11 // For Open Source Computer Vision Library
thedo 166:3a9487d57a5c 12 //
thedo 166:3a9487d57a5c 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
thedo 166:3a9487d57a5c 14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
thedo 166:3a9487d57a5c 15 // Third party copyrights are property of their respective owners.
thedo 166:3a9487d57a5c 16 //
thedo 166:3a9487d57a5c 17 // Redistribution and use in source and binary forms, with or without modification,
thedo 166:3a9487d57a5c 18 // are permitted provided that the following conditions are met:
thedo 166:3a9487d57a5c 19 //
thedo 166:3a9487d57a5c 20 // * Redistribution's of source code must retain the above copyright notice,
thedo 166:3a9487d57a5c 21 // this list of conditions and the following disclaimer.
thedo 166:3a9487d57a5c 22 //
thedo 166:3a9487d57a5c 23 // * Redistribution's in binary form must reproduce the above copyright notice,
thedo 166:3a9487d57a5c 24 // this list of conditions and the following disclaimer in the documentation
thedo 166:3a9487d57a5c 25 // and/or other materials provided with the distribution.
thedo 166:3a9487d57a5c 26 //
thedo 166:3a9487d57a5c 27 // * The name of the copyright holders may not be used to endorse or promote products
thedo 166:3a9487d57a5c 28 // derived from this software without specific prior written permission.
thedo 166:3a9487d57a5c 29 //
thedo 166:3a9487d57a5c 30 // This software is provided by the copyright holders and contributors "as is" and
thedo 166:3a9487d57a5c 31 // any express or implied warranties, including, but not limited to, the implied
thedo 166:3a9487d57a5c 32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
thedo 166:3a9487d57a5c 33 // In no event shall the Intel Corporation or contributors be liable for any direct,
thedo 166:3a9487d57a5c 34 // indirect, incidental, special, exemplary, or consequential damages
thedo 166:3a9487d57a5c 35 // (including, but not limited to, procurement of substitute goods or services;
thedo 166:3a9487d57a5c 36 // loss of use, data, or profits; or business interruption) however caused
thedo 166:3a9487d57a5c 37 // and on any theory of liability, whether in contract, strict liability,
thedo 166:3a9487d57a5c 38 // or tort (including negligence or otherwise) arising in any way out of
thedo 166:3a9487d57a5c 39 // the use of this software, even if advised of the possibility of such damage.
thedo 166:3a9487d57a5c 40 //
thedo 166:3a9487d57a5c 41 //M*/
thedo 166:3a9487d57a5c 42
thedo 166:3a9487d57a5c 43 #ifndef __OPENCV_IMGPROC_HPP__
thedo 166:3a9487d57a5c 44 #define __OPENCV_IMGPROC_HPP__
thedo 166:3a9487d57a5c 45
thedo 166:3a9487d57a5c 46 #include "opencv2/core.hpp"
thedo 166:3a9487d57a5c 47
thedo 166:3a9487d57a5c 48 /**
thedo 166:3a9487d57a5c 49 @defgroup imgproc Image processing
thedo 166:3a9487d57a5c 50 @{
thedo 166:3a9487d57a5c 51 @defgroup imgproc_filter Image Filtering
thedo 166:3a9487d57a5c 52
thedo 166:3a9487d57a5c 53 Functions and classes described in this section are used to perform various linear or non-linear
thedo 166:3a9487d57a5c 54 filtering operations on 2D images (represented as Mat's). It means that for each pixel location
thedo 166:3a9487d57a5c 55 \f$(x,y)\f$ in the source image (normally, rectangular), its neighborhood is considered and used to
thedo 166:3a9487d57a5c 56 compute the response. In case of a linear filter, it is a weighted sum of pixel values. In case of
thedo 166:3a9487d57a5c 57 morphological operations, it is the minimum or maximum values, and so on. The computed response is
thedo 166:3a9487d57a5c 58 stored in the destination image at the same location \f$(x,y)\f$. It means that the output image
thedo 166:3a9487d57a5c 59 will be of the same size as the input image. Normally, the functions support multi-channel arrays,
thedo 166:3a9487d57a5c 60 in which case every channel is processed independently. Therefore, the output image will also have
thedo 166:3a9487d57a5c 61 the same number of channels as the input one.
thedo 166:3a9487d57a5c 62
thedo 166:3a9487d57a5c 63 Another common feature of the functions and classes described in this section is that, unlike
thedo 166:3a9487d57a5c 64 simple arithmetic functions, they need to extrapolate values of some non-existing pixels. For
thedo 166:3a9487d57a5c 65 example, if you want to smooth an image using a Gaussian \f$3 \times 3\f$ filter, then, when
thedo 166:3a9487d57a5c 66 processing the left-most pixels in each row, you need pixels to the left of them, that is, outside
thedo 166:3a9487d57a5c 67 of the image. You can let these pixels be the same as the left-most image pixels ("replicated
thedo 166:3a9487d57a5c 68 border" extrapolation method), or assume that all the non-existing pixels are zeros ("constant
thedo 166:3a9487d57a5c 69 border" extrapolation method), and so on. OpenCV enables you to specify the extrapolation method.
thedo 166:3a9487d57a5c 70 For details, see cv::BorderTypes
thedo 166:3a9487d57a5c 71
thedo 166:3a9487d57a5c 72 @anchor filter_depths
thedo 166:3a9487d57a5c 73 ### Depth combinations
thedo 166:3a9487d57a5c 74 Input depth (src.depth()) | Output depth (ddepth)
thedo 166:3a9487d57a5c 75 --------------------------|----------------------
thedo 166:3a9487d57a5c 76 CV_8U | -1/CV_16S/CV_32F/CV_64F
thedo 166:3a9487d57a5c 77 CV_16U/CV_16S | -1/CV_32F/CV_64F
thedo 166:3a9487d57a5c 78 CV_32F | -1/CV_32F/CV_64F
thedo 166:3a9487d57a5c 79 CV_64F | -1/CV_64F
thedo 166:3a9487d57a5c 80
thedo 166:3a9487d57a5c 81 @note when ddepth=-1, the output image will have the same depth as the source.
thedo 166:3a9487d57a5c 82
thedo 166:3a9487d57a5c 83 @defgroup imgproc_transform Geometric Image Transformations
thedo 166:3a9487d57a5c 84
thedo 166:3a9487d57a5c 85 The functions in this section perform various geometrical transformations of 2D images. They do not
thedo 166:3a9487d57a5c 86 change the image content but deform the pixel grid and map this deformed grid to the destination
thedo 166:3a9487d57a5c 87 image. In fact, to avoid sampling artifacts, the mapping is done in the reverse order, from
thedo 166:3a9487d57a5c 88 destination to the source. That is, for each pixel \f$(x, y)\f$ of the destination image, the
thedo 166:3a9487d57a5c 89 functions compute coordinates of the corresponding "donor" pixel in the source image and copy the
thedo 166:3a9487d57a5c 90 pixel value:
thedo 166:3a9487d57a5c 91
thedo 166:3a9487d57a5c 92 \f[\texttt{dst} (x,y)= \texttt{src} (f_x(x,y), f_y(x,y))\f]
thedo 166:3a9487d57a5c 93
thedo 166:3a9487d57a5c 94 In case when you specify the forward mapping \f$\left<g_x, g_y\right>: \texttt{src} \rightarrow
thedo 166:3a9487d57a5c 95 \texttt{dst}\f$, the OpenCV functions first compute the corresponding inverse mapping
thedo 166:3a9487d57a5c 96 \f$\left<f_x, f_y\right>: \texttt{dst} \rightarrow \texttt{src}\f$ and then use the above formula.
thedo 166:3a9487d57a5c 97
thedo 166:3a9487d57a5c 98 The actual implementations of the geometrical transformations, from the most generic remap and to
thedo 166:3a9487d57a5c 99 the simplest and the fastest resize, need to solve two main problems with the above formula:
thedo 166:3a9487d57a5c 100
thedo 166:3a9487d57a5c 101 - Extrapolation of non-existing pixels. Similarly to the filtering functions described in the
thedo 166:3a9487d57a5c 102 previous section, for some \f$(x,y)\f$, either one of \f$f_x(x,y)\f$, or \f$f_y(x,y)\f$, or both
thedo 166:3a9487d57a5c 103 of them may fall outside of the image. In this case, an extrapolation method needs to be used.
thedo 166:3a9487d57a5c 104 OpenCV provides the same selection of extrapolation methods as in the filtering functions. In
thedo 166:3a9487d57a5c 105 addition, it provides the method BORDER_TRANSPARENT. This means that the corresponding pixels in
thedo 166:3a9487d57a5c 106 the destination image will not be modified at all.
thedo 166:3a9487d57a5c 107
thedo 166:3a9487d57a5c 108 - Interpolation of pixel values. Usually \f$f_x(x,y)\f$ and \f$f_y(x,y)\f$ are floating-point
thedo 166:3a9487d57a5c 109 numbers. This means that \f$\left<f_x, f_y\right>\f$ can be either an affine or perspective
thedo 166:3a9487d57a5c 110 transformation, or radial lens distortion correction, and so on. So, a pixel value at fractional
thedo 166:3a9487d57a5c 111 coordinates needs to be retrieved. In the simplest case, the coordinates can be just rounded to the
thedo 166:3a9487d57a5c 112 nearest integer coordinates and the corresponding pixel can be used. This is called a
thedo 166:3a9487d57a5c 113 nearest-neighbor interpolation. However, a better result can be achieved by using more
thedo 166:3a9487d57a5c 114 sophisticated [interpolation methods](http://en.wikipedia.org/wiki/Multivariate_interpolation) ,
thedo 166:3a9487d57a5c 115 where a polynomial function is fit into some neighborhood of the computed pixel \f$(f_x(x,y),
thedo 166:3a9487d57a5c 116 f_y(x,y))\f$, and then the value of the polynomial at \f$(f_x(x,y), f_y(x,y))\f$ is taken as the
thedo 166:3a9487d57a5c 117 interpolated pixel value. In OpenCV, you can choose between several interpolation methods. See
thedo 166:3a9487d57a5c 118 resize for details.
thedo 166:3a9487d57a5c 119
thedo 166:3a9487d57a5c 120 @defgroup imgproc_misc Miscellaneous Image Transformations
thedo 166:3a9487d57a5c 121 @defgroup imgproc_draw Drawing Functions
thedo 166:3a9487d57a5c 122
thedo 166:3a9487d57a5c 123 Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be
thedo 166:3a9487d57a5c 124 rendered with antialiasing (implemented only for 8-bit images for now). All the functions include
thedo 166:3a9487d57a5c 125 the parameter color that uses an RGB value (that may be constructed with the Scalar constructor )
thedo 166:3a9487d57a5c 126 for color images and brightness for grayscale images. For color images, the channel ordering is
thedo 166:3a9487d57a5c 127 normally *Blue, Green, Red*. This is what imshow, imread, and imwrite expect. So, if you form a
thedo 166:3a9487d57a5c 128 color using the Scalar constructor, it should look like:
thedo 166:3a9487d57a5c 129
thedo 166:3a9487d57a5c 130 \f[\texttt{Scalar} (blue \_ component, green \_ component, red \_ component[, alpha \_ component])\f]
thedo 166:3a9487d57a5c 131
thedo 166:3a9487d57a5c 132 If you are using your own image rendering and I/O functions, you can use any channel ordering. The
thedo 166:3a9487d57a5c 133 drawing functions process each channel independently and do not depend on the channel order or even
thedo 166:3a9487d57a5c 134 on the used color space. The whole image can be converted from BGR to RGB or to a different color
thedo 166:3a9487d57a5c 135 space using cvtColor .
thedo 166:3a9487d57a5c 136
thedo 166:3a9487d57a5c 137 If a drawn figure is partially or completely outside the image, the drawing functions clip it. Also,
thedo 166:3a9487d57a5c 138 many drawing functions can handle pixel coordinates specified with sub-pixel accuracy. This means
thedo 166:3a9487d57a5c 139 that the coordinates can be passed as fixed-point numbers encoded as integers. The number of
thedo 166:3a9487d57a5c 140 fractional bits is specified by the shift parameter and the real point coordinates are calculated as
thedo 166:3a9487d57a5c 141 \f$\texttt{Point}(x,y)\rightarrow\texttt{Point2f}(x*2^{-shift},y*2^{-shift})\f$ . This feature is
thedo 166:3a9487d57a5c 142 especially effective when rendering antialiased shapes.
thedo 166:3a9487d57a5c 143
thedo 166:3a9487d57a5c 144 @note The functions do not support alpha-transparency when the target image is 4-channel. In this
thedo 166:3a9487d57a5c 145 case, the color[3] is simply copied to the repainted pixels. Thus, if you want to paint
thedo 166:3a9487d57a5c 146 semi-transparent shapes, you can paint them in a separate buffer and then blend it with the main
thedo 166:3a9487d57a5c 147 image.
thedo 166:3a9487d57a5c 148
thedo 166:3a9487d57a5c 149 @defgroup imgproc_colormap ColorMaps in OpenCV
thedo 166:3a9487d57a5c 150
thedo 166:3a9487d57a5c 151 The human perception isn't built for observing fine changes in grayscale images. Human eyes are more
thedo 166:3a9487d57a5c 152 sensitive to observing changes between colors, so you often need to recolor your grayscale images to
thedo 166:3a9487d57a5c 153 get a clue about them. OpenCV now comes with various colormaps to enhance the visualization in your
thedo 166:3a9487d57a5c 154 computer vision application.
thedo 166:3a9487d57a5c 155
thedo 166:3a9487d57a5c 156 In OpenCV you only need applyColorMap to apply a colormap on a given image. The following sample
thedo 166:3a9487d57a5c 157 code reads the path to an image from command line, applies a Jet colormap on it and shows the
thedo 166:3a9487d57a5c 158 result:
thedo 166:3a9487d57a5c 159
thedo 166:3a9487d57a5c 160 @code
thedo 166:3a9487d57a5c 161 #include <opencv2/core.hpp>
thedo 166:3a9487d57a5c 162 #include <opencv2/imgproc.hpp>
thedo 166:3a9487d57a5c 163 #include <opencv2/imgcodecs.hpp>
thedo 166:3a9487d57a5c 164 #include <opencv2/highgui.hpp>
thedo 166:3a9487d57a5c 165 using namespace cv;
thedo 166:3a9487d57a5c 166
thedo 166:3a9487d57a5c 167 #include <iostream>
thedo 166:3a9487d57a5c 168 using namespace std;
thedo 166:3a9487d57a5c 169
thedo 166:3a9487d57a5c 170 int main(int argc, const char *argv[])
thedo 166:3a9487d57a5c 171 {
thedo 166:3a9487d57a5c 172 // We need an input image. (can be grayscale or color)
thedo 166:3a9487d57a5c 173 if (argc < 2)
thedo 166:3a9487d57a5c 174 {
thedo 166:3a9487d57a5c 175 cerr << "We need an image to process here. Please run: colorMap [path_to_image]" << endl;
thedo 166:3a9487d57a5c 176 return -1;
thedo 166:3a9487d57a5c 177 }
thedo 166:3a9487d57a5c 178 Mat img_in = imread(argv[1]);
thedo 166:3a9487d57a5c 179 if(img_in.empty())
thedo 166:3a9487d57a5c 180 {
thedo 166:3a9487d57a5c 181 cerr << "Sample image (" << argv[1] << ") is empty. Please adjust your path, so it points to a valid input image!" << endl;
thedo 166:3a9487d57a5c 182 return -1;
thedo 166:3a9487d57a5c 183 }
thedo 166:3a9487d57a5c 184 // Holds the colormap version of the image:
thedo 166:3a9487d57a5c 185 Mat img_color;
thedo 166:3a9487d57a5c 186 // Apply the colormap:
thedo 166:3a9487d57a5c 187 applyColorMap(img_in, img_color, COLORMAP_JET);
thedo 166:3a9487d57a5c 188 // Show the result:
thedo 166:3a9487d57a5c 189 imshow("colorMap", img_color);
thedo 166:3a9487d57a5c 190 waitKey(0);
thedo 166:3a9487d57a5c 191 return 0;
thedo 166:3a9487d57a5c 192 }
thedo 166:3a9487d57a5c 193 @endcode
thedo 166:3a9487d57a5c 194
thedo 166:3a9487d57a5c 195 @see cv::ColormapTypes
thedo 166:3a9487d57a5c 196
thedo 166:3a9487d57a5c 197 @defgroup imgproc_hist Histograms
thedo 166:3a9487d57a5c 198 @defgroup imgproc_shape Structural Analysis and Shape Descriptors
thedo 166:3a9487d57a5c 199 @defgroup imgproc_motion Motion Analysis and Object Tracking
thedo 166:3a9487d57a5c 200 @defgroup imgproc_feature Feature Detection
thedo 166:3a9487d57a5c 201 @defgroup imgproc_object Object Detection
thedo 166:3a9487d57a5c 202 @defgroup imgproc_c C API
thedo 166:3a9487d57a5c 203 @}
thedo 166:3a9487d57a5c 204 */
thedo 166:3a9487d57a5c 205
thedo 166:3a9487d57a5c 206 namespace cv
thedo 166:3a9487d57a5c 207 {
thedo 166:3a9487d57a5c 208
thedo 166:3a9487d57a5c 209 /** @addtogroup imgproc
thedo 166:3a9487d57a5c 210 @{
thedo 166:3a9487d57a5c 211 */
thedo 166:3a9487d57a5c 212
thedo 166:3a9487d57a5c 213 //! @addtogroup imgproc_filter
thedo 166:3a9487d57a5c 214 //! @{
thedo 166:3a9487d57a5c 215
thedo 166:3a9487d57a5c 216 //! type of morphological operation
thedo 166:3a9487d57a5c 217 enum MorphTypes{
thedo 166:3a9487d57a5c 218 MORPH_ERODE = 0, //!< see cv::erode
thedo 166:3a9487d57a5c 219 MORPH_DILATE = 1, //!< see cv::dilate
thedo 166:3a9487d57a5c 220 MORPH_OPEN = 2, //!< an opening operation
thedo 166:3a9487d57a5c 221 //!< \f[\texttt{dst} = \mathrm{open} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \mathrm{erode} ( \texttt{src} , \texttt{element} ))\f]
thedo 166:3a9487d57a5c 222 MORPH_CLOSE = 3, //!< a closing operation
thedo 166:3a9487d57a5c 223 //!< \f[\texttt{dst} = \mathrm{close} ( \texttt{src} , \texttt{element} )= \mathrm{erode} ( \mathrm{dilate} ( \texttt{src} , \texttt{element} ))\f]
thedo 166:3a9487d57a5c 224 MORPH_GRADIENT = 4, //!< a morphological gradient
thedo 166:3a9487d57a5c 225 //!< \f[\texttt{dst} = \mathrm{morph\_grad} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \texttt{src} , \texttt{element} )- \mathrm{erode} ( \texttt{src} , \texttt{element} )\f]
thedo 166:3a9487d57a5c 226 MORPH_TOPHAT = 5, //!< "top hat"
thedo 166:3a9487d57a5c 227 //!< \f[\texttt{dst} = \mathrm{tophat} ( \texttt{src} , \texttt{element} )= \texttt{src} - \mathrm{open} ( \texttt{src} , \texttt{element} )\f]
thedo 166:3a9487d57a5c 228 MORPH_BLACKHAT = 6, //!< "black hat"
thedo 166:3a9487d57a5c 229 //!< \f[\texttt{dst} = \mathrm{blackhat} ( \texttt{src} , \texttt{element} )= \mathrm{close} ( \texttt{src} , \texttt{element} )- \texttt{src}\f]
thedo 166:3a9487d57a5c 230 MORPH_HITMISS = 7 //!< "hit and miss"
thedo 166:3a9487d57a5c 231 //!< .- Only supported for CV_8UC1 binary images. Tutorial can be found in [this page](http://opencv-code.com/tutorials/hit-or-miss-transform-in-opencv/)
thedo 166:3a9487d57a5c 232 };
thedo 166:3a9487d57a5c 233
thedo 166:3a9487d57a5c 234 //! shape of the structuring element
thedo 166:3a9487d57a5c 235 enum MorphShapes {
thedo 166:3a9487d57a5c 236 MORPH_RECT = 0, //!< a rectangular structuring element: \f[E_{ij}=1\f]
thedo 166:3a9487d57a5c 237 MORPH_CROSS = 1, //!< a cross-shaped structuring element:
thedo 166:3a9487d57a5c 238 //!< \f[E_{ij} = \fork{1}{if i=\texttt{anchor.y} or j=\texttt{anchor.x}}{0}{otherwise}\f]
thedo 166:3a9487d57a5c 239 MORPH_ELLIPSE = 2 //!< an elliptic structuring element, that is, a filled ellipse inscribed
thedo 166:3a9487d57a5c 240 //!< into the rectangle Rect(0, 0, esize.width, 0.esize.height)
thedo 166:3a9487d57a5c 241 };
thedo 166:3a9487d57a5c 242
thedo 166:3a9487d57a5c 243 //! @} imgproc_filter
thedo 166:3a9487d57a5c 244
thedo 166:3a9487d57a5c 245 //! @addtogroup imgproc_transform
thedo 166:3a9487d57a5c 246 //! @{
thedo 166:3a9487d57a5c 247
thedo 166:3a9487d57a5c 248 //! interpolation algorithm
thedo 166:3a9487d57a5c 249 enum InterpolationFlags{
thedo 166:3a9487d57a5c 250 /** nearest neighbor interpolation */
thedo 166:3a9487d57a5c 251 INTER_NEAREST = 0,
thedo 166:3a9487d57a5c 252 /** bilinear interpolation */
thedo 166:3a9487d57a5c 253 INTER_LINEAR = 1,
thedo 166:3a9487d57a5c 254 /** bicubic interpolation */
thedo 166:3a9487d57a5c 255 INTER_CUBIC = 2,
thedo 166:3a9487d57a5c 256 /** resampling using pixel area relation. It may be a preferred method for image decimation, as
thedo 166:3a9487d57a5c 257 it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST
thedo 166:3a9487d57a5c 258 method. */
thedo 166:3a9487d57a5c 259 INTER_AREA = 3,
thedo 166:3a9487d57a5c 260 /** Lanczos interpolation over 8x8 neighborhood */
thedo 166:3a9487d57a5c 261 INTER_LANCZOS4 = 4,
thedo 166:3a9487d57a5c 262 /** mask for interpolation codes */
thedo 166:3a9487d57a5c 263 INTER_MAX = 7,
thedo 166:3a9487d57a5c 264 /** flag, fills all of the destination image pixels. If some of them correspond to outliers in the
thedo 166:3a9487d57a5c 265 source image, they are set to zero */
thedo 166:3a9487d57a5c 266 WARP_FILL_OUTLIERS = 8,
thedo 166:3a9487d57a5c 267 /** flag, inverse transformation
thedo 166:3a9487d57a5c 268
thedo 166:3a9487d57a5c 269 For example, polar transforms:
thedo 166:3a9487d57a5c 270 - flag is __not__ set: \f$dst( \phi , \rho ) = src(x,y)\f$
thedo 166:3a9487d57a5c 271 - flag is set: \f$dst(x,y) = src( \phi , \rho )\f$
thedo 166:3a9487d57a5c 272 */
thedo 166:3a9487d57a5c 273 WARP_INVERSE_MAP = 16
thedo 166:3a9487d57a5c 274 };
thedo 166:3a9487d57a5c 275
thedo 166:3a9487d57a5c 276 enum InterpolationMasks {
thedo 166:3a9487d57a5c 277 INTER_BITS = 5,
thedo 166:3a9487d57a5c 278 INTER_BITS2 = INTER_BITS * 2,
thedo 166:3a9487d57a5c 279 INTER_TAB_SIZE = 1 << INTER_BITS,
thedo 166:3a9487d57a5c 280 INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE
thedo 166:3a9487d57a5c 281 };
thedo 166:3a9487d57a5c 282
thedo 166:3a9487d57a5c 283 //! @} imgproc_transform
thedo 166:3a9487d57a5c 284
thedo 166:3a9487d57a5c 285 //! @addtogroup imgproc_misc
thedo 166:3a9487d57a5c 286 //! @{
thedo 166:3a9487d57a5c 287
thedo 166:3a9487d57a5c 288 //! Distance types for Distance Transform and M-estimators
thedo 166:3a9487d57a5c 289 //! @see cv::distanceTransform, cv::fitLine
thedo 166:3a9487d57a5c 290 enum DistanceTypes {
thedo 166:3a9487d57a5c 291 DIST_USER = -1, //!< User defined distance
thedo 166:3a9487d57a5c 292 DIST_L1 = 1, //!< distance = |x1-x2| + |y1-y2|
thedo 166:3a9487d57a5c 293 DIST_L2 = 2, //!< the simple euclidean distance
thedo 166:3a9487d57a5c 294 DIST_C = 3, //!< distance = max(|x1-x2|,|y1-y2|)
thedo 166:3a9487d57a5c 295 DIST_L12 = 4, //!< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1))
thedo 166:3a9487d57a5c 296 DIST_FAIR = 5, //!< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998
thedo 166:3a9487d57a5c 297 DIST_WELSCH = 6, //!< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846
thedo 166:3a9487d57a5c 298 DIST_HUBER = 7 //!< distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345
thedo 166:3a9487d57a5c 299 };
thedo 166:3a9487d57a5c 300
thedo 166:3a9487d57a5c 301 //! Mask size for distance transform
thedo 166:3a9487d57a5c 302 enum DistanceTransformMasks {
thedo 166:3a9487d57a5c 303 DIST_MASK_3 = 3, //!< mask=3
thedo 166:3a9487d57a5c 304 DIST_MASK_5 = 5, //!< mask=5
thedo 166:3a9487d57a5c 305 DIST_MASK_PRECISE = 0 //!<
thedo 166:3a9487d57a5c 306 };
thedo 166:3a9487d57a5c 307
thedo 166:3a9487d57a5c 308 //! type of the threshold operation
thedo 166:3a9487d57a5c 309 //! ![threshold types](pics/threshold.png)
thedo 166:3a9487d57a5c 310 enum ThresholdTypes {
thedo 166:3a9487d57a5c 311 THRESH_BINARY = 0, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{maxval}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
thedo 166:3a9487d57a5c 312 THRESH_BINARY_INV = 1, //!< \f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{maxval}}{otherwise}\f]
thedo 166:3a9487d57a5c 313 THRESH_TRUNC = 2, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{threshold}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
thedo 166:3a9487d57a5c 314 THRESH_TOZERO = 3, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{src}(x,y)}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
thedo 166:3a9487d57a5c 315 THRESH_TOZERO_INV = 4, //!< \f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
thedo 166:3a9487d57a5c 316 THRESH_MASK = 7,
thedo 166:3a9487d57a5c 317 THRESH_OTSU = 8, //!< flag, use Otsu algorithm to choose the optimal threshold value
thedo 166:3a9487d57a5c 318 THRESH_TRIANGLE = 16 //!< flag, use Triangle algorithm to choose the optimal threshold value
thedo 166:3a9487d57a5c 319 };
thedo 166:3a9487d57a5c 320
thedo 166:3a9487d57a5c 321 //! adaptive threshold algorithm
thedo 166:3a9487d57a5c 322 //! see cv::adaptiveThreshold
thedo 166:3a9487d57a5c 323 enum AdaptiveThresholdTypes {
thedo 166:3a9487d57a5c 324 /** the threshold value \f$T(x,y)\f$ is a mean of the \f$\texttt{blockSize} \times
thedo 166:3a9487d57a5c 325 \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ minus C */
thedo 166:3a9487d57a5c 326 ADAPTIVE_THRESH_MEAN_C = 0,
thedo 166:3a9487d57a5c 327 /** the threshold value \f$T(x, y)\f$ is a weighted sum (cross-correlation with a Gaussian
thedo 166:3a9487d57a5c 328 window) of the \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$
thedo 166:3a9487d57a5c 329 minus C . The default sigma (standard deviation) is used for the specified blockSize . See
thedo 166:3a9487d57a5c 330 cv::getGaussianKernel*/
thedo 166:3a9487d57a5c 331 ADAPTIVE_THRESH_GAUSSIAN_C = 1
thedo 166:3a9487d57a5c 332 };
thedo 166:3a9487d57a5c 333
thedo 166:3a9487d57a5c 334 //! cv::undistort mode
thedo 166:3a9487d57a5c 335 enum UndistortTypes {
thedo 166:3a9487d57a5c 336 PROJ_SPHERICAL_ORTHO = 0,
thedo 166:3a9487d57a5c 337 PROJ_SPHERICAL_EQRECT = 1
thedo 166:3a9487d57a5c 338 };
thedo 166:3a9487d57a5c 339
thedo 166:3a9487d57a5c 340 //! class of the pixel in GrabCut algorithm
thedo 166:3a9487d57a5c 341 enum GrabCutClasses {
thedo 166:3a9487d57a5c 342 GC_BGD = 0, //!< an obvious background pixels
thedo 166:3a9487d57a5c 343 GC_FGD = 1, //!< an obvious foreground (object) pixel
thedo 166:3a9487d57a5c 344 GC_PR_BGD = 2, //!< a possible background pixel
thedo 166:3a9487d57a5c 345 GC_PR_FGD = 3 //!< a possible foreground pixel
thedo 166:3a9487d57a5c 346 };
thedo 166:3a9487d57a5c 347
thedo 166:3a9487d57a5c 348 //! GrabCut algorithm flags
thedo 166:3a9487d57a5c 349 enum GrabCutModes {
thedo 166:3a9487d57a5c 350 /** The function initializes the state and the mask using the provided rectangle. After that it
thedo 166:3a9487d57a5c 351 runs iterCount iterations of the algorithm. */
thedo 166:3a9487d57a5c 352 GC_INIT_WITH_RECT = 0,
thedo 166:3a9487d57a5c 353 /** The function initializes the state using the provided mask. Note that GC_INIT_WITH_RECT
thedo 166:3a9487d57a5c 354 and GC_INIT_WITH_MASK can be combined. Then, all the pixels outside of the ROI are
thedo 166:3a9487d57a5c 355 automatically initialized with GC_BGD .*/
thedo 166:3a9487d57a5c 356 GC_INIT_WITH_MASK = 1,
thedo 166:3a9487d57a5c 357 /** The value means that the algorithm should just resume. */
thedo 166:3a9487d57a5c 358 GC_EVAL = 2
thedo 166:3a9487d57a5c 359 };
thedo 166:3a9487d57a5c 360
thedo 166:3a9487d57a5c 361 //! distanceTransform algorithm flags
thedo 166:3a9487d57a5c 362 enum DistanceTransformLabelTypes {
thedo 166:3a9487d57a5c 363 /** each connected component of zeros in src (as well as all the non-zero pixels closest to the
thedo 166:3a9487d57a5c 364 connected component) will be assigned the same label */
thedo 166:3a9487d57a5c 365 DIST_LABEL_CCOMP = 0,
thedo 166:3a9487d57a5c 366 /** each zero pixel (and all the non-zero pixels closest to it) gets its own label. */
thedo 166:3a9487d57a5c 367 DIST_LABEL_PIXEL = 1
thedo 166:3a9487d57a5c 368 };
thedo 166:3a9487d57a5c 369
thedo 166:3a9487d57a5c 370 //! floodfill algorithm flags
thedo 166:3a9487d57a5c 371 enum FloodFillFlags {
thedo 166:3a9487d57a5c 372 /** If set, the difference between the current pixel and seed pixel is considered. Otherwise,
thedo 166:3a9487d57a5c 373 the difference between neighbor pixels is considered (that is, the range is floating). */
thedo 166:3a9487d57a5c 374 FLOODFILL_FIXED_RANGE = 1 << 16,
thedo 166:3a9487d57a5c 375 /** If set, the function does not change the image ( newVal is ignored), and only fills the
thedo 166:3a9487d57a5c 376 mask with the value specified in bits 8-16 of flags as described above. This option only make
thedo 166:3a9487d57a5c 377 sense in function variants that have the mask parameter. */
thedo 166:3a9487d57a5c 378 FLOODFILL_MASK_ONLY = 1 << 17
thedo 166:3a9487d57a5c 379 };
thedo 166:3a9487d57a5c 380
thedo 166:3a9487d57a5c 381 //! @} imgproc_misc
thedo 166:3a9487d57a5c 382
thedo 166:3a9487d57a5c 383 //! @addtogroup imgproc_shape
thedo 166:3a9487d57a5c 384 //! @{
thedo 166:3a9487d57a5c 385
thedo 166:3a9487d57a5c 386 //! connected components algorithm output formats
thedo 166:3a9487d57a5c 387 enum ConnectedComponentsTypes {
thedo 166:3a9487d57a5c 388 CC_STAT_LEFT = 0, //!< The leftmost (x) coordinate which is the inclusive start of the bounding
thedo 166:3a9487d57a5c 389 //!< box in the horizontal direction.
thedo 166:3a9487d57a5c 390 CC_STAT_TOP = 1, //!< The topmost (y) coordinate which is the inclusive start of the bounding
thedo 166:3a9487d57a5c 391 //!< box in the vertical direction.
thedo 166:3a9487d57a5c 392 CC_STAT_WIDTH = 2, //!< The horizontal size of the bounding box
thedo 166:3a9487d57a5c 393 CC_STAT_HEIGHT = 3, //!< The vertical size of the bounding box
thedo 166:3a9487d57a5c 394 CC_STAT_AREA = 4, //!< The total area (in pixels) of the connected component
thedo 166:3a9487d57a5c 395 CC_STAT_MAX = 5
thedo 166:3a9487d57a5c 396 };
thedo 166:3a9487d57a5c 397
thedo 166:3a9487d57a5c 398 //! mode of the contour retrieval algorithm
thedo 166:3a9487d57a5c 399 enum RetrievalModes {
thedo 166:3a9487d57a5c 400 /** retrieves only the extreme outer contours. It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for
thedo 166:3a9487d57a5c 401 all the contours. */
thedo 166:3a9487d57a5c 402 RETR_EXTERNAL = 0,
thedo 166:3a9487d57a5c 403 /** retrieves all of the contours without establishing any hierarchical relationships. */
thedo 166:3a9487d57a5c 404 RETR_LIST = 1,
thedo 166:3a9487d57a5c 405 /** retrieves all of the contours and organizes them into a two-level hierarchy. At the top
thedo 166:3a9487d57a5c 406 level, there are external boundaries of the components. At the second level, there are
thedo 166:3a9487d57a5c 407 boundaries of the holes. If there is another contour inside a hole of a connected component, it
thedo 166:3a9487d57a5c 408 is still put at the top level. */
thedo 166:3a9487d57a5c 409 RETR_CCOMP = 2,
thedo 166:3a9487d57a5c 410 /** retrieves all of the contours and reconstructs a full hierarchy of nested contours.*/
thedo 166:3a9487d57a5c 411 RETR_TREE = 3,
thedo 166:3a9487d57a5c 412 RETR_FLOODFILL = 4 //!<
thedo 166:3a9487d57a5c 413 };
thedo 166:3a9487d57a5c 414
thedo 166:3a9487d57a5c 415 //! the contour approximation algorithm
thedo 166:3a9487d57a5c 416 enum ContourApproximationModes {
thedo 166:3a9487d57a5c 417 /** stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and
thedo 166:3a9487d57a5c 418 (x2,y2) of the contour will be either horizontal, vertical or diagonal neighbors, that is,
thedo 166:3a9487d57a5c 419 max(abs(x1-x2),abs(y2-y1))==1. */
thedo 166:3a9487d57a5c 420 CHAIN_APPROX_NONE = 1,
thedo 166:3a9487d57a5c 421 /** compresses horizontal, vertical, and diagonal segments and leaves only their end points.
thedo 166:3a9487d57a5c 422 For example, an up-right rectangular contour is encoded with 4 points. */
thedo 166:3a9487d57a5c 423 CHAIN_APPROX_SIMPLE = 2,
thedo 166:3a9487d57a5c 424 /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
thedo 166:3a9487d57a5c 425 CHAIN_APPROX_TC89_L1 = 3,
thedo 166:3a9487d57a5c 426 /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
thedo 166:3a9487d57a5c 427 CHAIN_APPROX_TC89_KCOS = 4
thedo 166:3a9487d57a5c 428 };
thedo 166:3a9487d57a5c 429
thedo 166:3a9487d57a5c 430 //! @} imgproc_shape
thedo 166:3a9487d57a5c 431
thedo 166:3a9487d57a5c 432 //! Variants of a Hough transform
thedo 166:3a9487d57a5c 433 enum HoughModes {
thedo 166:3a9487d57a5c 434
thedo 166:3a9487d57a5c 435 /** classical or standard Hough transform. Every line is represented by two floating-point
thedo 166:3a9487d57a5c 436 numbers \f$(\rho, \theta)\f$ , where \f$\rho\f$ is a distance between (0,0) point and the line,
thedo 166:3a9487d57a5c 437 and \f$\theta\f$ is the angle between x-axis and the normal to the line. Thus, the matrix must
thedo 166:3a9487d57a5c 438 be (the created sequence will be) of CV_32FC2 type */
thedo 166:3a9487d57a5c 439 HOUGH_STANDARD = 0,
thedo 166:3a9487d57a5c 440 /** probabilistic Hough transform (more efficient in case if the picture contains a few long
thedo 166:3a9487d57a5c 441 linear segments). It returns line segments rather than the whole line. Each segment is
thedo 166:3a9487d57a5c 442 represented by starting and ending points, and the matrix must be (the created sequence will
thedo 166:3a9487d57a5c 443 be) of the CV_32SC4 type. */
thedo 166:3a9487d57a5c 444 HOUGH_PROBABILISTIC = 1,
thedo 166:3a9487d57a5c 445 /** multi-scale variant of the classical Hough transform. The lines are encoded the same way as
thedo 166:3a9487d57a5c 446 HOUGH_STANDARD. */
thedo 166:3a9487d57a5c 447 HOUGH_MULTI_SCALE = 2,
thedo 166:3a9487d57a5c 448 HOUGH_GRADIENT = 3 //!< basically *21HT*, described in @cite Yuen90
thedo 166:3a9487d57a5c 449 };
thedo 166:3a9487d57a5c 450
thedo 166:3a9487d57a5c 451 //! Variants of Line Segment %Detector
thedo 166:3a9487d57a5c 452 //! @ingroup imgproc_feature
thedo 166:3a9487d57a5c 453 enum LineSegmentDetectorModes {
thedo 166:3a9487d57a5c 454 LSD_REFINE_NONE = 0, //!< No refinement applied
thedo 166:3a9487d57a5c 455 LSD_REFINE_STD = 1, //!< Standard refinement is applied. E.g. breaking arches into smaller straighter line approximations.
thedo 166:3a9487d57a5c 456 LSD_REFINE_ADV = 2 //!< Advanced refinement. Number of false alarms is calculated, lines are
thedo 166:3a9487d57a5c 457 //!< refined through increase of precision, decrement in size, etc.
thedo 166:3a9487d57a5c 458 };
thedo 166:3a9487d57a5c 459
thedo 166:3a9487d57a5c 460 /** Histogram comparison methods
thedo 166:3a9487d57a5c 461 @ingroup imgproc_hist
thedo 166:3a9487d57a5c 462 */
thedo 166:3a9487d57a5c 463 enum HistCompMethods {
thedo 166:3a9487d57a5c 464 /** Correlation
thedo 166:3a9487d57a5c 465 \f[d(H_1,H_2) = \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\f]
thedo 166:3a9487d57a5c 466 where
thedo 166:3a9487d57a5c 467 \f[\bar{H_k} = \frac{1}{N} \sum _J H_k(J)\f]
thedo 166:3a9487d57a5c 468 and \f$N\f$ is a total number of histogram bins. */
thedo 166:3a9487d57a5c 469 HISTCMP_CORREL = 0,
thedo 166:3a9487d57a5c 470 /** Chi-Square
thedo 166:3a9487d57a5c 471 \f[d(H_1,H_2) = \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\f] */
thedo 166:3a9487d57a5c 472 HISTCMP_CHISQR = 1,
thedo 166:3a9487d57a5c 473 /** Intersection
thedo 166:3a9487d57a5c 474 \f[d(H_1,H_2) = \sum _I \min (H_1(I), H_2(I))\f] */
thedo 166:3a9487d57a5c 475 HISTCMP_INTERSECT = 2,
thedo 166:3a9487d57a5c 476 /** Bhattacharyya distance
thedo 166:3a9487d57a5c 477 (In fact, OpenCV computes Hellinger distance, which is related to Bhattacharyya coefficient.)
thedo 166:3a9487d57a5c 478 \f[d(H_1,H_2) = \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\f] */
thedo 166:3a9487d57a5c 479 HISTCMP_BHATTACHARYYA = 3,
thedo 166:3a9487d57a5c 480 HISTCMP_HELLINGER = HISTCMP_BHATTACHARYYA, //!< Synonym for HISTCMP_BHATTACHARYYA
thedo 166:3a9487d57a5c 481 /** Alternative Chi-Square
thedo 166:3a9487d57a5c 482 \f[d(H_1,H_2) = 2 * \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)+H_2(I)}\f]
thedo 166:3a9487d57a5c 483 This alternative formula is regularly used for texture comparison. See e.g. @cite Puzicha1997 */
thedo 166:3a9487d57a5c 484 HISTCMP_CHISQR_ALT = 4,
thedo 166:3a9487d57a5c 485 /** Kullback-Leibler divergence
thedo 166:3a9487d57a5c 486 \f[d(H_1,H_2) = \sum _I H_1(I) \log \left(\frac{H_1(I)}{H_2(I)}\right)\f] */
thedo 166:3a9487d57a5c 487 HISTCMP_KL_DIV = 5
thedo 166:3a9487d57a5c 488 };
thedo 166:3a9487d57a5c 489
thedo 166:3a9487d57a5c 490 /** the color conversion code
thedo 166:3a9487d57a5c 491 @see @ref imgproc_color_conversions
thedo 166:3a9487d57a5c 492 @ingroup imgproc_misc
thedo 166:3a9487d57a5c 493 */
thedo 166:3a9487d57a5c 494 enum ColorConversionCodes {
thedo 166:3a9487d57a5c 495 COLOR_BGR2BGRA = 0, //!< add alpha channel to RGB or BGR image
thedo 166:3a9487d57a5c 496 COLOR_RGB2RGBA = COLOR_BGR2BGRA,
thedo 166:3a9487d57a5c 497
thedo 166:3a9487d57a5c 498 COLOR_BGRA2BGR = 1, //!< remove alpha channel from RGB or BGR image
thedo 166:3a9487d57a5c 499 COLOR_RGBA2RGB = COLOR_BGRA2BGR,
thedo 166:3a9487d57a5c 500
thedo 166:3a9487d57a5c 501 COLOR_BGR2RGBA = 2, //!< convert between RGB and BGR color spaces (with or without alpha channel)
thedo 166:3a9487d57a5c 502 COLOR_RGB2BGRA = COLOR_BGR2RGBA,
thedo 166:3a9487d57a5c 503
thedo 166:3a9487d57a5c 504 COLOR_RGBA2BGR = 3,
thedo 166:3a9487d57a5c 505 COLOR_BGRA2RGB = COLOR_RGBA2BGR,
thedo 166:3a9487d57a5c 506
thedo 166:3a9487d57a5c 507 COLOR_BGR2RGB = 4,
thedo 166:3a9487d57a5c 508 COLOR_RGB2BGR = COLOR_BGR2RGB,
thedo 166:3a9487d57a5c 509
thedo 166:3a9487d57a5c 510 COLOR_BGRA2RGBA = 5,
thedo 166:3a9487d57a5c 511 COLOR_RGBA2BGRA = COLOR_BGRA2RGBA,
thedo 166:3a9487d57a5c 512
thedo 166:3a9487d57a5c 513 COLOR_BGR2GRAY = 6, //!< convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions"
thedo 166:3a9487d57a5c 514 COLOR_RGB2GRAY = 7,
thedo 166:3a9487d57a5c 515 COLOR_GRAY2BGR = 8,
thedo 166:3a9487d57a5c 516 COLOR_GRAY2RGB = COLOR_GRAY2BGR,
thedo 166:3a9487d57a5c 517 COLOR_GRAY2BGRA = 9,
thedo 166:3a9487d57a5c 518 COLOR_GRAY2RGBA = COLOR_GRAY2BGRA,
thedo 166:3a9487d57a5c 519 COLOR_BGRA2GRAY = 10,
thedo 166:3a9487d57a5c 520 COLOR_RGBA2GRAY = 11,
thedo 166:3a9487d57a5c 521
thedo 166:3a9487d57a5c 522 COLOR_BGR2BGR565 = 12, //!< convert between RGB/BGR and BGR565 (16-bit images)
thedo 166:3a9487d57a5c 523 COLOR_RGB2BGR565 = 13,
thedo 166:3a9487d57a5c 524 COLOR_BGR5652BGR = 14,
thedo 166:3a9487d57a5c 525 COLOR_BGR5652RGB = 15,
thedo 166:3a9487d57a5c 526 COLOR_BGRA2BGR565 = 16,
thedo 166:3a9487d57a5c 527 COLOR_RGBA2BGR565 = 17,
thedo 166:3a9487d57a5c 528 COLOR_BGR5652BGRA = 18,
thedo 166:3a9487d57a5c 529 COLOR_BGR5652RGBA = 19,
thedo 166:3a9487d57a5c 530
thedo 166:3a9487d57a5c 531 COLOR_GRAY2BGR565 = 20, //!< convert between grayscale to BGR565 (16-bit images)
thedo 166:3a9487d57a5c 532 COLOR_BGR5652GRAY = 21,
thedo 166:3a9487d57a5c 533
thedo 166:3a9487d57a5c 534 COLOR_BGR2BGR555 = 22, //!< convert between RGB/BGR and BGR555 (16-bit images)
thedo 166:3a9487d57a5c 535 COLOR_RGB2BGR555 = 23,
thedo 166:3a9487d57a5c 536 COLOR_BGR5552BGR = 24,
thedo 166:3a9487d57a5c 537 COLOR_BGR5552RGB = 25,
thedo 166:3a9487d57a5c 538 COLOR_BGRA2BGR555 = 26,
thedo 166:3a9487d57a5c 539 COLOR_RGBA2BGR555 = 27,
thedo 166:3a9487d57a5c 540 COLOR_BGR5552BGRA = 28,
thedo 166:3a9487d57a5c 541 COLOR_BGR5552RGBA = 29,
thedo 166:3a9487d57a5c 542
thedo 166:3a9487d57a5c 543 COLOR_GRAY2BGR555 = 30, //!< convert between grayscale and BGR555 (16-bit images)
thedo 166:3a9487d57a5c 544 COLOR_BGR5552GRAY = 31,
thedo 166:3a9487d57a5c 545
thedo 166:3a9487d57a5c 546 COLOR_BGR2XYZ = 32, //!< convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions"
thedo 166:3a9487d57a5c 547 COLOR_RGB2XYZ = 33,
thedo 166:3a9487d57a5c 548 COLOR_XYZ2BGR = 34,
thedo 166:3a9487d57a5c 549 COLOR_XYZ2RGB = 35,
thedo 166:3a9487d57a5c 550
thedo 166:3a9487d57a5c 551 COLOR_BGR2YCrCb = 36, //!< convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions"
thedo 166:3a9487d57a5c 552 COLOR_RGB2YCrCb = 37,
thedo 166:3a9487d57a5c 553 COLOR_YCrCb2BGR = 38,
thedo 166:3a9487d57a5c 554 COLOR_YCrCb2RGB = 39,
thedo 166:3a9487d57a5c 555
thedo 166:3a9487d57a5c 556 COLOR_BGR2HSV = 40, //!< convert RGB/BGR to HSV (hue saturation value), @ref color_convert_rgb_hsv "color conversions"
thedo 166:3a9487d57a5c 557 COLOR_RGB2HSV = 41,
thedo 166:3a9487d57a5c 558
thedo 166:3a9487d57a5c 559 COLOR_BGR2Lab = 44, //!< convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions"
thedo 166:3a9487d57a5c 560 COLOR_RGB2Lab = 45,
thedo 166:3a9487d57a5c 561
thedo 166:3a9487d57a5c 562 COLOR_BGR2Luv = 50, //!< convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions"
thedo 166:3a9487d57a5c 563 COLOR_RGB2Luv = 51,
thedo 166:3a9487d57a5c 564 COLOR_BGR2HLS = 52, //!< convert RGB/BGR to HLS (hue lightness saturation), @ref color_convert_rgb_hls "color conversions"
thedo 166:3a9487d57a5c 565 COLOR_RGB2HLS = 53,
thedo 166:3a9487d57a5c 566
thedo 166:3a9487d57a5c 567 COLOR_HSV2BGR = 54, //!< backward conversions to RGB/BGR
thedo 166:3a9487d57a5c 568 COLOR_HSV2RGB = 55,
thedo 166:3a9487d57a5c 569
thedo 166:3a9487d57a5c 570 COLOR_Lab2BGR = 56,
thedo 166:3a9487d57a5c 571 COLOR_Lab2RGB = 57,
thedo 166:3a9487d57a5c 572 COLOR_Luv2BGR = 58,
thedo 166:3a9487d57a5c 573 COLOR_Luv2RGB = 59,
thedo 166:3a9487d57a5c 574 COLOR_HLS2BGR = 60,
thedo 166:3a9487d57a5c 575 COLOR_HLS2RGB = 61,
thedo 166:3a9487d57a5c 576
thedo 166:3a9487d57a5c 577 COLOR_BGR2HSV_FULL = 66, //!<
thedo 166:3a9487d57a5c 578 COLOR_RGB2HSV_FULL = 67,
thedo 166:3a9487d57a5c 579 COLOR_BGR2HLS_FULL = 68,
thedo 166:3a9487d57a5c 580 COLOR_RGB2HLS_FULL = 69,
thedo 166:3a9487d57a5c 581
thedo 166:3a9487d57a5c 582 COLOR_HSV2BGR_FULL = 70,
thedo 166:3a9487d57a5c 583 COLOR_HSV2RGB_FULL = 71,
thedo 166:3a9487d57a5c 584 COLOR_HLS2BGR_FULL = 72,
thedo 166:3a9487d57a5c 585 COLOR_HLS2RGB_FULL = 73,
thedo 166:3a9487d57a5c 586
thedo 166:3a9487d57a5c 587 COLOR_LBGR2Lab = 74,
thedo 166:3a9487d57a5c 588 COLOR_LRGB2Lab = 75,
thedo 166:3a9487d57a5c 589 COLOR_LBGR2Luv = 76,
thedo 166:3a9487d57a5c 590 COLOR_LRGB2Luv = 77,
thedo 166:3a9487d57a5c 591
thedo 166:3a9487d57a5c 592 COLOR_Lab2LBGR = 78,
thedo 166:3a9487d57a5c 593 COLOR_Lab2LRGB = 79,
thedo 166:3a9487d57a5c 594 COLOR_Luv2LBGR = 80,
thedo 166:3a9487d57a5c 595 COLOR_Luv2LRGB = 81,
thedo 166:3a9487d57a5c 596
thedo 166:3a9487d57a5c 597 COLOR_BGR2YUV = 82, //!< convert between RGB/BGR and YUV
thedo 166:3a9487d57a5c 598 COLOR_RGB2YUV = 83,
thedo 166:3a9487d57a5c 599 COLOR_YUV2BGR = 84,
thedo 166:3a9487d57a5c 600 COLOR_YUV2RGB = 85,
thedo 166:3a9487d57a5c 601
thedo 166:3a9487d57a5c 602 //! YUV 4:2:0 family to RGB
thedo 166:3a9487d57a5c 603 COLOR_YUV2RGB_NV12 = 90,
thedo 166:3a9487d57a5c 604 COLOR_YUV2BGR_NV12 = 91,
thedo 166:3a9487d57a5c 605 COLOR_YUV2RGB_NV21 = 92,
thedo 166:3a9487d57a5c 606 COLOR_YUV2BGR_NV21 = 93,
thedo 166:3a9487d57a5c 607 COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21,
thedo 166:3a9487d57a5c 608 COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21,
thedo 166:3a9487d57a5c 609
thedo 166:3a9487d57a5c 610 COLOR_YUV2RGBA_NV12 = 94,
thedo 166:3a9487d57a5c 611 COLOR_YUV2BGRA_NV12 = 95,
thedo 166:3a9487d57a5c 612 COLOR_YUV2RGBA_NV21 = 96,
thedo 166:3a9487d57a5c 613 COLOR_YUV2BGRA_NV21 = 97,
thedo 166:3a9487d57a5c 614 COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21,
thedo 166:3a9487d57a5c 615 COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21,
thedo 166:3a9487d57a5c 616
thedo 166:3a9487d57a5c 617 COLOR_YUV2RGB_YV12 = 98,
thedo 166:3a9487d57a5c 618 COLOR_YUV2BGR_YV12 = 99,
thedo 166:3a9487d57a5c 619 COLOR_YUV2RGB_IYUV = 100,
thedo 166:3a9487d57a5c 620 COLOR_YUV2BGR_IYUV = 101,
thedo 166:3a9487d57a5c 621 COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV,
thedo 166:3a9487d57a5c 622 COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV,
thedo 166:3a9487d57a5c 623 COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12,
thedo 166:3a9487d57a5c 624 COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12,
thedo 166:3a9487d57a5c 625
thedo 166:3a9487d57a5c 626 COLOR_YUV2RGBA_YV12 = 102,
thedo 166:3a9487d57a5c 627 COLOR_YUV2BGRA_YV12 = 103,
thedo 166:3a9487d57a5c 628 COLOR_YUV2RGBA_IYUV = 104,
thedo 166:3a9487d57a5c 629 COLOR_YUV2BGRA_IYUV = 105,
thedo 166:3a9487d57a5c 630 COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV,
thedo 166:3a9487d57a5c 631 COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV,
thedo 166:3a9487d57a5c 632 COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12,
thedo 166:3a9487d57a5c 633 COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12,
thedo 166:3a9487d57a5c 634
thedo 166:3a9487d57a5c 635 COLOR_YUV2GRAY_420 = 106,
thedo 166:3a9487d57a5c 636 COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420,
thedo 166:3a9487d57a5c 637 COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420,
thedo 166:3a9487d57a5c 638 COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420,
thedo 166:3a9487d57a5c 639 COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420,
thedo 166:3a9487d57a5c 640 COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420,
thedo 166:3a9487d57a5c 641 COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420,
thedo 166:3a9487d57a5c 642 COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420,
thedo 166:3a9487d57a5c 643
thedo 166:3a9487d57a5c 644 //! YUV 4:2:2 family to RGB
thedo 166:3a9487d57a5c 645 COLOR_YUV2RGB_UYVY = 107,
thedo 166:3a9487d57a5c 646 COLOR_YUV2BGR_UYVY = 108,
thedo 166:3a9487d57a5c 647 //COLOR_YUV2RGB_VYUY = 109,
thedo 166:3a9487d57a5c 648 //COLOR_YUV2BGR_VYUY = 110,
thedo 166:3a9487d57a5c 649 COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY,
thedo 166:3a9487d57a5c 650 COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY,
thedo 166:3a9487d57a5c 651 COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY,
thedo 166:3a9487d57a5c 652 COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY,
thedo 166:3a9487d57a5c 653
thedo 166:3a9487d57a5c 654 COLOR_YUV2RGBA_UYVY = 111,
thedo 166:3a9487d57a5c 655 COLOR_YUV2BGRA_UYVY = 112,
thedo 166:3a9487d57a5c 656 //COLOR_YUV2RGBA_VYUY = 113,
thedo 166:3a9487d57a5c 657 //COLOR_YUV2BGRA_VYUY = 114,
thedo 166:3a9487d57a5c 658 COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY,
thedo 166:3a9487d57a5c 659 COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY,
thedo 166:3a9487d57a5c 660 COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY,
thedo 166:3a9487d57a5c 661 COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY,
thedo 166:3a9487d57a5c 662
thedo 166:3a9487d57a5c 663 COLOR_YUV2RGB_YUY2 = 115,
thedo 166:3a9487d57a5c 664 COLOR_YUV2BGR_YUY2 = 116,
thedo 166:3a9487d57a5c 665 COLOR_YUV2RGB_YVYU = 117,
thedo 166:3a9487d57a5c 666 COLOR_YUV2BGR_YVYU = 118,
thedo 166:3a9487d57a5c 667 COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2,
thedo 166:3a9487d57a5c 668 COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2,
thedo 166:3a9487d57a5c 669 COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2,
thedo 166:3a9487d57a5c 670 COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2,
thedo 166:3a9487d57a5c 671
thedo 166:3a9487d57a5c 672 COLOR_YUV2RGBA_YUY2 = 119,
thedo 166:3a9487d57a5c 673 COLOR_YUV2BGRA_YUY2 = 120,
thedo 166:3a9487d57a5c 674 COLOR_YUV2RGBA_YVYU = 121,
thedo 166:3a9487d57a5c 675 COLOR_YUV2BGRA_YVYU = 122,
thedo 166:3a9487d57a5c 676 COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2,
thedo 166:3a9487d57a5c 677 COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2,
thedo 166:3a9487d57a5c 678 COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2,
thedo 166:3a9487d57a5c 679 COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2,
thedo 166:3a9487d57a5c 680
thedo 166:3a9487d57a5c 681 COLOR_YUV2GRAY_UYVY = 123,
thedo 166:3a9487d57a5c 682 COLOR_YUV2GRAY_YUY2 = 124,
thedo 166:3a9487d57a5c 683 //CV_YUV2GRAY_VYUY = CV_YUV2GRAY_UYVY,
thedo 166:3a9487d57a5c 684 COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY,
thedo 166:3a9487d57a5c 685 COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY,
thedo 166:3a9487d57a5c 686 COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2,
thedo 166:3a9487d57a5c 687 COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2,
thedo 166:3a9487d57a5c 688 COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2,
thedo 166:3a9487d57a5c 689
thedo 166:3a9487d57a5c 690 //! alpha premultiplication
thedo 166:3a9487d57a5c 691 COLOR_RGBA2mRGBA = 125,
thedo 166:3a9487d57a5c 692 COLOR_mRGBA2RGBA = 126,
thedo 166:3a9487d57a5c 693
thedo 166:3a9487d57a5c 694 //! RGB to YUV 4:2:0 family
thedo 166:3a9487d57a5c 695 COLOR_RGB2YUV_I420 = 127,
thedo 166:3a9487d57a5c 696 COLOR_BGR2YUV_I420 = 128,
thedo 166:3a9487d57a5c 697 COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420,
thedo 166:3a9487d57a5c 698 COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420,
thedo 166:3a9487d57a5c 699
thedo 166:3a9487d57a5c 700 COLOR_RGBA2YUV_I420 = 129,
thedo 166:3a9487d57a5c 701 COLOR_BGRA2YUV_I420 = 130,
thedo 166:3a9487d57a5c 702 COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420,
thedo 166:3a9487d57a5c 703 COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420,
thedo 166:3a9487d57a5c 704 COLOR_RGB2YUV_YV12 = 131,
thedo 166:3a9487d57a5c 705 COLOR_BGR2YUV_YV12 = 132,
thedo 166:3a9487d57a5c 706 COLOR_RGBA2YUV_YV12 = 133,
thedo 166:3a9487d57a5c 707 COLOR_BGRA2YUV_YV12 = 134,
thedo 166:3a9487d57a5c 708
thedo 166:3a9487d57a5c 709 //! Demosaicing
thedo 166:3a9487d57a5c 710 COLOR_BayerBG2BGR = 46,
thedo 166:3a9487d57a5c 711 COLOR_BayerGB2BGR = 47,
thedo 166:3a9487d57a5c 712 COLOR_BayerRG2BGR = 48,
thedo 166:3a9487d57a5c 713 COLOR_BayerGR2BGR = 49,
thedo 166:3a9487d57a5c 714
thedo 166:3a9487d57a5c 715 COLOR_BayerBG2RGB = COLOR_BayerRG2BGR,
thedo 166:3a9487d57a5c 716 COLOR_BayerGB2RGB = COLOR_BayerGR2BGR,
thedo 166:3a9487d57a5c 717 COLOR_BayerRG2RGB = COLOR_BayerBG2BGR,
thedo 166:3a9487d57a5c 718 COLOR_BayerGR2RGB = COLOR_BayerGB2BGR,
thedo 166:3a9487d57a5c 719
thedo 166:3a9487d57a5c 720 COLOR_BayerBG2GRAY = 86,
thedo 166:3a9487d57a5c 721 COLOR_BayerGB2GRAY = 87,
thedo 166:3a9487d57a5c 722 COLOR_BayerRG2GRAY = 88,
thedo 166:3a9487d57a5c 723 COLOR_BayerGR2GRAY = 89,
thedo 166:3a9487d57a5c 724
thedo 166:3a9487d57a5c 725 //! Demosaicing using Variable Number of Gradients
thedo 166:3a9487d57a5c 726 COLOR_BayerBG2BGR_VNG = 62,
thedo 166:3a9487d57a5c 727 COLOR_BayerGB2BGR_VNG = 63,
thedo 166:3a9487d57a5c 728 COLOR_BayerRG2BGR_VNG = 64,
thedo 166:3a9487d57a5c 729 COLOR_BayerGR2BGR_VNG = 65,
thedo 166:3a9487d57a5c 730
thedo 166:3a9487d57a5c 731 COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG,
thedo 166:3a9487d57a5c 732 COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG,
thedo 166:3a9487d57a5c 733 COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG,
thedo 166:3a9487d57a5c 734 COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG,
thedo 166:3a9487d57a5c 735
thedo 166:3a9487d57a5c 736 //! Edge-Aware Demosaicing
thedo 166:3a9487d57a5c 737 COLOR_BayerBG2BGR_EA = 135,
thedo 166:3a9487d57a5c 738 COLOR_BayerGB2BGR_EA = 136,
thedo 166:3a9487d57a5c 739 COLOR_BayerRG2BGR_EA = 137,
thedo 166:3a9487d57a5c 740 COLOR_BayerGR2BGR_EA = 138,
thedo 166:3a9487d57a5c 741
thedo 166:3a9487d57a5c 742 COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA,
thedo 166:3a9487d57a5c 743 COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA,
thedo 166:3a9487d57a5c 744 COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA,
thedo 166:3a9487d57a5c 745 COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA,
thedo 166:3a9487d57a5c 746
thedo 166:3a9487d57a5c 747
thedo 166:3a9487d57a5c 748 COLOR_COLORCVT_MAX = 139
thedo 166:3a9487d57a5c 749 };
thedo 166:3a9487d57a5c 750
thedo 166:3a9487d57a5c 751 /** types of intersection between rectangles
thedo 166:3a9487d57a5c 752 @ingroup imgproc_shape
thedo 166:3a9487d57a5c 753 */
thedo 166:3a9487d57a5c 754 enum RectanglesIntersectTypes {
thedo 166:3a9487d57a5c 755 INTERSECT_NONE = 0, //!< No intersection
thedo 166:3a9487d57a5c 756 INTERSECT_PARTIAL = 1, //!< There is a partial intersection
thedo 166:3a9487d57a5c 757 INTERSECT_FULL = 2 //!< One of the rectangle is fully enclosed in the other
thedo 166:3a9487d57a5c 758 };
thedo 166:3a9487d57a5c 759
thedo 166:3a9487d57a5c 760 //! finds arbitrary template in the grayscale image using Generalized Hough Transform
thedo 166:3a9487d57a5c 761 class CV_EXPORTS GeneralizedHough : public Algorithm
thedo 166:3a9487d57a5c 762 {
thedo 166:3a9487d57a5c 763 public:
thedo 166:3a9487d57a5c 764 //! set template to search
thedo 166:3a9487d57a5c 765 virtual void setTemplate(InputArray templ, Point templCenter = Point(-1, -1)) = 0;
thedo 166:3a9487d57a5c 766 virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0;
thedo 166:3a9487d57a5c 767
thedo 166:3a9487d57a5c 768 //! find template on image
thedo 166:3a9487d57a5c 769 virtual void detect(InputArray image, OutputArray positions, OutputArray votes = noArray()) = 0;
thedo 166:3a9487d57a5c 770 virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = noArray()) = 0;
thedo 166:3a9487d57a5c 771
thedo 166:3a9487d57a5c 772 //! Canny low threshold.
thedo 166:3a9487d57a5c 773 virtual void setCannyLowThresh(int cannyLowThresh) = 0;
thedo 166:3a9487d57a5c 774 virtual int getCannyLowThresh() const = 0;
thedo 166:3a9487d57a5c 775
thedo 166:3a9487d57a5c 776 //! Canny high threshold.
thedo 166:3a9487d57a5c 777 virtual void setCannyHighThresh(int cannyHighThresh) = 0;
thedo 166:3a9487d57a5c 778 virtual int getCannyHighThresh() const = 0;
thedo 166:3a9487d57a5c 779
thedo 166:3a9487d57a5c 780 //! Minimum distance between the centers of the detected objects.
thedo 166:3a9487d57a5c 781 virtual void setMinDist(double minDist) = 0;
thedo 166:3a9487d57a5c 782 virtual double getMinDist() const = 0;
thedo 166:3a9487d57a5c 783
thedo 166:3a9487d57a5c 784 //! Inverse ratio of the accumulator resolution to the image resolution.
thedo 166:3a9487d57a5c 785 virtual void setDp(double dp) = 0;
thedo 166:3a9487d57a5c 786 virtual double getDp() const = 0;
thedo 166:3a9487d57a5c 787
thedo 166:3a9487d57a5c 788 //! Maximal size of inner buffers.
thedo 166:3a9487d57a5c 789 virtual void setMaxBufferSize(int maxBufferSize) = 0;
thedo 166:3a9487d57a5c 790 virtual int getMaxBufferSize() const = 0;
thedo 166:3a9487d57a5c 791 };
thedo 166:3a9487d57a5c 792
thedo 166:3a9487d57a5c 793 //! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
thedo 166:3a9487d57a5c 794 //! Detects position only without traslation and rotation
thedo 166:3a9487d57a5c 795 class CV_EXPORTS GeneralizedHoughBallard : public GeneralizedHough
thedo 166:3a9487d57a5c 796 {
thedo 166:3a9487d57a5c 797 public:
thedo 166:3a9487d57a5c 798 //! R-Table levels.
thedo 166:3a9487d57a5c 799 virtual void setLevels(int levels) = 0;
thedo 166:3a9487d57a5c 800 virtual int getLevels() const = 0;
thedo 166:3a9487d57a5c 801
thedo 166:3a9487d57a5c 802 //! The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.
thedo 166:3a9487d57a5c 803 virtual void setVotesThreshold(int votesThreshold) = 0;
thedo 166:3a9487d57a5c 804 virtual int getVotesThreshold() const = 0;
thedo 166:3a9487d57a5c 805 };
thedo 166:3a9487d57a5c 806
thedo 166:3a9487d57a5c 807 //! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
thedo 166:3a9487d57a5c 808 //! Detects position, traslation and rotation
thedo 166:3a9487d57a5c 809 class CV_EXPORTS GeneralizedHoughGuil : public GeneralizedHough
thedo 166:3a9487d57a5c 810 {
thedo 166:3a9487d57a5c 811 public:
thedo 166:3a9487d57a5c 812 //! Angle difference in degrees between two points in feature.
thedo 166:3a9487d57a5c 813 virtual void setXi(double xi) = 0;
thedo 166:3a9487d57a5c 814 virtual double getXi() const = 0;
thedo 166:3a9487d57a5c 815
thedo 166:3a9487d57a5c 816 //! Feature table levels.
thedo 166:3a9487d57a5c 817 virtual void setLevels(int levels) = 0;
thedo 166:3a9487d57a5c 818 virtual int getLevels() const = 0;
thedo 166:3a9487d57a5c 819
thedo 166:3a9487d57a5c 820 //! Maximal difference between angles that treated as equal.
thedo 166:3a9487d57a5c 821 virtual void setAngleEpsilon(double angleEpsilon) = 0;
thedo 166:3a9487d57a5c 822 virtual double getAngleEpsilon() const = 0;
thedo 166:3a9487d57a5c 823
thedo 166:3a9487d57a5c 824 //! Minimal rotation angle to detect in degrees.
thedo 166:3a9487d57a5c 825 virtual void setMinAngle(double minAngle) = 0;
thedo 166:3a9487d57a5c 826 virtual double getMinAngle() const = 0;
thedo 166:3a9487d57a5c 827
thedo 166:3a9487d57a5c 828 //! Maximal rotation angle to detect in degrees.
thedo 166:3a9487d57a5c 829 virtual void setMaxAngle(double maxAngle) = 0;
thedo 166:3a9487d57a5c 830 virtual double getMaxAngle() const = 0;
thedo 166:3a9487d57a5c 831
thedo 166:3a9487d57a5c 832 //! Angle step in degrees.
thedo 166:3a9487d57a5c 833 virtual void setAngleStep(double angleStep) = 0;
thedo 166:3a9487d57a5c 834 virtual double getAngleStep() const = 0;
thedo 166:3a9487d57a5c 835
thedo 166:3a9487d57a5c 836 //! Angle votes threshold.
thedo 166:3a9487d57a5c 837 virtual void setAngleThresh(int angleThresh) = 0;
thedo 166:3a9487d57a5c 838 virtual int getAngleThresh() const = 0;
thedo 166:3a9487d57a5c 839
thedo 166:3a9487d57a5c 840 //! Minimal scale to detect.
thedo 166:3a9487d57a5c 841 virtual void setMinScale(double minScale) = 0;
thedo 166:3a9487d57a5c 842 virtual double getMinScale() const = 0;
thedo 166:3a9487d57a5c 843
thedo 166:3a9487d57a5c 844 //! Maximal scale to detect.
thedo 166:3a9487d57a5c 845 virtual void setMaxScale(double maxScale) = 0;
thedo 166:3a9487d57a5c 846 virtual double getMaxScale() const = 0;
thedo 166:3a9487d57a5c 847
thedo 166:3a9487d57a5c 848 //! Scale step.
thedo 166:3a9487d57a5c 849 virtual void setScaleStep(double scaleStep) = 0;
thedo 166:3a9487d57a5c 850 virtual double getScaleStep() const = 0;
thedo 166:3a9487d57a5c 851
thedo 166:3a9487d57a5c 852 //! Scale votes threshold.
thedo 166:3a9487d57a5c 853 virtual void setScaleThresh(int scaleThresh) = 0;
thedo 166:3a9487d57a5c 854 virtual int getScaleThresh() const = 0;
thedo 166:3a9487d57a5c 855
thedo 166:3a9487d57a5c 856 //! Position votes threshold.
thedo 166:3a9487d57a5c 857 virtual void setPosThresh(int posThresh) = 0;
thedo 166:3a9487d57a5c 858 virtual int getPosThresh() const = 0;
thedo 166:3a9487d57a5c 859 };
thedo 166:3a9487d57a5c 860
thedo 166:3a9487d57a5c 861
thedo 166:3a9487d57a5c 862 class CV_EXPORTS_W CLAHE : public Algorithm
thedo 166:3a9487d57a5c 863 {
thedo 166:3a9487d57a5c 864 public:
thedo 166:3a9487d57a5c 865 CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0;
thedo 166:3a9487d57a5c 866
thedo 166:3a9487d57a5c 867 CV_WRAP virtual void setClipLimit(double clipLimit) = 0;
thedo 166:3a9487d57a5c 868 CV_WRAP virtual double getClipLimit() const = 0;
thedo 166:3a9487d57a5c 869
thedo 166:3a9487d57a5c 870 CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0;
thedo 166:3a9487d57a5c 871 CV_WRAP virtual Size getTilesGridSize() const = 0;
thedo 166:3a9487d57a5c 872
thedo 166:3a9487d57a5c 873 CV_WRAP virtual void collectGarbage() = 0;
thedo 166:3a9487d57a5c 874 };
thedo 166:3a9487d57a5c 875
thedo 166:3a9487d57a5c 876
thedo 166:3a9487d57a5c 877 class CV_EXPORTS_W Subdiv2D
thedo 166:3a9487d57a5c 878 {
thedo 166:3a9487d57a5c 879 public:
thedo 166:3a9487d57a5c 880 enum { PTLOC_ERROR = -2,
thedo 166:3a9487d57a5c 881 PTLOC_OUTSIDE_RECT = -1,
thedo 166:3a9487d57a5c 882 PTLOC_INSIDE = 0,
thedo 166:3a9487d57a5c 883 PTLOC_VERTEX = 1,
thedo 166:3a9487d57a5c 884 PTLOC_ON_EDGE = 2
thedo 166:3a9487d57a5c 885 };
thedo 166:3a9487d57a5c 886
thedo 166:3a9487d57a5c 887 enum { NEXT_AROUND_ORG = 0x00,
thedo 166:3a9487d57a5c 888 NEXT_AROUND_DST = 0x22,
thedo 166:3a9487d57a5c 889 PREV_AROUND_ORG = 0x11,
thedo 166:3a9487d57a5c 890 PREV_AROUND_DST = 0x33,
thedo 166:3a9487d57a5c 891 NEXT_AROUND_LEFT = 0x13,
thedo 166:3a9487d57a5c 892 NEXT_AROUND_RIGHT = 0x31,
thedo 166:3a9487d57a5c 893 PREV_AROUND_LEFT = 0x20,
thedo 166:3a9487d57a5c 894 PREV_AROUND_RIGHT = 0x02
thedo 166:3a9487d57a5c 895 };
thedo 166:3a9487d57a5c 896
thedo 166:3a9487d57a5c 897 CV_WRAP Subdiv2D();
thedo 166:3a9487d57a5c 898 CV_WRAP Subdiv2D(Rect rect);
thedo 166:3a9487d57a5c 899 CV_WRAP void initDelaunay(Rect rect);
thedo 166:3a9487d57a5c 900
thedo 166:3a9487d57a5c 901 CV_WRAP int insert(Point2f pt);
thedo 166:3a9487d57a5c 902 CV_WRAP void insert(const std::vector<Point2f>& ptvec);
thedo 166:3a9487d57a5c 903 CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex);
thedo 166:3a9487d57a5c 904
thedo 166:3a9487d57a5c 905 CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt = 0);
thedo 166:3a9487d57a5c 906 CV_WRAP void getEdgeList(CV_OUT std::vector<Vec4f>& edgeList) const;
thedo 166:3a9487d57a5c 907 CV_WRAP void getTriangleList(CV_OUT std::vector<Vec6f>& triangleList) const;
thedo 166:3a9487d57a5c 908 CV_WRAP void getVoronoiFacetList(const std::vector<int>& idx, CV_OUT std::vector<std::vector<Point2f> >& facetList,
thedo 166:3a9487d57a5c 909 CV_OUT std::vector<Point2f>& facetCenters);
thedo 166:3a9487d57a5c 910
thedo 166:3a9487d57a5c 911 CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge = 0) const;
thedo 166:3a9487d57a5c 912
thedo 166:3a9487d57a5c 913 CV_WRAP int getEdge( int edge, int nextEdgeType ) const;
thedo 166:3a9487d57a5c 914 CV_WRAP int nextEdge(int edge) const;
thedo 166:3a9487d57a5c 915 CV_WRAP int rotateEdge(int edge, int rotate) const;
thedo 166:3a9487d57a5c 916 CV_WRAP int symEdge(int edge) const;
thedo 166:3a9487d57a5c 917 CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt = 0) const;
thedo 166:3a9487d57a5c 918 CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt = 0) const;
thedo 166:3a9487d57a5c 919
thedo 166:3a9487d57a5c 920 protected:
thedo 166:3a9487d57a5c 921 int newEdge();
thedo 166:3a9487d57a5c 922 void deleteEdge(int edge);
thedo 166:3a9487d57a5c 923 int newPoint(Point2f pt, bool isvirtual, int firstEdge = 0);
thedo 166:3a9487d57a5c 924 void deletePoint(int vtx);
thedo 166:3a9487d57a5c 925 void setEdgePoints( int edge, int orgPt, int dstPt );
thedo 166:3a9487d57a5c 926 void splice( int edgeA, int edgeB );
thedo 166:3a9487d57a5c 927 int connectEdges( int edgeA, int edgeB );
thedo 166:3a9487d57a5c 928 void swapEdges( int edge );
thedo 166:3a9487d57a5c 929 int isRightOf(Point2f pt, int edge) const;
thedo 166:3a9487d57a5c 930 void calcVoronoi();
thedo 166:3a9487d57a5c 931 void clearVoronoi();
thedo 166:3a9487d57a5c 932 void checkSubdiv() const;
thedo 166:3a9487d57a5c 933
thedo 166:3a9487d57a5c 934 struct CV_EXPORTS Vertex
thedo 166:3a9487d57a5c 935 {
thedo 166:3a9487d57a5c 936 Vertex();
thedo 166:3a9487d57a5c 937 Vertex(Point2f pt, bool _isvirtual, int _firstEdge=0);
thedo 166:3a9487d57a5c 938 bool isvirtual() const;
thedo 166:3a9487d57a5c 939 bool isfree() const;
thedo 166:3a9487d57a5c 940
thedo 166:3a9487d57a5c 941 int firstEdge;
thedo 166:3a9487d57a5c 942 int type;
thedo 166:3a9487d57a5c 943 Point2f pt;
thedo 166:3a9487d57a5c 944 };
thedo 166:3a9487d57a5c 945
thedo 166:3a9487d57a5c 946 struct CV_EXPORTS QuadEdge
thedo 166:3a9487d57a5c 947 {
thedo 166:3a9487d57a5c 948 QuadEdge();
thedo 166:3a9487d57a5c 949 QuadEdge(int edgeidx);
thedo 166:3a9487d57a5c 950 bool isfree() const;
thedo 166:3a9487d57a5c 951
thedo 166:3a9487d57a5c 952 int next[4];
thedo 166:3a9487d57a5c 953 int pt[4];
thedo 166:3a9487d57a5c 954 };
thedo 166:3a9487d57a5c 955
thedo 166:3a9487d57a5c 956 std::vector<Vertex> vtx;
thedo 166:3a9487d57a5c 957 std::vector<QuadEdge> qedges;
thedo 166:3a9487d57a5c 958 int freeQEdge;
thedo 166:3a9487d57a5c 959 int freePoint;
thedo 166:3a9487d57a5c 960 bool validGeometry;
thedo 166:3a9487d57a5c 961
thedo 166:3a9487d57a5c 962 int recentEdge;
thedo 166:3a9487d57a5c 963 Point2f topLeft;
thedo 166:3a9487d57a5c 964 Point2f bottomRight;
thedo 166:3a9487d57a5c 965 };
thedo 166:3a9487d57a5c 966
thedo 166:3a9487d57a5c 967 //! @addtogroup imgproc_feature
thedo 166:3a9487d57a5c 968 //! @{
thedo 166:3a9487d57a5c 969
thedo 166:3a9487d57a5c 970 /** @example lsd_lines.cpp
thedo 166:3a9487d57a5c 971 An example using the LineSegmentDetector
thedo 166:3a9487d57a5c 972 */
thedo 166:3a9487d57a5c 973
thedo 166:3a9487d57a5c 974 /** @brief Line segment detector class
thedo 166:3a9487d57a5c 975
thedo 166:3a9487d57a5c 976 following the algorithm described at @cite Rafael12 .
thedo 166:3a9487d57a5c 977 */
thedo 166:3a9487d57a5c 978 class CV_EXPORTS_W LineSegmentDetector : public Algorithm
thedo 166:3a9487d57a5c 979 {
thedo 166:3a9487d57a5c 980 public:
thedo 166:3a9487d57a5c 981
thedo 166:3a9487d57a5c 982 /** @brief Finds lines in the input image.
thedo 166:3a9487d57a5c 983
thedo 166:3a9487d57a5c 984 This is the output of the default parameters of the algorithm on the above shown image.
thedo 166:3a9487d57a5c 985
thedo 166:3a9487d57a5c 986 ![image](pics/building_lsd.png)
thedo 166:3a9487d57a5c 987
thedo 166:3a9487d57a5c 988 @param _image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use:
thedo 166:3a9487d57a5c 989 `lsd_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);`
thedo 166:3a9487d57a5c 990 @param _lines A vector of Vec4i or Vec4f elements specifying the beginning and ending point of a line. Where
thedo 166:3a9487d57a5c 991 Vec4i/Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly
thedo 166:3a9487d57a5c 992 oriented depending on the gradient.
thedo 166:3a9487d57a5c 993 @param width Vector of widths of the regions, where the lines are found. E.g. Width of line.
thedo 166:3a9487d57a5c 994 @param prec Vector of precisions with which the lines are found.
thedo 166:3a9487d57a5c 995 @param nfa Vector containing number of false alarms in the line region, with precision of 10%. The
thedo 166:3a9487d57a5c 996 bigger the value, logarithmically better the detection.
thedo 166:3a9487d57a5c 997 - -1 corresponds to 10 mean false alarms
thedo 166:3a9487d57a5c 998 - 0 corresponds to 1 mean false alarm
thedo 166:3a9487d57a5c 999 - 1 corresponds to 0.1 mean false alarms
thedo 166:3a9487d57a5c 1000 This vector will be calculated only when the objects type is LSD_REFINE_ADV.
thedo 166:3a9487d57a5c 1001 */
thedo 166:3a9487d57a5c 1002 CV_WRAP virtual void detect(InputArray _image, OutputArray _lines,
thedo 166:3a9487d57a5c 1003 OutputArray width = noArray(), OutputArray prec = noArray(),
thedo 166:3a9487d57a5c 1004 OutputArray nfa = noArray()) = 0;
thedo 166:3a9487d57a5c 1005
thedo 166:3a9487d57a5c 1006 /** @brief Draws the line segments on a given image.
thedo 166:3a9487d57a5c 1007 @param _image The image, where the liens will be drawn. Should be bigger or equal to the image,
thedo 166:3a9487d57a5c 1008 where the lines were found.
thedo 166:3a9487d57a5c 1009 @param lines A vector of the lines that needed to be drawn.
thedo 166:3a9487d57a5c 1010 */
thedo 166:3a9487d57a5c 1011 CV_WRAP virtual void drawSegments(InputOutputArray _image, InputArray lines) = 0;
thedo 166:3a9487d57a5c 1012
thedo 166:3a9487d57a5c 1013 /** @brief Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels.
thedo 166:3a9487d57a5c 1014
thedo 166:3a9487d57a5c 1015 @param size The size of the image, where lines1 and lines2 were found.
thedo 166:3a9487d57a5c 1016 @param lines1 The first group of lines that needs to be drawn. It is visualized in blue color.
thedo 166:3a9487d57a5c 1017 @param lines2 The second group of lines. They visualized in red color.
thedo 166:3a9487d57a5c 1018 @param _image Optional image, where the lines will be drawn. The image should be color(3-channel)
thedo 166:3a9487d57a5c 1019 in order for lines1 and lines2 to be drawn in the above mentioned colors.
thedo 166:3a9487d57a5c 1020 */
thedo 166:3a9487d57a5c 1021 CV_WRAP virtual int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image = noArray()) = 0;
thedo 166:3a9487d57a5c 1022
thedo 166:3a9487d57a5c 1023 virtual ~LineSegmentDetector() { }
thedo 166:3a9487d57a5c 1024 };
thedo 166:3a9487d57a5c 1025
thedo 166:3a9487d57a5c 1026 /** @brief Creates a smart pointer to a LineSegmentDetector object and initializes it.
thedo 166:3a9487d57a5c 1027
thedo 166:3a9487d57a5c 1028 The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
thedo 166:3a9487d57a5c 1029 to edit those, as to tailor it for their own application.
thedo 166:3a9487d57a5c 1030
thedo 166:3a9487d57a5c 1031 @param _refine The way found lines will be refined, see cv::LineSegmentDetectorModes
thedo 166:3a9487d57a5c 1032 @param _scale The scale of the image that will be used to find the lines. Range (0..1].
thedo 166:3a9487d57a5c 1033 @param _sigma_scale Sigma for Gaussian filter. It is computed as sigma = _sigma_scale/_scale.
thedo 166:3a9487d57a5c 1034 @param _quant Bound to the quantization error on the gradient norm.
thedo 166:3a9487d57a5c 1035 @param _ang_th Gradient angle tolerance in degrees.
thedo 166:3a9487d57a5c 1036 @param _log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advancent refinement
thedo 166:3a9487d57a5c 1037 is chosen.
thedo 166:3a9487d57a5c 1038 @param _density_th Minimal density of aligned region points in the enclosing rectangle.
thedo 166:3a9487d57a5c 1039 @param _n_bins Number of bins in pseudo-ordering of gradient modulus.
thedo 166:3a9487d57a5c 1040 */
thedo 166:3a9487d57a5c 1041 CV_EXPORTS_W Ptr<LineSegmentDetector> createLineSegmentDetector(
thedo 166:3a9487d57a5c 1042 int _refine = LSD_REFINE_STD, double _scale = 0.8,
thedo 166:3a9487d57a5c 1043 double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
thedo 166:3a9487d57a5c 1044 double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);
thedo 166:3a9487d57a5c 1045
thedo 166:3a9487d57a5c 1046 //! @} imgproc_feature
thedo 166:3a9487d57a5c 1047
thedo 166:3a9487d57a5c 1048 //! @addtogroup imgproc_filter
thedo 166:3a9487d57a5c 1049 //! @{
thedo 166:3a9487d57a5c 1050
thedo 166:3a9487d57a5c 1051 /** @brief Returns Gaussian filter coefficients.
thedo 166:3a9487d57a5c 1052
thedo 166:3a9487d57a5c 1053 The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter
thedo 166:3a9487d57a5c 1054 coefficients:
thedo 166:3a9487d57a5c 1055
thedo 166:3a9487d57a5c 1056 \f[G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\f]
thedo 166:3a9487d57a5c 1057
thedo 166:3a9487d57a5c 1058 where \f$i=0..\texttt{ksize}-1\f$ and \f$\alpha\f$ is the scale factor chosen so that \f$\sum_i G_i=1\f$.
thedo 166:3a9487d57a5c 1059
thedo 166:3a9487d57a5c 1060 Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize
thedo 166:3a9487d57a5c 1061 smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly.
thedo 166:3a9487d57a5c 1062 You may also use the higher-level GaussianBlur.
thedo 166:3a9487d57a5c 1063 @param ksize Aperture size. It should be odd ( \f$\texttt{ksize} \mod 2 = 1\f$ ) and positive.
thedo 166:3a9487d57a5c 1064 @param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as
thedo 166:3a9487d57a5c 1065 `sigma = 0.3\*((ksize-1)\*0.5 - 1) + 0.8`.
thedo 166:3a9487d57a5c 1066 @param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
thedo 166:3a9487d57a5c 1067 @sa sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur
thedo 166:3a9487d57a5c 1068 */
thedo 166:3a9487d57a5c 1069 CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype = CV_64F );
thedo 166:3a9487d57a5c 1070
thedo 166:3a9487d57a5c 1071 /** @brief Returns filter coefficients for computing spatial image derivatives.
thedo 166:3a9487d57a5c 1072
thedo 166:3a9487d57a5c 1073 The function computes and returns the filter coefficients for spatial image derivatives. When
thedo 166:3a9487d57a5c 1074 `ksize=CV_SCHARR`, the Scharr \f$3 \times 3\f$ kernels are generated (see cv::Scharr). Otherwise, Sobel
thedo 166:3a9487d57a5c 1075 kernels are generated (see cv::Sobel). The filters are normally passed to sepFilter2D or to
thedo 166:3a9487d57a5c 1076
thedo 166:3a9487d57a5c 1077 @param kx Output matrix of row filter coefficients. It has the type ktype .
thedo 166:3a9487d57a5c 1078 @param ky Output matrix of column filter coefficients. It has the type ktype .
thedo 166:3a9487d57a5c 1079 @param dx Derivative order in respect of x.
thedo 166:3a9487d57a5c 1080 @param dy Derivative order in respect of y.
thedo 166:3a9487d57a5c 1081 @param ksize Aperture size. It can be CV_SCHARR, 1, 3, 5, or 7.
thedo 166:3a9487d57a5c 1082 @param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not.
thedo 166:3a9487d57a5c 1083 Theoretically, the coefficients should have the denominator \f$=2^{ksize*2-dx-dy-2}\f$. If you are
thedo 166:3a9487d57a5c 1084 going to filter floating-point images, you are likely to use the normalized kernels. But if you
thedo 166:3a9487d57a5c 1085 compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
thedo 166:3a9487d57a5c 1086 all the fractional bits, you may want to set normalize=false .
thedo 166:3a9487d57a5c 1087 @param ktype Type of filter coefficients. It can be CV_32f or CV_64F .
thedo 166:3a9487d57a5c 1088 */
thedo 166:3a9487d57a5c 1089 CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky,
thedo 166:3a9487d57a5c 1090 int dx, int dy, int ksize,
thedo 166:3a9487d57a5c 1091 bool normalize = false, int ktype = CV_32F );
thedo 166:3a9487d57a5c 1092
thedo 166:3a9487d57a5c 1093 /** @brief Returns Gabor filter coefficients.
thedo 166:3a9487d57a5c 1094
thedo 166:3a9487d57a5c 1095 For more details about gabor filter equations and parameters, see: [Gabor
thedo 166:3a9487d57a5c 1096 Filter](http://en.wikipedia.org/wiki/Gabor_filter).
thedo 166:3a9487d57a5c 1097
thedo 166:3a9487d57a5c 1098 @param ksize Size of the filter returned.
thedo 166:3a9487d57a5c 1099 @param sigma Standard deviation of the gaussian envelope.
thedo 166:3a9487d57a5c 1100 @param theta Orientation of the normal to the parallel stripes of a Gabor function.
thedo 166:3a9487d57a5c 1101 @param lambd Wavelength of the sinusoidal factor.
thedo 166:3a9487d57a5c 1102 @param gamma Spatial aspect ratio.
thedo 166:3a9487d57a5c 1103 @param psi Phase offset.
thedo 166:3a9487d57a5c 1104 @param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
thedo 166:3a9487d57a5c 1105 */
thedo 166:3a9487d57a5c 1106 CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd,
thedo 166:3a9487d57a5c 1107 double gamma, double psi = CV_PI*0.5, int ktype = CV_64F );
thedo 166:3a9487d57a5c 1108
thedo 166:3a9487d57a5c 1109 //! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
thedo 166:3a9487d57a5c 1110 static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); }
thedo 166:3a9487d57a5c 1111
thedo 166:3a9487d57a5c 1112 /** @brief Returns a structuring element of the specified size and shape for morphological operations.
thedo 166:3a9487d57a5c 1113
thedo 166:3a9487d57a5c 1114 The function constructs and returns the structuring element that can be further passed to cv::erode,
thedo 166:3a9487d57a5c 1115 cv::dilate or cv::morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as
thedo 166:3a9487d57a5c 1116 the structuring element.
thedo 166:3a9487d57a5c 1117
thedo 166:3a9487d57a5c 1118 @param shape Element shape that could be one of cv::MorphShapes
thedo 166:3a9487d57a5c 1119 @param ksize Size of the structuring element.
thedo 166:3a9487d57a5c 1120 @param anchor Anchor position within the element. The default value \f$(-1, -1)\f$ means that the
thedo 166:3a9487d57a5c 1121 anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor
thedo 166:3a9487d57a5c 1122 position. In other cases the anchor just regulates how much the result of the morphological
thedo 166:3a9487d57a5c 1123 operation is shifted.
thedo 166:3a9487d57a5c 1124 */
thedo 166:3a9487d57a5c 1125 CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1));
thedo 166:3a9487d57a5c 1126
thedo 166:3a9487d57a5c 1127 /** @brief Blurs an image using the median filter.
thedo 166:3a9487d57a5c 1128
thedo 166:3a9487d57a5c 1129 The function smoothes an image using the median filter with the \f$\texttt{ksize} \times
thedo 166:3a9487d57a5c 1130 \texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently.
thedo 166:3a9487d57a5c 1131 In-place operation is supported.
thedo 166:3a9487d57a5c 1132
thedo 166:3a9487d57a5c 1133 @param src input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be
thedo 166:3a9487d57a5c 1134 CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U.
thedo 166:3a9487d57a5c 1135 @param dst destination array of the same size and type as src.
thedo 166:3a9487d57a5c 1136 @param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...
thedo 166:3a9487d57a5c 1137 @sa bilateralFilter, blur, boxFilter, GaussianBlur
thedo 166:3a9487d57a5c 1138 */
thedo 166:3a9487d57a5c 1139 CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize );
thedo 166:3a9487d57a5c 1140
thedo 166:3a9487d57a5c 1141 /** @brief Blurs an image using a Gaussian filter.
thedo 166:3a9487d57a5c 1142
thedo 166:3a9487d57a5c 1143 The function convolves the source image with the specified Gaussian kernel. In-place filtering is
thedo 166:3a9487d57a5c 1144 supported.
thedo 166:3a9487d57a5c 1145
thedo 166:3a9487d57a5c 1146 @param src input image; the image can have any number of channels, which are processed
thedo 166:3a9487d57a5c 1147 independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
thedo 166:3a9487d57a5c 1148 @param dst output image of the same size and type as src.
thedo 166:3a9487d57a5c 1149 @param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
thedo 166:3a9487d57a5c 1150 positive and odd. Or, they can be zero's and then they are computed from sigma.
thedo 166:3a9487d57a5c 1151 @param sigmaX Gaussian kernel standard deviation in X direction.
thedo 166:3a9487d57a5c 1152 @param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
thedo 166:3a9487d57a5c 1153 equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
thedo 166:3a9487d57a5c 1154 respectively (see cv::getGaussianKernel for details); to fully control the result regardless of
thedo 166:3a9487d57a5c 1155 possible future modifications of all this semantics, it is recommended to specify all of ksize,
thedo 166:3a9487d57a5c 1156 sigmaX, and sigmaY.
thedo 166:3a9487d57a5c 1157 @param borderType pixel extrapolation method, see cv::BorderTypes
thedo 166:3a9487d57a5c 1158
thedo 166:3a9487d57a5c 1159 @sa sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur
thedo 166:3a9487d57a5c 1160 */
thedo 166:3a9487d57a5c 1161 CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize,
thedo 166:3a9487d57a5c 1162 double sigmaX, double sigmaY = 0,
thedo 166:3a9487d57a5c 1163 int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 1164
thedo 166:3a9487d57a5c 1165 /** @brief Applies the bilateral filter to an image.
thedo 166:3a9487d57a5c 1166
thedo 166:3a9487d57a5c 1167 The function applies bilateral filtering to the input image, as described in
thedo 166:3a9487d57a5c 1168 http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
thedo 166:3a9487d57a5c 1169 bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
thedo 166:3a9487d57a5c 1170 very slow compared to most filters.
thedo 166:3a9487d57a5c 1171
thedo 166:3a9487d57a5c 1172 _Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\<
thedo 166:3a9487d57a5c 1173 10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very
thedo 166:3a9487d57a5c 1174 strong effect, making the image look "cartoonish".
thedo 166:3a9487d57a5c 1175
thedo 166:3a9487d57a5c 1176 _Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time
thedo 166:3a9487d57a5c 1177 applications, and perhaps d=9 for offline applications that need heavy noise filtering.
thedo 166:3a9487d57a5c 1178
thedo 166:3a9487d57a5c 1179 This filter does not work inplace.
thedo 166:3a9487d57a5c 1180 @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
thedo 166:3a9487d57a5c 1181 @param dst Destination image of the same size and type as src .
thedo 166:3a9487d57a5c 1182 @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
thedo 166:3a9487d57a5c 1183 it is computed from sigmaSpace.
thedo 166:3a9487d57a5c 1184 @param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
thedo 166:3a9487d57a5c 1185 farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
thedo 166:3a9487d57a5c 1186 in larger areas of semi-equal color.
thedo 166:3a9487d57a5c 1187 @param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
thedo 166:3a9487d57a5c 1188 farther pixels will influence each other as long as their colors are close enough (see sigmaColor
thedo 166:3a9487d57a5c 1189 ). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
thedo 166:3a9487d57a5c 1190 proportional to sigmaSpace.
thedo 166:3a9487d57a5c 1191 @param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes
thedo 166:3a9487d57a5c 1192 */
thedo 166:3a9487d57a5c 1193 CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d,
thedo 166:3a9487d57a5c 1194 double sigmaColor, double sigmaSpace,
thedo 166:3a9487d57a5c 1195 int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 1196
thedo 166:3a9487d57a5c 1197 /** @brief Blurs an image using the box filter.
thedo 166:3a9487d57a5c 1198
thedo 166:3a9487d57a5c 1199 The function smoothes an image using the kernel:
thedo 166:3a9487d57a5c 1200
thedo 166:3a9487d57a5c 1201 \f[\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}\f]
thedo 166:3a9487d57a5c 1202
thedo 166:3a9487d57a5c 1203 where
thedo 166:3a9487d57a5c 1204
thedo 166:3a9487d57a5c 1205 \f[\alpha = \fork{\frac{1}{\texttt{ksize.width*ksize.height}}}{when \texttt{normalize=true}}{1}{otherwise}\f]
thedo 166:3a9487d57a5c 1206
thedo 166:3a9487d57a5c 1207 Unnormalized box filter is useful for computing various integral characteristics over each pixel
thedo 166:3a9487d57a5c 1208 neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
thedo 166:3a9487d57a5c 1209 algorithms, and so on). If you need to compute pixel sums over variable-size windows, use cv::integral.
thedo 166:3a9487d57a5c 1210
thedo 166:3a9487d57a5c 1211 @param src input image.
thedo 166:3a9487d57a5c 1212 @param dst output image of the same size and type as src.
thedo 166:3a9487d57a5c 1213 @param ddepth the output image depth (-1 to use src.depth()).
thedo 166:3a9487d57a5c 1214 @param ksize blurring kernel size.
thedo 166:3a9487d57a5c 1215 @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
thedo 166:3a9487d57a5c 1216 center.
thedo 166:3a9487d57a5c 1217 @param normalize flag, specifying whether the kernel is normalized by its area or not.
thedo 166:3a9487d57a5c 1218 @param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes
thedo 166:3a9487d57a5c 1219 @sa blur, bilateralFilter, GaussianBlur, medianBlur, integral
thedo 166:3a9487d57a5c 1220 */
thedo 166:3a9487d57a5c 1221 CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,
thedo 166:3a9487d57a5c 1222 Size ksize, Point anchor = Point(-1,-1),
thedo 166:3a9487d57a5c 1223 bool normalize = true,
thedo 166:3a9487d57a5c 1224 int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 1225
thedo 166:3a9487d57a5c 1226 /** @brief Calculates the normalized sum of squares of the pixel values overlapping the filter.
thedo 166:3a9487d57a5c 1227
thedo 166:3a9487d57a5c 1228 For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring
thedo 166:3a9487d57a5c 1229 pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$.
thedo 166:3a9487d57a5c 1230
thedo 166:3a9487d57a5c 1231 The unnormalized square box filter can be useful in computing local image statistics such as the the local
thedo 166:3a9487d57a5c 1232 variance and standard deviation around the neighborhood of a pixel.
thedo 166:3a9487d57a5c 1233
thedo 166:3a9487d57a5c 1234 @param _src input image
thedo 166:3a9487d57a5c 1235 @param _dst output image of the same size and type as _src
thedo 166:3a9487d57a5c 1236 @param ddepth the output image depth (-1 to use src.depth())
thedo 166:3a9487d57a5c 1237 @param ksize kernel size
thedo 166:3a9487d57a5c 1238 @param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
thedo 166:3a9487d57a5c 1239 center.
thedo 166:3a9487d57a5c 1240 @param normalize flag, specifying whether the kernel is to be normalized by it's area or not.
thedo 166:3a9487d57a5c 1241 @param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes
thedo 166:3a9487d57a5c 1242 @sa boxFilter
thedo 166:3a9487d57a5c 1243 */
thedo 166:3a9487d57a5c 1244 CV_EXPORTS_W void sqrBoxFilter( InputArray _src, OutputArray _dst, int ddepth,
thedo 166:3a9487d57a5c 1245 Size ksize, Point anchor = Point(-1, -1),
thedo 166:3a9487d57a5c 1246 bool normalize = true,
thedo 166:3a9487d57a5c 1247 int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 1248
thedo 166:3a9487d57a5c 1249 /** @brief Blurs an image using the normalized box filter.
thedo 166:3a9487d57a5c 1250
thedo 166:3a9487d57a5c 1251 The function smoothes an image using the kernel:
thedo 166:3a9487d57a5c 1252
thedo 166:3a9487d57a5c 1253 \f[\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}\f]
thedo 166:3a9487d57a5c 1254
thedo 166:3a9487d57a5c 1255 The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(),
thedo 166:3a9487d57a5c 1256 anchor, true, borderType)`.
thedo 166:3a9487d57a5c 1257
thedo 166:3a9487d57a5c 1258 @param src input image; it can have any number of channels, which are processed independently, but
thedo 166:3a9487d57a5c 1259 the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
thedo 166:3a9487d57a5c 1260 @param dst output image of the same size and type as src.
thedo 166:3a9487d57a5c 1261 @param ksize blurring kernel size.
thedo 166:3a9487d57a5c 1262 @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
thedo 166:3a9487d57a5c 1263 center.
thedo 166:3a9487d57a5c 1264 @param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes
thedo 166:3a9487d57a5c 1265 @sa boxFilter, bilateralFilter, GaussianBlur, medianBlur
thedo 166:3a9487d57a5c 1266 */
thedo 166:3a9487d57a5c 1267 CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 1268 Size ksize, Point anchor = Point(-1,-1),
thedo 166:3a9487d57a5c 1269 int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 1270
thedo 166:3a9487d57a5c 1271 /** @brief Convolves an image with the kernel.
thedo 166:3a9487d57a5c 1272
thedo 166:3a9487d57a5c 1273 The function applies an arbitrary linear filter to an image. In-place operation is supported. When
thedo 166:3a9487d57a5c 1274 the aperture is partially outside the image, the function interpolates outlier pixel values
thedo 166:3a9487d57a5c 1275 according to the specified border mode.
thedo 166:3a9487d57a5c 1276
thedo 166:3a9487d57a5c 1277 The function does actually compute correlation, not the convolution:
thedo 166:3a9487d57a5c 1278
thedo 166:3a9487d57a5c 1279 \f[\texttt{dst} (x,y) = \sum _{ \stackrel{0\leq x' < \texttt{kernel.cols},}{0\leq y' < \texttt{kernel.rows}} } \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f]
thedo 166:3a9487d57a5c 1280
thedo 166:3a9487d57a5c 1281 That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
thedo 166:3a9487d57a5c 1282 the kernel using cv::flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
thedo 166:3a9487d57a5c 1283 anchor.y - 1)`.
thedo 166:3a9487d57a5c 1284
thedo 166:3a9487d57a5c 1285 The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or
thedo 166:3a9487d57a5c 1286 larger) and the direct algorithm for small kernels.
thedo 166:3a9487d57a5c 1287
thedo 166:3a9487d57a5c 1288 @param src input image.
thedo 166:3a9487d57a5c 1289 @param dst output image of the same size and the same number of channels as src.
thedo 166:3a9487d57a5c 1290 @param ddepth desired depth of the destination image, see @ref filter_depths "combinations"
thedo 166:3a9487d57a5c 1291 @param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
thedo 166:3a9487d57a5c 1292 matrix; if you want to apply different kernels to different channels, split the image into
thedo 166:3a9487d57a5c 1293 separate color planes using split and process them individually.
thedo 166:3a9487d57a5c 1294 @param anchor anchor of the kernel that indicates the relative position of a filtered point within
thedo 166:3a9487d57a5c 1295 the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
thedo 166:3a9487d57a5c 1296 is at the kernel center.
thedo 166:3a9487d57a5c 1297 @param delta optional value added to the filtered pixels before storing them in dst.
thedo 166:3a9487d57a5c 1298 @param borderType pixel extrapolation method, see cv::BorderTypes
thedo 166:3a9487d57a5c 1299 @sa sepFilter2D, dft, matchTemplate
thedo 166:3a9487d57a5c 1300 */
thedo 166:3a9487d57a5c 1301 CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth,
thedo 166:3a9487d57a5c 1302 InputArray kernel, Point anchor = Point(-1,-1),
thedo 166:3a9487d57a5c 1303 double delta = 0, int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 1304
thedo 166:3a9487d57a5c 1305 /** @brief Applies a separable linear filter to an image.
thedo 166:3a9487d57a5c 1306
thedo 166:3a9487d57a5c 1307 The function applies a separable linear filter to the image. That is, first, every row of src is
thedo 166:3a9487d57a5c 1308 filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
thedo 166:3a9487d57a5c 1309 kernel kernelY. The final result shifted by delta is stored in dst .
thedo 166:3a9487d57a5c 1310
thedo 166:3a9487d57a5c 1311 @param src Source image.
thedo 166:3a9487d57a5c 1312 @param dst Destination image of the same size and the same number of channels as src .
thedo 166:3a9487d57a5c 1313 @param ddepth Destination image depth, see @ref filter_depths "combinations"
thedo 166:3a9487d57a5c 1314 @param kernelX Coefficients for filtering each row.
thedo 166:3a9487d57a5c 1315 @param kernelY Coefficients for filtering each column.
thedo 166:3a9487d57a5c 1316 @param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor
thedo 166:3a9487d57a5c 1317 is at the kernel center.
thedo 166:3a9487d57a5c 1318 @param delta Value added to the filtered results before storing them.
thedo 166:3a9487d57a5c 1319 @param borderType Pixel extrapolation method, see cv::BorderTypes
thedo 166:3a9487d57a5c 1320 @sa filter2D, Sobel, GaussianBlur, boxFilter, blur
thedo 166:3a9487d57a5c 1321 */
thedo 166:3a9487d57a5c 1322 CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth,
thedo 166:3a9487d57a5c 1323 InputArray kernelX, InputArray kernelY,
thedo 166:3a9487d57a5c 1324 Point anchor = Point(-1,-1),
thedo 166:3a9487d57a5c 1325 double delta = 0, int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 1326
thedo 166:3a9487d57a5c 1327 /** @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
thedo 166:3a9487d57a5c 1328
thedo 166:3a9487d57a5c 1329 In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to
thedo 166:3a9487d57a5c 1330 calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$
thedo 166:3a9487d57a5c 1331 kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
thedo 166:3a9487d57a5c 1332 or the second x- or y- derivatives.
thedo 166:3a9487d57a5c 1333
thedo 166:3a9487d57a5c 1334 There is also the special value `ksize = CV_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr
thedo 166:3a9487d57a5c 1335 filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is
thedo 166:3a9487d57a5c 1336
thedo 166:3a9487d57a5c 1337 \f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f]
thedo 166:3a9487d57a5c 1338
thedo 166:3a9487d57a5c 1339 for the x-derivative, or transposed for the y-derivative.
thedo 166:3a9487d57a5c 1340
thedo 166:3a9487d57a5c 1341 The function calculates an image derivative by convolving the image with the appropriate kernel:
thedo 166:3a9487d57a5c 1342
thedo 166:3a9487d57a5c 1343 \f[\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f]
thedo 166:3a9487d57a5c 1344
thedo 166:3a9487d57a5c 1345 The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
thedo 166:3a9487d57a5c 1346 resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
thedo 166:3a9487d57a5c 1347 or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
thedo 166:3a9487d57a5c 1348 case corresponds to a kernel of:
thedo 166:3a9487d57a5c 1349
thedo 166:3a9487d57a5c 1350 \f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f]
thedo 166:3a9487d57a5c 1351
thedo 166:3a9487d57a5c 1352 The second case corresponds to a kernel of:
thedo 166:3a9487d57a5c 1353
thedo 166:3a9487d57a5c 1354 \f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f]
thedo 166:3a9487d57a5c 1355
thedo 166:3a9487d57a5c 1356 @param src input image.
thedo 166:3a9487d57a5c 1357 @param dst output image of the same size and the same number of channels as src .
thedo 166:3a9487d57a5c 1358 @param ddepth output image depth, see @ref filter_depths "combinations"; in the case of
thedo 166:3a9487d57a5c 1359 8-bit input images it will result in truncated derivatives.
thedo 166:3a9487d57a5c 1360 @param dx order of the derivative x.
thedo 166:3a9487d57a5c 1361 @param dy order of the derivative y.
thedo 166:3a9487d57a5c 1362 @param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
thedo 166:3a9487d57a5c 1363 @param scale optional scale factor for the computed derivative values; by default, no scaling is
thedo 166:3a9487d57a5c 1364 applied (see cv::getDerivKernels for details).
thedo 166:3a9487d57a5c 1365 @param delta optional delta value that is added to the results prior to storing them in dst.
thedo 166:3a9487d57a5c 1366 @param borderType pixel extrapolation method, see cv::BorderTypes
thedo 166:3a9487d57a5c 1367 @sa Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
thedo 166:3a9487d57a5c 1368 */
thedo 166:3a9487d57a5c 1369 CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,
thedo 166:3a9487d57a5c 1370 int dx, int dy, int ksize = 3,
thedo 166:3a9487d57a5c 1371 double scale = 1, double delta = 0,
thedo 166:3a9487d57a5c 1372 int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 1373
thedo 166:3a9487d57a5c 1374 /** @brief Calculates the first order image derivative in both x and y using a Sobel operator
thedo 166:3a9487d57a5c 1375
thedo 166:3a9487d57a5c 1376 Equivalent to calling:
thedo 166:3a9487d57a5c 1377
thedo 166:3a9487d57a5c 1378 @code
thedo 166:3a9487d57a5c 1379 Sobel( src, dx, CV_16SC1, 1, 0, 3 );
thedo 166:3a9487d57a5c 1380 Sobel( src, dy, CV_16SC1, 0, 1, 3 );
thedo 166:3a9487d57a5c 1381 @endcode
thedo 166:3a9487d57a5c 1382
thedo 166:3a9487d57a5c 1383 @param src input image.
thedo 166:3a9487d57a5c 1384 @param dx output image with first-order derivative in x.
thedo 166:3a9487d57a5c 1385 @param dy output image with first-order derivative in y.
thedo 166:3a9487d57a5c 1386 @param ksize size of Sobel kernel. It must be 3.
thedo 166:3a9487d57a5c 1387 @param borderType pixel extrapolation method, see cv::BorderTypes
thedo 166:3a9487d57a5c 1388
thedo 166:3a9487d57a5c 1389 @sa Sobel
thedo 166:3a9487d57a5c 1390 */
thedo 166:3a9487d57a5c 1391
thedo 166:3a9487d57a5c 1392 CV_EXPORTS_W void spatialGradient( InputArray src, OutputArray dx,
thedo 166:3a9487d57a5c 1393 OutputArray dy, int ksize = 3,
thedo 166:3a9487d57a5c 1394 int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 1395
thedo 166:3a9487d57a5c 1396 /** @brief Calculates the first x- or y- image derivative using Scharr operator.
thedo 166:3a9487d57a5c 1397
thedo 166:3a9487d57a5c 1398 The function computes the first x- or y- spatial image derivative using the Scharr operator. The
thedo 166:3a9487d57a5c 1399 call
thedo 166:3a9487d57a5c 1400
thedo 166:3a9487d57a5c 1401 \f[\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\f]
thedo 166:3a9487d57a5c 1402
thedo 166:3a9487d57a5c 1403 is equivalent to
thedo 166:3a9487d57a5c 1404
thedo 166:3a9487d57a5c 1405 \f[\texttt{Sobel(src, dst, ddepth, dx, dy, CV\_SCHARR, scale, delta, borderType)} .\f]
thedo 166:3a9487d57a5c 1406
thedo 166:3a9487d57a5c 1407 @param src input image.
thedo 166:3a9487d57a5c 1408 @param dst output image of the same size and the same number of channels as src.
thedo 166:3a9487d57a5c 1409 @param ddepth output image depth, see @ref filter_depths "combinations"
thedo 166:3a9487d57a5c 1410 @param dx order of the derivative x.
thedo 166:3a9487d57a5c 1411 @param dy order of the derivative y.
thedo 166:3a9487d57a5c 1412 @param scale optional scale factor for the computed derivative values; by default, no scaling is
thedo 166:3a9487d57a5c 1413 applied (see getDerivKernels for details).
thedo 166:3a9487d57a5c 1414 @param delta optional delta value that is added to the results prior to storing them in dst.
thedo 166:3a9487d57a5c 1415 @param borderType pixel extrapolation method, see cv::BorderTypes
thedo 166:3a9487d57a5c 1416 @sa cartToPolar
thedo 166:3a9487d57a5c 1417 */
thedo 166:3a9487d57a5c 1418 CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth,
thedo 166:3a9487d57a5c 1419 int dx, int dy, double scale = 1, double delta = 0,
thedo 166:3a9487d57a5c 1420 int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 1421
thedo 166:3a9487d57a5c 1422 /** @example laplace.cpp
thedo 166:3a9487d57a5c 1423 An example using Laplace transformations for edge detection
thedo 166:3a9487d57a5c 1424 */
thedo 166:3a9487d57a5c 1425
thedo 166:3a9487d57a5c 1426 /** @brief Calculates the Laplacian of an image.
thedo 166:3a9487d57a5c 1427
thedo 166:3a9487d57a5c 1428 The function calculates the Laplacian of the source image by adding up the second x and y
thedo 166:3a9487d57a5c 1429 derivatives calculated using the Sobel operator:
thedo 166:3a9487d57a5c 1430
thedo 166:3a9487d57a5c 1431 \f[\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}\f]
thedo 166:3a9487d57a5c 1432
thedo 166:3a9487d57a5c 1433 This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image
thedo 166:3a9487d57a5c 1434 with the following \f$3 \times 3\f$ aperture:
thedo 166:3a9487d57a5c 1435
thedo 166:3a9487d57a5c 1436 \f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f]
thedo 166:3a9487d57a5c 1437
thedo 166:3a9487d57a5c 1438 @param src Source image.
thedo 166:3a9487d57a5c 1439 @param dst Destination image of the same size and the same number of channels as src .
thedo 166:3a9487d57a5c 1440 @param ddepth Desired depth of the destination image.
thedo 166:3a9487d57a5c 1441 @param ksize Aperture size used to compute the second-derivative filters. See getDerivKernels for
thedo 166:3a9487d57a5c 1442 details. The size must be positive and odd.
thedo 166:3a9487d57a5c 1443 @param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
thedo 166:3a9487d57a5c 1444 applied. See getDerivKernels for details.
thedo 166:3a9487d57a5c 1445 @param delta Optional delta value that is added to the results prior to storing them in dst .
thedo 166:3a9487d57a5c 1446 @param borderType Pixel extrapolation method, see cv::BorderTypes
thedo 166:3a9487d57a5c 1447 @sa Sobel, Scharr
thedo 166:3a9487d57a5c 1448 */
thedo 166:3a9487d57a5c 1449 CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth,
thedo 166:3a9487d57a5c 1450 int ksize = 1, double scale = 1, double delta = 0,
thedo 166:3a9487d57a5c 1451 int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 1452
thedo 166:3a9487d57a5c 1453 //! @} imgproc_filter
thedo 166:3a9487d57a5c 1454
thedo 166:3a9487d57a5c 1455 //! @addtogroup imgproc_feature
thedo 166:3a9487d57a5c 1456 //! @{
thedo 166:3a9487d57a5c 1457
thedo 166:3a9487d57a5c 1458 /** @example edge.cpp
thedo 166:3a9487d57a5c 1459 An example on using the canny edge detector
thedo 166:3a9487d57a5c 1460 */
thedo 166:3a9487d57a5c 1461
thedo 166:3a9487d57a5c 1462 /** @brief Finds edges in an image using the Canny algorithm @cite Canny86 .
thedo 166:3a9487d57a5c 1463
thedo 166:3a9487d57a5c 1464 The function finds edges in the input image image and marks them in the output map edges using the
thedo 166:3a9487d57a5c 1465 Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
thedo 166:3a9487d57a5c 1466 largest value is used to find initial segments of strong edges. See
thedo 166:3a9487d57a5c 1467 <http://en.wikipedia.org/wiki/Canny_edge_detector>
thedo 166:3a9487d57a5c 1468
thedo 166:3a9487d57a5c 1469 @param image 8-bit input image.
thedo 166:3a9487d57a5c 1470 @param edges output edge map; single channels 8-bit image, which has the same size as image .
thedo 166:3a9487d57a5c 1471 @param threshold1 first threshold for the hysteresis procedure.
thedo 166:3a9487d57a5c 1472 @param threshold2 second threshold for the hysteresis procedure.
thedo 166:3a9487d57a5c 1473 @param apertureSize aperture size for the Sobel operator.
thedo 166:3a9487d57a5c 1474 @param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm
thedo 166:3a9487d57a5c 1475 \f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
thedo 166:3a9487d57a5c 1476 L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
thedo 166:3a9487d57a5c 1477 L2gradient=false ).
thedo 166:3a9487d57a5c 1478 */
thedo 166:3a9487d57a5c 1479 CV_EXPORTS_W void Canny( InputArray image, OutputArray edges,
thedo 166:3a9487d57a5c 1480 double threshold1, double threshold2,
thedo 166:3a9487d57a5c 1481 int apertureSize = 3, bool L2gradient = false );
thedo 166:3a9487d57a5c 1482
thedo 166:3a9487d57a5c 1483 /** @brief Calculates the minimal eigenvalue of gradient matrices for corner detection.
thedo 166:3a9487d57a5c 1484
thedo 166:3a9487d57a5c 1485 The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
thedo 166:3a9487d57a5c 1486 eigenvalue of the covariance matrix of derivatives, that is, \f$\min(\lambda_1, \lambda_2)\f$ in terms
thedo 166:3a9487d57a5c 1487 of the formulae in the cornerEigenValsAndVecs description.
thedo 166:3a9487d57a5c 1488
thedo 166:3a9487d57a5c 1489 @param src Input single-channel 8-bit or floating-point image.
thedo 166:3a9487d57a5c 1490 @param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
thedo 166:3a9487d57a5c 1491 src .
thedo 166:3a9487d57a5c 1492 @param blockSize Neighborhood size (see the details on cornerEigenValsAndVecs ).
thedo 166:3a9487d57a5c 1493 @param ksize Aperture parameter for the Sobel operator.
thedo 166:3a9487d57a5c 1494 @param borderType Pixel extrapolation method. See cv::BorderTypes.
thedo 166:3a9487d57a5c 1495 */
thedo 166:3a9487d57a5c 1496 CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 1497 int blockSize, int ksize = 3,
thedo 166:3a9487d57a5c 1498 int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 1499
thedo 166:3a9487d57a5c 1500 /** @brief Harris corner detector.
thedo 166:3a9487d57a5c 1501
thedo 166:3a9487d57a5c 1502 The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and
thedo 166:3a9487d57a5c 1503 cornerEigenValsAndVecs , for each pixel \f$(x, y)\f$ it calculates a \f$2\times2\f$ gradient covariance
thedo 166:3a9487d57a5c 1504 matrix \f$M^{(x,y)}\f$ over a \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood. Then, it
thedo 166:3a9487d57a5c 1505 computes the following characteristic:
thedo 166:3a9487d57a5c 1506
thedo 166:3a9487d57a5c 1507 \f[\texttt{dst} (x,y) = \mathrm{det} M^{(x,y)} - k \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\f]
thedo 166:3a9487d57a5c 1508
thedo 166:3a9487d57a5c 1509 Corners in the image can be found as the local maxima of this response map.
thedo 166:3a9487d57a5c 1510
thedo 166:3a9487d57a5c 1511 @param src Input single-channel 8-bit or floating-point image.
thedo 166:3a9487d57a5c 1512 @param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same
thedo 166:3a9487d57a5c 1513 size as src .
thedo 166:3a9487d57a5c 1514 @param blockSize Neighborhood size (see the details on cornerEigenValsAndVecs ).
thedo 166:3a9487d57a5c 1515 @param ksize Aperture parameter for the Sobel operator.
thedo 166:3a9487d57a5c 1516 @param k Harris detector free parameter. See the formula below.
thedo 166:3a9487d57a5c 1517 @param borderType Pixel extrapolation method. See cv::BorderTypes.
thedo 166:3a9487d57a5c 1518 */
thedo 166:3a9487d57a5c 1519 CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize,
thedo 166:3a9487d57a5c 1520 int ksize, double k,
thedo 166:3a9487d57a5c 1521 int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 1522
thedo 166:3a9487d57a5c 1523 /** @brief Calculates eigenvalues and eigenvectors of image blocks for corner detection.
thedo 166:3a9487d57a5c 1524
thedo 166:3a9487d57a5c 1525 For every pixel \f$p\f$ , the function cornerEigenValsAndVecs considers a blockSize \f$\times\f$ blockSize
thedo 166:3a9487d57a5c 1526 neighborhood \f$S(p)\f$ . It calculates the covariation matrix of derivatives over the neighborhood as:
thedo 166:3a9487d57a5c 1527
thedo 166:3a9487d57a5c 1528 \f[M = \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 & \sum _{S(p)}dI/dx dI/dy \\ \sum _{S(p)}dI/dx dI/dy & \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\f]
thedo 166:3a9487d57a5c 1529
thedo 166:3a9487d57a5c 1530 where the derivatives are computed using the Sobel operator.
thedo 166:3a9487d57a5c 1531
thedo 166:3a9487d57a5c 1532 After that, it finds eigenvectors and eigenvalues of \f$M\f$ and stores them in the destination image as
thedo 166:3a9487d57a5c 1533 \f$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\f$ where
thedo 166:3a9487d57a5c 1534
thedo 166:3a9487d57a5c 1535 - \f$\lambda_1, \lambda_2\f$ are the non-sorted eigenvalues of \f$M\f$
thedo 166:3a9487d57a5c 1536 - \f$x_1, y_1\f$ are the eigenvectors corresponding to \f$\lambda_1\f$
thedo 166:3a9487d57a5c 1537 - \f$x_2, y_2\f$ are the eigenvectors corresponding to \f$\lambda_2\f$
thedo 166:3a9487d57a5c 1538
thedo 166:3a9487d57a5c 1539 The output of the function can be used for robust edge or corner detection.
thedo 166:3a9487d57a5c 1540
thedo 166:3a9487d57a5c 1541 @param src Input single-channel 8-bit or floating-point image.
thedo 166:3a9487d57a5c 1542 @param dst Image to store the results. It has the same size as src and the type CV_32FC(6) .
thedo 166:3a9487d57a5c 1543 @param blockSize Neighborhood size (see details below).
thedo 166:3a9487d57a5c 1544 @param ksize Aperture parameter for the Sobel operator.
thedo 166:3a9487d57a5c 1545 @param borderType Pixel extrapolation method. See cv::BorderTypes.
thedo 166:3a9487d57a5c 1546
thedo 166:3a9487d57a5c 1547 @sa cornerMinEigenVal, cornerHarris, preCornerDetect
thedo 166:3a9487d57a5c 1548 */
thedo 166:3a9487d57a5c 1549 CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 1550 int blockSize, int ksize,
thedo 166:3a9487d57a5c 1551 int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 1552
thedo 166:3a9487d57a5c 1553 /** @brief Calculates a feature map for corner detection.
thedo 166:3a9487d57a5c 1554
thedo 166:3a9487d57a5c 1555 The function calculates the complex spatial derivative-based function of the source image
thedo 166:3a9487d57a5c 1556
thedo 166:3a9487d57a5c 1557 \f[\texttt{dst} = (D_x \texttt{src} )^2 \cdot D_{yy} \texttt{src} + (D_y \texttt{src} )^2 \cdot D_{xx} \texttt{src} - 2 D_x \texttt{src} \cdot D_y \texttt{src} \cdot D_{xy} \texttt{src}\f]
thedo 166:3a9487d57a5c 1558
thedo 166:3a9487d57a5c 1559 where \f$D_x\f$,\f$D_y\f$ are the first image derivatives, \f$D_{xx}\f$,\f$D_{yy}\f$ are the second image
thedo 166:3a9487d57a5c 1560 derivatives, and \f$D_{xy}\f$ is the mixed derivative.
thedo 166:3a9487d57a5c 1561
thedo 166:3a9487d57a5c 1562 The corners can be found as local maximums of the functions, as shown below:
thedo 166:3a9487d57a5c 1563 @code
thedo 166:3a9487d57a5c 1564 Mat corners, dilated_corners;
thedo 166:3a9487d57a5c 1565 preCornerDetect(image, corners, 3);
thedo 166:3a9487d57a5c 1566 // dilation with 3x3 rectangular structuring element
thedo 166:3a9487d57a5c 1567 dilate(corners, dilated_corners, Mat(), 1);
thedo 166:3a9487d57a5c 1568 Mat corner_mask = corners == dilated_corners;
thedo 166:3a9487d57a5c 1569 @endcode
thedo 166:3a9487d57a5c 1570
thedo 166:3a9487d57a5c 1571 @param src Source single-channel 8-bit of floating-point image.
thedo 166:3a9487d57a5c 1572 @param dst Output image that has the type CV_32F and the same size as src .
thedo 166:3a9487d57a5c 1573 @param ksize %Aperture size of the Sobel .
thedo 166:3a9487d57a5c 1574 @param borderType Pixel extrapolation method. See cv::BorderTypes.
thedo 166:3a9487d57a5c 1575 */
thedo 166:3a9487d57a5c 1576 CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize,
thedo 166:3a9487d57a5c 1577 int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 1578
thedo 166:3a9487d57a5c 1579 /** @brief Refines the corner locations.
thedo 166:3a9487d57a5c 1580
thedo 166:3a9487d57a5c 1581 The function iterates to find the sub-pixel accurate location of corners or radial saddle points, as
thedo 166:3a9487d57a5c 1582 shown on the figure below.
thedo 166:3a9487d57a5c 1583
thedo 166:3a9487d57a5c 1584 ![image](pics/cornersubpix.png)
thedo 166:3a9487d57a5c 1585
thedo 166:3a9487d57a5c 1586 Sub-pixel accurate corner locator is based on the observation that every vector from the center \f$q\f$
thedo 166:3a9487d57a5c 1587 to a point \f$p\f$ located within a neighborhood of \f$q\f$ is orthogonal to the image gradient at \f$p\f$
thedo 166:3a9487d57a5c 1588 subject to image and measurement noise. Consider the expression:
thedo 166:3a9487d57a5c 1589
thedo 166:3a9487d57a5c 1590 \f[\epsilon _i = {DI_{p_i}}^T \cdot (q - p_i)\f]
thedo 166:3a9487d57a5c 1591
thedo 166:3a9487d57a5c 1592 where \f${DI_{p_i}}\f$ is an image gradient at one of the points \f$p_i\f$ in a neighborhood of \f$q\f$ . The
thedo 166:3a9487d57a5c 1593 value of \f$q\f$ is to be found so that \f$\epsilon_i\f$ is minimized. A system of equations may be set up
thedo 166:3a9487d57a5c 1594 with \f$\epsilon_i\f$ set to zero:
thedo 166:3a9487d57a5c 1595
thedo 166:3a9487d57a5c 1596 \f[\sum _i(DI_{p_i} \cdot {DI_{p_i}}^T) - \sum _i(DI_{p_i} \cdot {DI_{p_i}}^T \cdot p_i)\f]
thedo 166:3a9487d57a5c 1597
thedo 166:3a9487d57a5c 1598 where the gradients are summed within a neighborhood ("search window") of \f$q\f$ . Calling the first
thedo 166:3a9487d57a5c 1599 gradient term \f$G\f$ and the second gradient term \f$b\f$ gives:
thedo 166:3a9487d57a5c 1600
thedo 166:3a9487d57a5c 1601 \f[q = G^{-1} \cdot b\f]
thedo 166:3a9487d57a5c 1602
thedo 166:3a9487d57a5c 1603 The algorithm sets the center of the neighborhood window at this new center \f$q\f$ and then iterates
thedo 166:3a9487d57a5c 1604 until the center stays within a set threshold.
thedo 166:3a9487d57a5c 1605
thedo 166:3a9487d57a5c 1606 @param image Input image.
thedo 166:3a9487d57a5c 1607 @param corners Initial coordinates of the input corners and refined coordinates provided for
thedo 166:3a9487d57a5c 1608 output.
thedo 166:3a9487d57a5c 1609 @param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) ,
thedo 166:3a9487d57a5c 1610 then a \f$5*2+1 \times 5*2+1 = 11 \times 11\f$ search window is used.
thedo 166:3a9487d57a5c 1611 @param zeroZone Half of the size of the dead region in the middle of the search zone over which
thedo 166:3a9487d57a5c 1612 the summation in the formula below is not done. It is used sometimes to avoid possible
thedo 166:3a9487d57a5c 1613 singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such
thedo 166:3a9487d57a5c 1614 a size.
thedo 166:3a9487d57a5c 1615 @param criteria Criteria for termination of the iterative process of corner refinement. That is,
thedo 166:3a9487d57a5c 1616 the process of corner position refinement stops either after criteria.maxCount iterations or when
thedo 166:3a9487d57a5c 1617 the corner position moves by less than criteria.epsilon on some iteration.
thedo 166:3a9487d57a5c 1618 */
thedo 166:3a9487d57a5c 1619 CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners,
thedo 166:3a9487d57a5c 1620 Size winSize, Size zeroZone,
thedo 166:3a9487d57a5c 1621 TermCriteria criteria );
thedo 166:3a9487d57a5c 1622
thedo 166:3a9487d57a5c 1623 /** @brief Determines strong corners on an image.
thedo 166:3a9487d57a5c 1624
thedo 166:3a9487d57a5c 1625 The function finds the most prominent corners in the image or in the specified image region, as
thedo 166:3a9487d57a5c 1626 described in @cite Shi94
thedo 166:3a9487d57a5c 1627
thedo 166:3a9487d57a5c 1628 - Function calculates the corner quality measure at every source image pixel using the
thedo 166:3a9487d57a5c 1629 cornerMinEigenVal or cornerHarris .
thedo 166:3a9487d57a5c 1630 - Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
thedo 166:3a9487d57a5c 1631 retained).
thedo 166:3a9487d57a5c 1632 - The corners with the minimal eigenvalue less than
thedo 166:3a9487d57a5c 1633 \f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected.
thedo 166:3a9487d57a5c 1634 - The remaining corners are sorted by the quality measure in the descending order.
thedo 166:3a9487d57a5c 1635 - Function throws away each corner for which there is a stronger corner at a distance less than
thedo 166:3a9487d57a5c 1636 maxDistance.
thedo 166:3a9487d57a5c 1637
thedo 166:3a9487d57a5c 1638 The function can be used to initialize a point-based tracker of an object.
thedo 166:3a9487d57a5c 1639
thedo 166:3a9487d57a5c 1640 @note If the function is called with different values A and B of the parameter qualityLevel , and
thedo 166:3a9487d57a5c 1641 A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
thedo 166:3a9487d57a5c 1642 with qualityLevel=B .
thedo 166:3a9487d57a5c 1643
thedo 166:3a9487d57a5c 1644 @param image Input 8-bit or floating-point 32-bit, single-channel image.
thedo 166:3a9487d57a5c 1645 @param corners Output vector of detected corners.
thedo 166:3a9487d57a5c 1646 @param maxCorners Maximum number of corners to return. If there are more corners than are found,
thedo 166:3a9487d57a5c 1647 the strongest of them is returned.
thedo 166:3a9487d57a5c 1648 @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
thedo 166:3a9487d57a5c 1649 parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
thedo 166:3a9487d57a5c 1650 (see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the
thedo 166:3a9487d57a5c 1651 quality measure less than the product are rejected. For example, if the best corner has the
thedo 166:3a9487d57a5c 1652 quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
thedo 166:3a9487d57a5c 1653 less than 15 are rejected.
thedo 166:3a9487d57a5c 1654 @param minDistance Minimum possible Euclidean distance between the returned corners.
thedo 166:3a9487d57a5c 1655 @param mask Optional region of interest. If the image is not empty (it needs to have the type
thedo 166:3a9487d57a5c 1656 CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
thedo 166:3a9487d57a5c 1657 @param blockSize Size of an average block for computing a derivative covariation matrix over each
thedo 166:3a9487d57a5c 1658 pixel neighborhood. See cornerEigenValsAndVecs .
thedo 166:3a9487d57a5c 1659 @param useHarrisDetector Parameter indicating whether to use a Harris detector (see cornerHarris)
thedo 166:3a9487d57a5c 1660 or cornerMinEigenVal.
thedo 166:3a9487d57a5c 1661 @param k Free parameter of the Harris detector.
thedo 166:3a9487d57a5c 1662
thedo 166:3a9487d57a5c 1663 @sa cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform,
thedo 166:3a9487d57a5c 1664 */
thedo 166:3a9487d57a5c 1665 CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
thedo 166:3a9487d57a5c 1666 int maxCorners, double qualityLevel, double minDistance,
thedo 166:3a9487d57a5c 1667 InputArray mask = noArray(), int blockSize = 3,
thedo 166:3a9487d57a5c 1668 bool useHarrisDetector = false, double k = 0.04 );
thedo 166:3a9487d57a5c 1669
thedo 166:3a9487d57a5c 1670 /** @example houghlines.cpp
thedo 166:3a9487d57a5c 1671 An example using the Hough line detector
thedo 166:3a9487d57a5c 1672 */
thedo 166:3a9487d57a5c 1673
thedo 166:3a9487d57a5c 1674 /** @brief Finds lines in a binary image using the standard Hough transform.
thedo 166:3a9487d57a5c 1675
thedo 166:3a9487d57a5c 1676 The function implements the standard or standard multi-scale Hough transform algorithm for line
thedo 166:3a9487d57a5c 1677 detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough
thedo 166:3a9487d57a5c 1678 transform.
thedo 166:3a9487d57a5c 1679
thedo 166:3a9487d57a5c 1680 @param image 8-bit, single-channel binary source image. The image may be modified by the function.
thedo 166:3a9487d57a5c 1681 @param lines Output vector of lines. Each line is represented by a two-element vector
thedo 166:3a9487d57a5c 1682 \f$(\rho, \theta)\f$ . \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of
thedo 166:3a9487d57a5c 1683 the image). \f$\theta\f$ is the line rotation angle in radians (
thedo 166:3a9487d57a5c 1684 \f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ).
thedo 166:3a9487d57a5c 1685 @param rho Distance resolution of the accumulator in pixels.
thedo 166:3a9487d57a5c 1686 @param theta Angle resolution of the accumulator in radians.
thedo 166:3a9487d57a5c 1687 @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
thedo 166:3a9487d57a5c 1688 votes ( \f$>\texttt{threshold}\f$ ).
thedo 166:3a9487d57a5c 1689 @param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho .
thedo 166:3a9487d57a5c 1690 The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
thedo 166:3a9487d57a5c 1691 rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these
thedo 166:3a9487d57a5c 1692 parameters should be positive.
thedo 166:3a9487d57a5c 1693 @param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
thedo 166:3a9487d57a5c 1694 @param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines.
thedo 166:3a9487d57a5c 1695 Must fall between 0 and max_theta.
thedo 166:3a9487d57a5c 1696 @param max_theta For standard and multi-scale Hough transform, maximum angle to check for lines.
thedo 166:3a9487d57a5c 1697 Must fall between min_theta and CV_PI.
thedo 166:3a9487d57a5c 1698 */
thedo 166:3a9487d57a5c 1699 CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines,
thedo 166:3a9487d57a5c 1700 double rho, double theta, int threshold,
thedo 166:3a9487d57a5c 1701 double srn = 0, double stn = 0,
thedo 166:3a9487d57a5c 1702 double min_theta = 0, double max_theta = CV_PI );
thedo 166:3a9487d57a5c 1703
thedo 166:3a9487d57a5c 1704 /** @brief Finds line segments in a binary image using the probabilistic Hough transform.
thedo 166:3a9487d57a5c 1705
thedo 166:3a9487d57a5c 1706 The function implements the probabilistic Hough transform algorithm for line detection, described
thedo 166:3a9487d57a5c 1707 in @cite Matas00
thedo 166:3a9487d57a5c 1708
thedo 166:3a9487d57a5c 1709 See the line detection example below:
thedo 166:3a9487d57a5c 1710
thedo 166:3a9487d57a5c 1711 @code
thedo 166:3a9487d57a5c 1712 #include <opencv2/imgproc.hpp>
thedo 166:3a9487d57a5c 1713 #include <opencv2/highgui.hpp>
thedo 166:3a9487d57a5c 1714
thedo 166:3a9487d57a5c 1715 using namespace cv;
thedo 166:3a9487d57a5c 1716 using namespace std;
thedo 166:3a9487d57a5c 1717
thedo 166:3a9487d57a5c 1718 int main(int argc, char** argv)
thedo 166:3a9487d57a5c 1719 {
thedo 166:3a9487d57a5c 1720 Mat src, dst, color_dst;
thedo 166:3a9487d57a5c 1721 if( argc != 2 || !(src=imread(argv[1], 0)).data)
thedo 166:3a9487d57a5c 1722 return -1;
thedo 166:3a9487d57a5c 1723
thedo 166:3a9487d57a5c 1724 Canny( src, dst, 50, 200, 3 );
thedo 166:3a9487d57a5c 1725 cvtColor( dst, color_dst, COLOR_GRAY2BGR );
thedo 166:3a9487d57a5c 1726
thedo 166:3a9487d57a5c 1727 #if 0
thedo 166:3a9487d57a5c 1728 vector<Vec2f> lines;
thedo 166:3a9487d57a5c 1729 HoughLines( dst, lines, 1, CV_PI/180, 100 );
thedo 166:3a9487d57a5c 1730
thedo 166:3a9487d57a5c 1731 for( size_t i = 0; i < lines.size(); i++ )
thedo 166:3a9487d57a5c 1732 {
thedo 166:3a9487d57a5c 1733 float rho = lines[i][0];
thedo 166:3a9487d57a5c 1734 float theta = lines[i][1];
thedo 166:3a9487d57a5c 1735 double a = cos(theta), b = sin(theta);
thedo 166:3a9487d57a5c 1736 double x0 = a*rho, y0 = b*rho;
thedo 166:3a9487d57a5c 1737 Point pt1(cvRound(x0 + 1000*(-b)),
thedo 166:3a9487d57a5c 1738 cvRound(y0 + 1000*(a)));
thedo 166:3a9487d57a5c 1739 Point pt2(cvRound(x0 - 1000*(-b)),
thedo 166:3a9487d57a5c 1740 cvRound(y0 - 1000*(a)));
thedo 166:3a9487d57a5c 1741 line( color_dst, pt1, pt2, Scalar(0,0,255), 3, 8 );
thedo 166:3a9487d57a5c 1742 }
thedo 166:3a9487d57a5c 1743 #else
thedo 166:3a9487d57a5c 1744 vector<Vec4i> lines;
thedo 166:3a9487d57a5c 1745 HoughLinesP( dst, lines, 1, CV_PI/180, 80, 30, 10 );
thedo 166:3a9487d57a5c 1746 for( size_t i = 0; i < lines.size(); i++ )
thedo 166:3a9487d57a5c 1747 {
thedo 166:3a9487d57a5c 1748 line( color_dst, Point(lines[i][0], lines[i][1]),
thedo 166:3a9487d57a5c 1749 Point(lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8 );
thedo 166:3a9487d57a5c 1750 }
thedo 166:3a9487d57a5c 1751 #endif
thedo 166:3a9487d57a5c 1752 namedWindow( "Source", 1 );
thedo 166:3a9487d57a5c 1753 imshow( "Source", src );
thedo 166:3a9487d57a5c 1754
thedo 166:3a9487d57a5c 1755 namedWindow( "Detected Lines", 1 );
thedo 166:3a9487d57a5c 1756 imshow( "Detected Lines", color_dst );
thedo 166:3a9487d57a5c 1757
thedo 166:3a9487d57a5c 1758 waitKey(0);
thedo 166:3a9487d57a5c 1759 return 0;
thedo 166:3a9487d57a5c 1760 }
thedo 166:3a9487d57a5c 1761 @endcode
thedo 166:3a9487d57a5c 1762 This is a sample picture the function parameters have been tuned for:
thedo 166:3a9487d57a5c 1763
thedo 166:3a9487d57a5c 1764 ![image](pics/building.jpg)
thedo 166:3a9487d57a5c 1765
thedo 166:3a9487d57a5c 1766 And this is the output of the above program in case of the probabilistic Hough transform:
thedo 166:3a9487d57a5c 1767
thedo 166:3a9487d57a5c 1768 ![image](pics/houghp.png)
thedo 166:3a9487d57a5c 1769
thedo 166:3a9487d57a5c 1770 @param image 8-bit, single-channel binary source image. The image may be modified by the function.
thedo 166:3a9487d57a5c 1771 @param lines Output vector of lines. Each line is represented by a 4-element vector
thedo 166:3a9487d57a5c 1772 \f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
thedo 166:3a9487d57a5c 1773 line segment.
thedo 166:3a9487d57a5c 1774 @param rho Distance resolution of the accumulator in pixels.
thedo 166:3a9487d57a5c 1775 @param theta Angle resolution of the accumulator in radians.
thedo 166:3a9487d57a5c 1776 @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
thedo 166:3a9487d57a5c 1777 votes ( \f$>\texttt{threshold}\f$ ).
thedo 166:3a9487d57a5c 1778 @param minLineLength Minimum line length. Line segments shorter than that are rejected.
thedo 166:3a9487d57a5c 1779 @param maxLineGap Maximum allowed gap between points on the same line to link them.
thedo 166:3a9487d57a5c 1780
thedo 166:3a9487d57a5c 1781 @sa LineSegmentDetector
thedo 166:3a9487d57a5c 1782 */
thedo 166:3a9487d57a5c 1783 CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines,
thedo 166:3a9487d57a5c 1784 double rho, double theta, int threshold,
thedo 166:3a9487d57a5c 1785 double minLineLength = 0, double maxLineGap = 0 );
thedo 166:3a9487d57a5c 1786
thedo 166:3a9487d57a5c 1787 /** @example houghcircles.cpp
thedo 166:3a9487d57a5c 1788 An example using the Hough circle detector
thedo 166:3a9487d57a5c 1789 */
thedo 166:3a9487d57a5c 1790
thedo 166:3a9487d57a5c 1791 /** @brief Finds circles in a grayscale image using the Hough transform.
thedo 166:3a9487d57a5c 1792
thedo 166:3a9487d57a5c 1793 The function finds circles in a grayscale image using a modification of the Hough transform.
thedo 166:3a9487d57a5c 1794
thedo 166:3a9487d57a5c 1795 Example: :
thedo 166:3a9487d57a5c 1796 @code
thedo 166:3a9487d57a5c 1797 #include <opencv2/imgproc.hpp>
thedo 166:3a9487d57a5c 1798 #include <opencv2/highgui.hpp>
thedo 166:3a9487d57a5c 1799 #include <math.h>
thedo 166:3a9487d57a5c 1800
thedo 166:3a9487d57a5c 1801 using namespace cv;
thedo 166:3a9487d57a5c 1802 using namespace std;
thedo 166:3a9487d57a5c 1803
thedo 166:3a9487d57a5c 1804 int main(int argc, char** argv)
thedo 166:3a9487d57a5c 1805 {
thedo 166:3a9487d57a5c 1806 Mat img, gray;
thedo 166:3a9487d57a5c 1807 if( argc != 2 || !(img=imread(argv[1], 1)).data)
thedo 166:3a9487d57a5c 1808 return -1;
thedo 166:3a9487d57a5c 1809 cvtColor(img, gray, COLOR_BGR2GRAY);
thedo 166:3a9487d57a5c 1810 // smooth it, otherwise a lot of false circles may be detected
thedo 166:3a9487d57a5c 1811 GaussianBlur( gray, gray, Size(9, 9), 2, 2 );
thedo 166:3a9487d57a5c 1812 vector<Vec3f> circles;
thedo 166:3a9487d57a5c 1813 HoughCircles(gray, circles, HOUGH_GRADIENT,
thedo 166:3a9487d57a5c 1814 2, gray.rows/4, 200, 100 );
thedo 166:3a9487d57a5c 1815 for( size_t i = 0; i < circles.size(); i++ )
thedo 166:3a9487d57a5c 1816 {
thedo 166:3a9487d57a5c 1817 Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
thedo 166:3a9487d57a5c 1818 int radius = cvRound(circles[i][2]);
thedo 166:3a9487d57a5c 1819 // draw the circle center
thedo 166:3a9487d57a5c 1820 circle( img, center, 3, Scalar(0,255,0), -1, 8, 0 );
thedo 166:3a9487d57a5c 1821 // draw the circle outline
thedo 166:3a9487d57a5c 1822 circle( img, center, radius, Scalar(0,0,255), 3, 8, 0 );
thedo 166:3a9487d57a5c 1823 }
thedo 166:3a9487d57a5c 1824 namedWindow( "circles", 1 );
thedo 166:3a9487d57a5c 1825 imshow( "circles", img );
thedo 166:3a9487d57a5c 1826
thedo 166:3a9487d57a5c 1827 waitKey(0);
thedo 166:3a9487d57a5c 1828 return 0;
thedo 166:3a9487d57a5c 1829 }
thedo 166:3a9487d57a5c 1830 @endcode
thedo 166:3a9487d57a5c 1831
thedo 166:3a9487d57a5c 1832 @note Usually the function detects the centers of circles well. However, it may fail to find correct
thedo 166:3a9487d57a5c 1833 radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
thedo 166:3a9487d57a5c 1834 you know it. Or, you may ignore the returned radius, use only the center, and find the correct
thedo 166:3a9487d57a5c 1835 radius using an additional procedure.
thedo 166:3a9487d57a5c 1836
thedo 166:3a9487d57a5c 1837 @param image 8-bit, single-channel, grayscale input image.
thedo 166:3a9487d57a5c 1838 @param circles Output vector of found circles. Each vector is encoded as a 3-element
thedo 166:3a9487d57a5c 1839 floating-point vector \f$(x, y, radius)\f$ .
thedo 166:3a9487d57a5c 1840 @param method Detection method, see cv::HoughModes. Currently, the only implemented method is HOUGH_GRADIENT
thedo 166:3a9487d57a5c 1841 @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
thedo 166:3a9487d57a5c 1842 dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
thedo 166:3a9487d57a5c 1843 half as big width and height.
thedo 166:3a9487d57a5c 1844 @param minDist Minimum distance between the centers of the detected circles. If the parameter is
thedo 166:3a9487d57a5c 1845 too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
thedo 166:3a9487d57a5c 1846 too large, some circles may be missed.
thedo 166:3a9487d57a5c 1847 @param param1 First method-specific parameter. In case of CV_HOUGH_GRADIENT , it is the higher
thedo 166:3a9487d57a5c 1848 threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
thedo 166:3a9487d57a5c 1849 @param param2 Second method-specific parameter. In case of CV_HOUGH_GRADIENT , it is the
thedo 166:3a9487d57a5c 1850 accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
thedo 166:3a9487d57a5c 1851 false circles may be detected. Circles, corresponding to the larger accumulator values, will be
thedo 166:3a9487d57a5c 1852 returned first.
thedo 166:3a9487d57a5c 1853 @param minRadius Minimum circle radius.
thedo 166:3a9487d57a5c 1854 @param maxRadius Maximum circle radius.
thedo 166:3a9487d57a5c 1855
thedo 166:3a9487d57a5c 1856 @sa fitEllipse, minEnclosingCircle
thedo 166:3a9487d57a5c 1857 */
thedo 166:3a9487d57a5c 1858 CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles,
thedo 166:3a9487d57a5c 1859 int method, double dp, double minDist,
thedo 166:3a9487d57a5c 1860 double param1 = 100, double param2 = 100,
thedo 166:3a9487d57a5c 1861 int minRadius = 0, int maxRadius = 0 );
thedo 166:3a9487d57a5c 1862
thedo 166:3a9487d57a5c 1863 //! @} imgproc_feature
thedo 166:3a9487d57a5c 1864
thedo 166:3a9487d57a5c 1865 //! @addtogroup imgproc_filter
thedo 166:3a9487d57a5c 1866 //! @{
thedo 166:3a9487d57a5c 1867
thedo 166:3a9487d57a5c 1868 /** @example morphology2.cpp
thedo 166:3a9487d57a5c 1869 An example using the morphological operations
thedo 166:3a9487d57a5c 1870 */
thedo 166:3a9487d57a5c 1871
thedo 166:3a9487d57a5c 1872 /** @brief Erodes an image by using a specific structuring element.
thedo 166:3a9487d57a5c 1873
thedo 166:3a9487d57a5c 1874 The function erodes the source image using the specified structuring element that determines the
thedo 166:3a9487d57a5c 1875 shape of a pixel neighborhood over which the minimum is taken:
thedo 166:3a9487d57a5c 1876
thedo 166:3a9487d57a5c 1877 \f[\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
thedo 166:3a9487d57a5c 1878
thedo 166:3a9487d57a5c 1879 The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
thedo 166:3a9487d57a5c 1880 case of multi-channel images, each channel is processed independently.
thedo 166:3a9487d57a5c 1881
thedo 166:3a9487d57a5c 1882 @param src input image; the number of channels can be arbitrary, but the depth should be one of
thedo 166:3a9487d57a5c 1883 CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
thedo 166:3a9487d57a5c 1884 @param dst output image of the same size and type as src.
thedo 166:3a9487d57a5c 1885 @param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular
thedo 166:3a9487d57a5c 1886 structuring element is used. Kernel can be created using getStructuringElement.
thedo 166:3a9487d57a5c 1887 @param anchor position of the anchor within the element; default value (-1, -1) means that the
thedo 166:3a9487d57a5c 1888 anchor is at the element center.
thedo 166:3a9487d57a5c 1889 @param iterations number of times erosion is applied.
thedo 166:3a9487d57a5c 1890 @param borderType pixel extrapolation method, see cv::BorderTypes
thedo 166:3a9487d57a5c 1891 @param borderValue border value in case of a constant border
thedo 166:3a9487d57a5c 1892 @sa dilate, morphologyEx, getStructuringElement
thedo 166:3a9487d57a5c 1893 */
thedo 166:3a9487d57a5c 1894 CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,
thedo 166:3a9487d57a5c 1895 Point anchor = Point(-1,-1), int iterations = 1,
thedo 166:3a9487d57a5c 1896 int borderType = BORDER_CONSTANT,
thedo 166:3a9487d57a5c 1897 const Scalar& borderValue = morphologyDefaultBorderValue() );
thedo 166:3a9487d57a5c 1898
thedo 166:3a9487d57a5c 1899 /** @brief Dilates an image by using a specific structuring element.
thedo 166:3a9487d57a5c 1900
thedo 166:3a9487d57a5c 1901 The function dilates the source image using the specified structuring element that determines the
thedo 166:3a9487d57a5c 1902 shape of a pixel neighborhood over which the maximum is taken:
thedo 166:3a9487d57a5c 1903 \f[\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
thedo 166:3a9487d57a5c 1904
thedo 166:3a9487d57a5c 1905 The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
thedo 166:3a9487d57a5c 1906 case of multi-channel images, each channel is processed independently.
thedo 166:3a9487d57a5c 1907
thedo 166:3a9487d57a5c 1908 @param src input image; the number of channels can be arbitrary, but the depth should be one of
thedo 166:3a9487d57a5c 1909 CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
thedo 166:3a9487d57a5c 1910 @param dst output image of the same size and type as src\`.
thedo 166:3a9487d57a5c 1911 @param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular
thedo 166:3a9487d57a5c 1912 structuring element is used. Kernel can be created using getStructuringElement
thedo 166:3a9487d57a5c 1913 @param anchor position of the anchor within the element; default value (-1, -1) means that the
thedo 166:3a9487d57a5c 1914 anchor is at the element center.
thedo 166:3a9487d57a5c 1915 @param iterations number of times dilation is applied.
thedo 166:3a9487d57a5c 1916 @param borderType pixel extrapolation method, see cv::BorderTypes
thedo 166:3a9487d57a5c 1917 @param borderValue border value in case of a constant border
thedo 166:3a9487d57a5c 1918 @sa erode, morphologyEx, getStructuringElement
thedo 166:3a9487d57a5c 1919 */
thedo 166:3a9487d57a5c 1920 CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel,
thedo 166:3a9487d57a5c 1921 Point anchor = Point(-1,-1), int iterations = 1,
thedo 166:3a9487d57a5c 1922 int borderType = BORDER_CONSTANT,
thedo 166:3a9487d57a5c 1923 const Scalar& borderValue = morphologyDefaultBorderValue() );
thedo 166:3a9487d57a5c 1924
thedo 166:3a9487d57a5c 1925 /** @brief Performs advanced morphological transformations.
thedo 166:3a9487d57a5c 1926
thedo 166:3a9487d57a5c 1927 The function morphologyEx can perform advanced morphological transformations using an erosion and dilation as
thedo 166:3a9487d57a5c 1928 basic operations.
thedo 166:3a9487d57a5c 1929
thedo 166:3a9487d57a5c 1930 Any of the operations can be done in-place. In case of multi-channel images, each channel is
thedo 166:3a9487d57a5c 1931 processed independently.
thedo 166:3a9487d57a5c 1932
thedo 166:3a9487d57a5c 1933 @param src Source image. The number of channels can be arbitrary. The depth should be one of
thedo 166:3a9487d57a5c 1934 CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
thedo 166:3a9487d57a5c 1935 @param dst Destination image of the same size and type as source image.
thedo 166:3a9487d57a5c 1936 @param op Type of a morphological operation, see cv::MorphTypes
thedo 166:3a9487d57a5c 1937 @param kernel Structuring element. It can be created using cv::getStructuringElement.
thedo 166:3a9487d57a5c 1938 @param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
thedo 166:3a9487d57a5c 1939 kernel center.
thedo 166:3a9487d57a5c 1940 @param iterations Number of times erosion and dilation are applied.
thedo 166:3a9487d57a5c 1941 @param borderType Pixel extrapolation method, see cv::BorderTypes
thedo 166:3a9487d57a5c 1942 @param borderValue Border value in case of a constant border. The default value has a special
thedo 166:3a9487d57a5c 1943 meaning.
thedo 166:3a9487d57a5c 1944 @sa dilate, erode, getStructuringElement
thedo 166:3a9487d57a5c 1945 */
thedo 166:3a9487d57a5c 1946 CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 1947 int op, InputArray kernel,
thedo 166:3a9487d57a5c 1948 Point anchor = Point(-1,-1), int iterations = 1,
thedo 166:3a9487d57a5c 1949 int borderType = BORDER_CONSTANT,
thedo 166:3a9487d57a5c 1950 const Scalar& borderValue = morphologyDefaultBorderValue() );
thedo 166:3a9487d57a5c 1951
thedo 166:3a9487d57a5c 1952 //! @} imgproc_filter
thedo 166:3a9487d57a5c 1953
thedo 166:3a9487d57a5c 1954 //! @addtogroup imgproc_transform
thedo 166:3a9487d57a5c 1955 //! @{
thedo 166:3a9487d57a5c 1956
thedo 166:3a9487d57a5c 1957 /** @brief Resizes an image.
thedo 166:3a9487d57a5c 1958
thedo 166:3a9487d57a5c 1959 The function resize resizes the image src down to or up to the specified size. Note that the
thedo 166:3a9487d57a5c 1960 initial dst type or size are not taken into account. Instead, the size and type are derived from
thedo 166:3a9487d57a5c 1961 the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst,
thedo 166:3a9487d57a5c 1962 you may call the function as follows:
thedo 166:3a9487d57a5c 1963 @code
thedo 166:3a9487d57a5c 1964 // explicitly specify dsize=dst.size(); fx and fy will be computed from that.
thedo 166:3a9487d57a5c 1965 resize(src, dst, dst.size(), 0, 0, interpolation);
thedo 166:3a9487d57a5c 1966 @endcode
thedo 166:3a9487d57a5c 1967 If you want to decimate the image by factor of 2 in each direction, you can call the function this
thedo 166:3a9487d57a5c 1968 way:
thedo 166:3a9487d57a5c 1969 @code
thedo 166:3a9487d57a5c 1970 // specify fx and fy and let the function compute the destination image size.
thedo 166:3a9487d57a5c 1971 resize(src, dst, Size(), 0.5, 0.5, interpolation);
thedo 166:3a9487d57a5c 1972 @endcode
thedo 166:3a9487d57a5c 1973 To shrink an image, it will generally look best with cv::INTER_AREA interpolation, whereas to
thedo 166:3a9487d57a5c 1974 enlarge an image, it will generally look best with cv::INTER_CUBIC (slow) or cv::INTER_LINEAR
thedo 166:3a9487d57a5c 1975 (faster but still looks OK).
thedo 166:3a9487d57a5c 1976
thedo 166:3a9487d57a5c 1977 @param src input image.
thedo 166:3a9487d57a5c 1978 @param dst output image; it has the size dsize (when it is non-zero) or the size computed from
thedo 166:3a9487d57a5c 1979 src.size(), fx, and fy; the type of dst is the same as of src.
thedo 166:3a9487d57a5c 1980 @param dsize output image size; if it equals zero, it is computed as:
thedo 166:3a9487d57a5c 1981 \f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f]
thedo 166:3a9487d57a5c 1982 Either dsize or both fx and fy must be non-zero.
thedo 166:3a9487d57a5c 1983 @param fx scale factor along the horizontal axis; when it equals 0, it is computed as
thedo 166:3a9487d57a5c 1984 \f[\texttt{(double)dsize.width/src.cols}\f]
thedo 166:3a9487d57a5c 1985 @param fy scale factor along the vertical axis; when it equals 0, it is computed as
thedo 166:3a9487d57a5c 1986 \f[\texttt{(double)dsize.height/src.rows}\f]
thedo 166:3a9487d57a5c 1987 @param interpolation interpolation method, see cv::InterpolationFlags
thedo 166:3a9487d57a5c 1988
thedo 166:3a9487d57a5c 1989 @sa warpAffine, warpPerspective, remap
thedo 166:3a9487d57a5c 1990 */
thedo 166:3a9487d57a5c 1991 CV_EXPORTS_W void resize( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 1992 Size dsize, double fx = 0, double fy = 0,
thedo 166:3a9487d57a5c 1993 int interpolation = INTER_LINEAR );
thedo 166:3a9487d57a5c 1994
thedo 166:3a9487d57a5c 1995 /** @brief Applies an affine transformation to an image.
thedo 166:3a9487d57a5c 1996
thedo 166:3a9487d57a5c 1997 The function warpAffine transforms the source image using the specified matrix:
thedo 166:3a9487d57a5c 1998
thedo 166:3a9487d57a5c 1999 \f[\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\f]
thedo 166:3a9487d57a5c 2000
thedo 166:3a9487d57a5c 2001 when the flag WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
thedo 166:3a9487d57a5c 2002 with cv::invertAffineTransform and then put in the formula above instead of M. The function cannot
thedo 166:3a9487d57a5c 2003 operate in-place.
thedo 166:3a9487d57a5c 2004
thedo 166:3a9487d57a5c 2005 @param src input image.
thedo 166:3a9487d57a5c 2006 @param dst output image that has the size dsize and the same type as src .
thedo 166:3a9487d57a5c 2007 @param M \f$2\times 3\f$ transformation matrix.
thedo 166:3a9487d57a5c 2008 @param dsize size of the output image.
thedo 166:3a9487d57a5c 2009 @param flags combination of interpolation methods (see cv::InterpolationFlags) and the optional
thedo 166:3a9487d57a5c 2010 flag WARP_INVERSE_MAP that means that M is the inverse transformation (
thedo 166:3a9487d57a5c 2011 \f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
thedo 166:3a9487d57a5c 2012 @param borderMode pixel extrapolation method (see cv::BorderTypes); when
thedo 166:3a9487d57a5c 2013 borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
thedo 166:3a9487d57a5c 2014 the "outliers" in the source image are not modified by the function.
thedo 166:3a9487d57a5c 2015 @param borderValue value used in case of a constant border; by default, it is 0.
thedo 166:3a9487d57a5c 2016
thedo 166:3a9487d57a5c 2017 @sa warpPerspective, resize, remap, getRectSubPix, transform
thedo 166:3a9487d57a5c 2018 */
thedo 166:3a9487d57a5c 2019 CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 2020 InputArray M, Size dsize,
thedo 166:3a9487d57a5c 2021 int flags = INTER_LINEAR,
thedo 166:3a9487d57a5c 2022 int borderMode = BORDER_CONSTANT,
thedo 166:3a9487d57a5c 2023 const Scalar& borderValue = Scalar());
thedo 166:3a9487d57a5c 2024
thedo 166:3a9487d57a5c 2025 /** @brief Applies a perspective transformation to an image.
thedo 166:3a9487d57a5c 2026
thedo 166:3a9487d57a5c 2027 The function warpPerspective transforms the source image using the specified matrix:
thedo 166:3a9487d57a5c 2028
thedo 166:3a9487d57a5c 2029 \f[\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
thedo 166:3a9487d57a5c 2030 \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\f]
thedo 166:3a9487d57a5c 2031
thedo 166:3a9487d57a5c 2032 when the flag WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
thedo 166:3a9487d57a5c 2033 and then put in the formula above instead of M. The function cannot operate in-place.
thedo 166:3a9487d57a5c 2034
thedo 166:3a9487d57a5c 2035 @param src input image.
thedo 166:3a9487d57a5c 2036 @param dst output image that has the size dsize and the same type as src .
thedo 166:3a9487d57a5c 2037 @param M \f$3\times 3\f$ transformation matrix.
thedo 166:3a9487d57a5c 2038 @param dsize size of the output image.
thedo 166:3a9487d57a5c 2039 @param flags combination of interpolation methods (INTER_LINEAR or INTER_NEAREST) and the
thedo 166:3a9487d57a5c 2040 optional flag WARP_INVERSE_MAP, that sets M as the inverse transformation (
thedo 166:3a9487d57a5c 2041 \f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
thedo 166:3a9487d57a5c 2042 @param borderMode pixel extrapolation method (BORDER_CONSTANT or BORDER_REPLICATE).
thedo 166:3a9487d57a5c 2043 @param borderValue value used in case of a constant border; by default, it equals 0.
thedo 166:3a9487d57a5c 2044
thedo 166:3a9487d57a5c 2045 @sa warpAffine, resize, remap, getRectSubPix, perspectiveTransform
thedo 166:3a9487d57a5c 2046 */
thedo 166:3a9487d57a5c 2047 CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 2048 InputArray M, Size dsize,
thedo 166:3a9487d57a5c 2049 int flags = INTER_LINEAR,
thedo 166:3a9487d57a5c 2050 int borderMode = BORDER_CONSTANT,
thedo 166:3a9487d57a5c 2051 const Scalar& borderValue = Scalar());
thedo 166:3a9487d57a5c 2052
thedo 166:3a9487d57a5c 2053 /** @brief Applies a generic geometrical transformation to an image.
thedo 166:3a9487d57a5c 2054
thedo 166:3a9487d57a5c 2055 The function remap transforms the source image using the specified map:
thedo 166:3a9487d57a5c 2056
thedo 166:3a9487d57a5c 2057 \f[\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))\f]
thedo 166:3a9487d57a5c 2058
thedo 166:3a9487d57a5c 2059 where values of pixels with non-integer coordinates are computed using one of available
thedo 166:3a9487d57a5c 2060 interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps
thedo 166:3a9487d57a5c 2061 in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in
thedo 166:3a9487d57a5c 2062 \f$map_1\f$, or fixed-point maps created by using convertMaps. The reason you might want to
thedo 166:3a9487d57a5c 2063 convert from floating to fixed-point representations of a map is that they can yield much faster
thedo 166:3a9487d57a5c 2064 (\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x),
thedo 166:3a9487d57a5c 2065 cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients.
thedo 166:3a9487d57a5c 2066
thedo 166:3a9487d57a5c 2067 This function cannot operate in-place.
thedo 166:3a9487d57a5c 2068
thedo 166:3a9487d57a5c 2069 @param src Source image.
thedo 166:3a9487d57a5c 2070 @param dst Destination image. It has the same size as map1 and the same type as src .
thedo 166:3a9487d57a5c 2071 @param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 ,
thedo 166:3a9487d57a5c 2072 CV_32FC1, or CV_32FC2. See convertMaps for details on converting a floating point
thedo 166:3a9487d57a5c 2073 representation to fixed-point for speed.
thedo 166:3a9487d57a5c 2074 @param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
thedo 166:3a9487d57a5c 2075 if map1 is (x,y) points), respectively.
thedo 166:3a9487d57a5c 2076 @param interpolation Interpolation method (see cv::InterpolationFlags). The method INTER_AREA is
thedo 166:3a9487d57a5c 2077 not supported by this function.
thedo 166:3a9487d57a5c 2078 @param borderMode Pixel extrapolation method (see cv::BorderTypes). When
thedo 166:3a9487d57a5c 2079 borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image that
thedo 166:3a9487d57a5c 2080 corresponds to the "outliers" in the source image are not modified by the function.
thedo 166:3a9487d57a5c 2081 @param borderValue Value used in case of a constant border. By default, it is 0.
thedo 166:3a9487d57a5c 2082 */
thedo 166:3a9487d57a5c 2083 CV_EXPORTS_W void remap( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 2084 InputArray map1, InputArray map2,
thedo 166:3a9487d57a5c 2085 int interpolation, int borderMode = BORDER_CONSTANT,
thedo 166:3a9487d57a5c 2086 const Scalar& borderValue = Scalar());
thedo 166:3a9487d57a5c 2087
thedo 166:3a9487d57a5c 2088 /** @brief Converts image transformation maps from one representation to another.
thedo 166:3a9487d57a5c 2089
thedo 166:3a9487d57a5c 2090 The function converts a pair of maps for remap from one representation to another. The following
thedo 166:3a9487d57a5c 2091 options ( (map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.type()) ) are
thedo 166:3a9487d57a5c 2092 supported:
thedo 166:3a9487d57a5c 2093
thedo 166:3a9487d57a5c 2094 - \f$\texttt{(CV\_32FC1, CV\_32FC1)} \rightarrow \texttt{(CV\_16SC2, CV\_16UC1)}\f$. This is the
thedo 166:3a9487d57a5c 2095 most frequently used conversion operation, in which the original floating-point maps (see remap )
thedo 166:3a9487d57a5c 2096 are converted to a more compact and much faster fixed-point representation. The first output array
thedo 166:3a9487d57a5c 2097 contains the rounded coordinates and the second array (created only when nninterpolation=false )
thedo 166:3a9487d57a5c 2098 contains indices in the interpolation tables.
thedo 166:3a9487d57a5c 2099
thedo 166:3a9487d57a5c 2100 - \f$\texttt{(CV\_32FC2)} \rightarrow \texttt{(CV\_16SC2, CV\_16UC1)}\f$. The same as above but
thedo 166:3a9487d57a5c 2101 the original maps are stored in one 2-channel matrix.
thedo 166:3a9487d57a5c 2102
thedo 166:3a9487d57a5c 2103 - Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same
thedo 166:3a9487d57a5c 2104 as the originals.
thedo 166:3a9487d57a5c 2105
thedo 166:3a9487d57a5c 2106 @param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 .
thedo 166:3a9487d57a5c 2107 @param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix),
thedo 166:3a9487d57a5c 2108 respectively.
thedo 166:3a9487d57a5c 2109 @param dstmap1 The first output map that has the type dstmap1type and the same size as src .
thedo 166:3a9487d57a5c 2110 @param dstmap2 The second output map.
thedo 166:3a9487d57a5c 2111 @param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or
thedo 166:3a9487d57a5c 2112 CV_32FC2 .
thedo 166:3a9487d57a5c 2113 @param nninterpolation Flag indicating whether the fixed-point maps are used for the
thedo 166:3a9487d57a5c 2114 nearest-neighbor or for a more complex interpolation.
thedo 166:3a9487d57a5c 2115
thedo 166:3a9487d57a5c 2116 @sa remap, undistort, initUndistortRectifyMap
thedo 166:3a9487d57a5c 2117 */
thedo 166:3a9487d57a5c 2118 CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2,
thedo 166:3a9487d57a5c 2119 OutputArray dstmap1, OutputArray dstmap2,
thedo 166:3a9487d57a5c 2120 int dstmap1type, bool nninterpolation = false );
thedo 166:3a9487d57a5c 2121
thedo 166:3a9487d57a5c 2122 /** @brief Calculates an affine matrix of 2D rotation.
thedo 166:3a9487d57a5c 2123
thedo 166:3a9487d57a5c 2124 The function calculates the following matrix:
thedo 166:3a9487d57a5c 2125
thedo 166:3a9487d57a5c 2126 \f[\begin{bmatrix} \alpha & \beta & (1- \alpha ) \cdot \texttt{center.x} - \beta \cdot \texttt{center.y} \\ - \beta & \alpha & \beta \cdot \texttt{center.x} + (1- \alpha ) \cdot \texttt{center.y} \end{bmatrix}\f]
thedo 166:3a9487d57a5c 2127
thedo 166:3a9487d57a5c 2128 where
thedo 166:3a9487d57a5c 2129
thedo 166:3a9487d57a5c 2130 \f[\begin{array}{l} \alpha = \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta = \texttt{scale} \cdot \sin \texttt{angle} \end{array}\f]
thedo 166:3a9487d57a5c 2131
thedo 166:3a9487d57a5c 2132 The transformation maps the rotation center to itself. If this is not the target, adjust the shift.
thedo 166:3a9487d57a5c 2133
thedo 166:3a9487d57a5c 2134 @param center Center of the rotation in the source image.
thedo 166:3a9487d57a5c 2135 @param angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the
thedo 166:3a9487d57a5c 2136 coordinate origin is assumed to be the top-left corner).
thedo 166:3a9487d57a5c 2137 @param scale Isotropic scale factor.
thedo 166:3a9487d57a5c 2138
thedo 166:3a9487d57a5c 2139 @sa getAffineTransform, warpAffine, transform
thedo 166:3a9487d57a5c 2140 */
thedo 166:3a9487d57a5c 2141 CV_EXPORTS_W Mat getRotationMatrix2D( Point2f center, double angle, double scale );
thedo 166:3a9487d57a5c 2142
thedo 166:3a9487d57a5c 2143 //! returns 3x3 perspective transformation for the corresponding 4 point pairs.
thedo 166:3a9487d57a5c 2144 CV_EXPORTS Mat getPerspectiveTransform( const Point2f src[], const Point2f dst[] );
thedo 166:3a9487d57a5c 2145
thedo 166:3a9487d57a5c 2146 /** @brief Calculates an affine transform from three pairs of the corresponding points.
thedo 166:3a9487d57a5c 2147
thedo 166:3a9487d57a5c 2148 The function calculates the \f$2 \times 3\f$ matrix of an affine transform so that:
thedo 166:3a9487d57a5c 2149
thedo 166:3a9487d57a5c 2150 \f[\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \texttt{map\_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
thedo 166:3a9487d57a5c 2151
thedo 166:3a9487d57a5c 2152 where
thedo 166:3a9487d57a5c 2153
thedo 166:3a9487d57a5c 2154 \f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2\f]
thedo 166:3a9487d57a5c 2155
thedo 166:3a9487d57a5c 2156 @param src Coordinates of triangle vertices in the source image.
thedo 166:3a9487d57a5c 2157 @param dst Coordinates of the corresponding triangle vertices in the destination image.
thedo 166:3a9487d57a5c 2158
thedo 166:3a9487d57a5c 2159 @sa warpAffine, transform
thedo 166:3a9487d57a5c 2160 */
thedo 166:3a9487d57a5c 2161 CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] );
thedo 166:3a9487d57a5c 2162
thedo 166:3a9487d57a5c 2163 /** @brief Inverts an affine transformation.
thedo 166:3a9487d57a5c 2164
thedo 166:3a9487d57a5c 2165 The function computes an inverse affine transformation represented by \f$2 \times 3\f$ matrix M:
thedo 166:3a9487d57a5c 2166
thedo 166:3a9487d57a5c 2167 \f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{bmatrix}\f]
thedo 166:3a9487d57a5c 2168
thedo 166:3a9487d57a5c 2169 The result is also a \f$2 \times 3\f$ matrix of the same type as M.
thedo 166:3a9487d57a5c 2170
thedo 166:3a9487d57a5c 2171 @param M Original affine transformation.
thedo 166:3a9487d57a5c 2172 @param iM Output reverse affine transformation.
thedo 166:3a9487d57a5c 2173 */
thedo 166:3a9487d57a5c 2174 CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM );
thedo 166:3a9487d57a5c 2175
thedo 166:3a9487d57a5c 2176 /** @brief Calculates a perspective transform from four pairs of the corresponding points.
thedo 166:3a9487d57a5c 2177
thedo 166:3a9487d57a5c 2178 The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that:
thedo 166:3a9487d57a5c 2179
thedo 166:3a9487d57a5c 2180 \f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map\_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
thedo 166:3a9487d57a5c 2181
thedo 166:3a9487d57a5c 2182 where
thedo 166:3a9487d57a5c 2183
thedo 166:3a9487d57a5c 2184 \f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\f]
thedo 166:3a9487d57a5c 2185
thedo 166:3a9487d57a5c 2186 @param src Coordinates of quadrangle vertices in the source image.
thedo 166:3a9487d57a5c 2187 @param dst Coordinates of the corresponding quadrangle vertices in the destination image.
thedo 166:3a9487d57a5c 2188
thedo 166:3a9487d57a5c 2189 @sa findHomography, warpPerspective, perspectiveTransform
thedo 166:3a9487d57a5c 2190 */
thedo 166:3a9487d57a5c 2191 CV_EXPORTS_W Mat getPerspectiveTransform( InputArray src, InputArray dst );
thedo 166:3a9487d57a5c 2192
thedo 166:3a9487d57a5c 2193 CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst );
thedo 166:3a9487d57a5c 2194
thedo 166:3a9487d57a5c 2195 /** @brief Retrieves a pixel rectangle from an image with sub-pixel accuracy.
thedo 166:3a9487d57a5c 2196
thedo 166:3a9487d57a5c 2197 The function getRectSubPix extracts pixels from src:
thedo 166:3a9487d57a5c 2198
thedo 166:3a9487d57a5c 2199 \f[dst(x, y) = src(x + \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y + \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\f]
thedo 166:3a9487d57a5c 2200
thedo 166:3a9487d57a5c 2201 where the values of the pixels at non-integer coordinates are retrieved using bilinear
thedo 166:3a9487d57a5c 2202 interpolation. Every channel of multi-channel images is processed independently. While the center of
thedo 166:3a9487d57a5c 2203 the rectangle must be inside the image, parts of the rectangle may be outside. In this case, the
thedo 166:3a9487d57a5c 2204 replication border mode (see cv::BorderTypes) is used to extrapolate the pixel values outside of
thedo 166:3a9487d57a5c 2205 the image.
thedo 166:3a9487d57a5c 2206
thedo 166:3a9487d57a5c 2207 @param image Source image.
thedo 166:3a9487d57a5c 2208 @param patchSize Size of the extracted patch.
thedo 166:3a9487d57a5c 2209 @param center Floating point coordinates of the center of the extracted rectangle within the
thedo 166:3a9487d57a5c 2210 source image. The center must be inside the image.
thedo 166:3a9487d57a5c 2211 @param patch Extracted patch that has the size patchSize and the same number of channels as src .
thedo 166:3a9487d57a5c 2212 @param patchType Depth of the extracted pixels. By default, they have the same depth as src .
thedo 166:3a9487d57a5c 2213
thedo 166:3a9487d57a5c 2214 @sa warpAffine, warpPerspective
thedo 166:3a9487d57a5c 2215 */
thedo 166:3a9487d57a5c 2216 CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize,
thedo 166:3a9487d57a5c 2217 Point2f center, OutputArray patch, int patchType = -1 );
thedo 166:3a9487d57a5c 2218
thedo 166:3a9487d57a5c 2219 /** @example polar_transforms.cpp
thedo 166:3a9487d57a5c 2220 An example using the cv::linearPolar and cv::logPolar operations
thedo 166:3a9487d57a5c 2221 */
thedo 166:3a9487d57a5c 2222
thedo 166:3a9487d57a5c 2223 /** @brief Remaps an image to log-polar space.
thedo 166:3a9487d57a5c 2224
thedo 166:3a9487d57a5c 2225 transforms the source image using the following transformation:
thedo 166:3a9487d57a5c 2226 \f[dst( \phi , \rho ) = src(x,y)\f]
thedo 166:3a9487d57a5c 2227 where
thedo 166:3a9487d57a5c 2228 \f[\rho = M \cdot \log{\sqrt{x^2 + y^2}} , \phi =atan(y/x)\f]
thedo 166:3a9487d57a5c 2229
thedo 166:3a9487d57a5c 2230 The function emulates the human "foveal" vision and can be used for fast scale and
thedo 166:3a9487d57a5c 2231 rotation-invariant template matching, for object tracking and so forth. The function can not operate
thedo 166:3a9487d57a5c 2232 in-place.
thedo 166:3a9487d57a5c 2233
thedo 166:3a9487d57a5c 2234 @param src Source image
thedo 166:3a9487d57a5c 2235 @param dst Destination image
thedo 166:3a9487d57a5c 2236 @param center The transformation center; where the output precision is maximal
thedo 166:3a9487d57a5c 2237 @param M Magnitude scale parameter.
thedo 166:3a9487d57a5c 2238 @param flags A combination of interpolation methods, see cv::InterpolationFlags
thedo 166:3a9487d57a5c 2239 */
thedo 166:3a9487d57a5c 2240 CV_EXPORTS_W void logPolar( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 2241 Point2f center, double M, int flags );
thedo 166:3a9487d57a5c 2242
thedo 166:3a9487d57a5c 2243 /** @brief Remaps an image to polar space.
thedo 166:3a9487d57a5c 2244
thedo 166:3a9487d57a5c 2245 transforms the source image using the following transformation:
thedo 166:3a9487d57a5c 2246 \f[dst( \phi , \rho ) = src(x,y)\f]
thedo 166:3a9487d57a5c 2247 where
thedo 166:3a9487d57a5c 2248 \f[\rho = (src.width/maxRadius) \cdot \sqrt{x^2 + y^2} , \phi =atan(y/x)\f]
thedo 166:3a9487d57a5c 2249
thedo 166:3a9487d57a5c 2250 The function can not operate in-place.
thedo 166:3a9487d57a5c 2251
thedo 166:3a9487d57a5c 2252 @param src Source image
thedo 166:3a9487d57a5c 2253 @param dst Destination image
thedo 166:3a9487d57a5c 2254 @param center The transformation center;
thedo 166:3a9487d57a5c 2255 @param maxRadius Inverse magnitude scale parameter
thedo 166:3a9487d57a5c 2256 @param flags A combination of interpolation methods, see cv::InterpolationFlags
thedo 166:3a9487d57a5c 2257 */
thedo 166:3a9487d57a5c 2258 CV_EXPORTS_W void linearPolar( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 2259 Point2f center, double maxRadius, int flags );
thedo 166:3a9487d57a5c 2260
thedo 166:3a9487d57a5c 2261 //! @} imgproc_transform
thedo 166:3a9487d57a5c 2262
thedo 166:3a9487d57a5c 2263 //! @addtogroup imgproc_misc
thedo 166:3a9487d57a5c 2264 //! @{
thedo 166:3a9487d57a5c 2265
thedo 166:3a9487d57a5c 2266 /** @overload */
thedo 166:3a9487d57a5c 2267 CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth = -1 );
thedo 166:3a9487d57a5c 2268
thedo 166:3a9487d57a5c 2269 /** @overload */
thedo 166:3a9487d57a5c 2270 CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum,
thedo 166:3a9487d57a5c 2271 OutputArray sqsum, int sdepth = -1, int sqdepth = -1 );
thedo 166:3a9487d57a5c 2272
thedo 166:3a9487d57a5c 2273 /** @brief Calculates the integral of an image.
thedo 166:3a9487d57a5c 2274
thedo 166:3a9487d57a5c 2275 The functions calculate one or more integral images for the source image as follows:
thedo 166:3a9487d57a5c 2276
thedo 166:3a9487d57a5c 2277 \f[\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)\f]
thedo 166:3a9487d57a5c 2278
thedo 166:3a9487d57a5c 2279 \f[\texttt{sqsum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)^2\f]
thedo 166:3a9487d57a5c 2280
thedo 166:3a9487d57a5c 2281 \f[\texttt{tilted} (X,Y) = \sum _{y<Y,abs(x-X+1) \leq Y-y-1} \texttt{image} (x,y)\f]
thedo 166:3a9487d57a5c 2282
thedo 166:3a9487d57a5c 2283 Using these integral images, you can calculate sum, mean, and standard deviation over a specific
thedo 166:3a9487d57a5c 2284 up-right or rotated rectangular region of the image in a constant time, for example:
thedo 166:3a9487d57a5c 2285
thedo 166:3a9487d57a5c 2286 \f[\sum _{x_1 \leq x < x_2, \, y_1 \leq y < y_2} \texttt{image} (x,y) = \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\f]
thedo 166:3a9487d57a5c 2287
thedo 166:3a9487d57a5c 2288 It makes possible to do a fast blurring or fast block correlation with a variable window size, for
thedo 166:3a9487d57a5c 2289 example. In case of multi-channel images, sums for each channel are accumulated independently.
thedo 166:3a9487d57a5c 2290
thedo 166:3a9487d57a5c 2291 As a practical example, the next figure shows the calculation of the integral of a straight
thedo 166:3a9487d57a5c 2292 rectangle Rect(3,3,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
thedo 166:3a9487d57a5c 2293 original image are shown, as well as the relative pixels in the integral images sum and tilted .
thedo 166:3a9487d57a5c 2294
thedo 166:3a9487d57a5c 2295 ![integral calculation example](pics/integral.png)
thedo 166:3a9487d57a5c 2296
thedo 166:3a9487d57a5c 2297 @param src input image as \f$W \times H\f$, 8-bit or floating-point (32f or 64f).
thedo 166:3a9487d57a5c 2298 @param sum integral image as \f$(W+1)\times (H+1)\f$ , 32-bit integer or floating-point (32f or 64f).
thedo 166:3a9487d57a5c 2299 @param sqsum integral image for squared pixel values; it is \f$(W+1)\times (H+1)\f$, double-precision
thedo 166:3a9487d57a5c 2300 floating-point (64f) array.
thedo 166:3a9487d57a5c 2301 @param tilted integral for the image rotated by 45 degrees; it is \f$(W+1)\times (H+1)\f$ array with
thedo 166:3a9487d57a5c 2302 the same data type as sum.
thedo 166:3a9487d57a5c 2303 @param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
thedo 166:3a9487d57a5c 2304 CV_64F.
thedo 166:3a9487d57a5c 2305 @param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F.
thedo 166:3a9487d57a5c 2306 */
thedo 166:3a9487d57a5c 2307 CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum,
thedo 166:3a9487d57a5c 2308 OutputArray sqsum, OutputArray tilted,
thedo 166:3a9487d57a5c 2309 int sdepth = -1, int sqdepth = -1 );
thedo 166:3a9487d57a5c 2310
thedo 166:3a9487d57a5c 2311 //! @} imgproc_misc
thedo 166:3a9487d57a5c 2312
thedo 166:3a9487d57a5c 2313 //! @addtogroup imgproc_motion
thedo 166:3a9487d57a5c 2314 //! @{
thedo 166:3a9487d57a5c 2315
thedo 166:3a9487d57a5c 2316 /** @brief Adds an image to the accumulator.
thedo 166:3a9487d57a5c 2317
thedo 166:3a9487d57a5c 2318 The function adds src or some of its elements to dst :
thedo 166:3a9487d57a5c 2319
thedo 166:3a9487d57a5c 2320 \f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
thedo 166:3a9487d57a5c 2321
thedo 166:3a9487d57a5c 2322 The function supports multi-channel images. Each channel is processed independently.
thedo 166:3a9487d57a5c 2323
thedo 166:3a9487d57a5c 2324 The functions accumulate\* can be used, for example, to collect statistics of a scene background
thedo 166:3a9487d57a5c 2325 viewed by a still camera and for the further foreground-background segmentation.
thedo 166:3a9487d57a5c 2326
thedo 166:3a9487d57a5c 2327 @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
thedo 166:3a9487d57a5c 2328 @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
thedo 166:3a9487d57a5c 2329 floating-point.
thedo 166:3a9487d57a5c 2330 @param mask Optional operation mask.
thedo 166:3a9487d57a5c 2331
thedo 166:3a9487d57a5c 2332 @sa accumulateSquare, accumulateProduct, accumulateWeighted
thedo 166:3a9487d57a5c 2333 */
thedo 166:3a9487d57a5c 2334 CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst,
thedo 166:3a9487d57a5c 2335 InputArray mask = noArray() );
thedo 166:3a9487d57a5c 2336
thedo 166:3a9487d57a5c 2337 /** @brief Adds the square of a source image to the accumulator.
thedo 166:3a9487d57a5c 2338
thedo 166:3a9487d57a5c 2339 The function adds the input image src or its selected region, raised to a power of 2, to the
thedo 166:3a9487d57a5c 2340 accumulator dst :
thedo 166:3a9487d57a5c 2341
thedo 166:3a9487d57a5c 2342 \f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y)^2 \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
thedo 166:3a9487d57a5c 2343
thedo 166:3a9487d57a5c 2344 The function supports multi-channel images. Each channel is processed independently.
thedo 166:3a9487d57a5c 2345
thedo 166:3a9487d57a5c 2346 @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
thedo 166:3a9487d57a5c 2347 @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
thedo 166:3a9487d57a5c 2348 floating-point.
thedo 166:3a9487d57a5c 2349 @param mask Optional operation mask.
thedo 166:3a9487d57a5c 2350
thedo 166:3a9487d57a5c 2351 @sa accumulateSquare, accumulateProduct, accumulateWeighted
thedo 166:3a9487d57a5c 2352 */
thedo 166:3a9487d57a5c 2353 CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst,
thedo 166:3a9487d57a5c 2354 InputArray mask = noArray() );
thedo 166:3a9487d57a5c 2355
thedo 166:3a9487d57a5c 2356 /** @brief Adds the per-element product of two input images to the accumulator.
thedo 166:3a9487d57a5c 2357
thedo 166:3a9487d57a5c 2358 The function adds the product of two images or their selected regions to the accumulator dst :
thedo 166:3a9487d57a5c 2359
thedo 166:3a9487d57a5c 2360 \f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src1} (x,y) \cdot \texttt{src2} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
thedo 166:3a9487d57a5c 2361
thedo 166:3a9487d57a5c 2362 The function supports multi-channel images. Each channel is processed independently.
thedo 166:3a9487d57a5c 2363
thedo 166:3a9487d57a5c 2364 @param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point.
thedo 166:3a9487d57a5c 2365 @param src2 Second input image of the same type and the same size as src1 .
thedo 166:3a9487d57a5c 2366 @param dst %Accumulator with the same number of channels as input images, 32-bit or 64-bit
thedo 166:3a9487d57a5c 2367 floating-point.
thedo 166:3a9487d57a5c 2368 @param mask Optional operation mask.
thedo 166:3a9487d57a5c 2369
thedo 166:3a9487d57a5c 2370 @sa accumulate, accumulateSquare, accumulateWeighted
thedo 166:3a9487d57a5c 2371 */
thedo 166:3a9487d57a5c 2372 CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2,
thedo 166:3a9487d57a5c 2373 InputOutputArray dst, InputArray mask=noArray() );
thedo 166:3a9487d57a5c 2374
thedo 166:3a9487d57a5c 2375 /** @brief Updates a running average.
thedo 166:3a9487d57a5c 2376
thedo 166:3a9487d57a5c 2377 The function calculates the weighted sum of the input image src and the accumulator dst so that dst
thedo 166:3a9487d57a5c 2378 becomes a running average of a frame sequence:
thedo 166:3a9487d57a5c 2379
thedo 166:3a9487d57a5c 2380 \f[\texttt{dst} (x,y) \leftarrow (1- \texttt{alpha} ) \cdot \texttt{dst} (x,y) + \texttt{alpha} \cdot \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
thedo 166:3a9487d57a5c 2381
thedo 166:3a9487d57a5c 2382 That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images).
thedo 166:3a9487d57a5c 2383 The function supports multi-channel images. Each channel is processed independently.
thedo 166:3a9487d57a5c 2384
thedo 166:3a9487d57a5c 2385 @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
thedo 166:3a9487d57a5c 2386 @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
thedo 166:3a9487d57a5c 2387 floating-point.
thedo 166:3a9487d57a5c 2388 @param alpha Weight of the input image.
thedo 166:3a9487d57a5c 2389 @param mask Optional operation mask.
thedo 166:3a9487d57a5c 2390
thedo 166:3a9487d57a5c 2391 @sa accumulate, accumulateSquare, accumulateProduct
thedo 166:3a9487d57a5c 2392 */
thedo 166:3a9487d57a5c 2393 CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst,
thedo 166:3a9487d57a5c 2394 double alpha, InputArray mask = noArray() );
thedo 166:3a9487d57a5c 2395
thedo 166:3a9487d57a5c 2396 /** @brief The function is used to detect translational shifts that occur between two images.
thedo 166:3a9487d57a5c 2397
thedo 166:3a9487d57a5c 2398 The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
thedo 166:3a9487d57a5c 2399 the frequency domain. It can be used for fast image registration as well as motion estimation. For
thedo 166:3a9487d57a5c 2400 more information please see <http://en.wikipedia.org/wiki/Phase_correlation>
thedo 166:3a9487d57a5c 2401
thedo 166:3a9487d57a5c 2402 Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
thedo 166:3a9487d57a5c 2403 with getOptimalDFTSize.
thedo 166:3a9487d57a5c 2404
thedo 166:3a9487d57a5c 2405 The function performs the following equations:
thedo 166:3a9487d57a5c 2406 - First it applies a Hanning window (see <http://en.wikipedia.org/wiki/Hann_function>) to each
thedo 166:3a9487d57a5c 2407 image to remove possible edge effects. This window is cached until the array size changes to speed
thedo 166:3a9487d57a5c 2408 up processing time.
thedo 166:3a9487d57a5c 2409 - Next it computes the forward DFTs of each source array:
thedo 166:3a9487d57a5c 2410 \f[\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\f]
thedo 166:3a9487d57a5c 2411 where \f$\mathcal{F}\f$ is the forward DFT.
thedo 166:3a9487d57a5c 2412 - It then computes the cross-power spectrum of each frequency domain array:
thedo 166:3a9487d57a5c 2413 \f[R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\f]
thedo 166:3a9487d57a5c 2414 - Next the cross-correlation is converted back into the time domain via the inverse DFT:
thedo 166:3a9487d57a5c 2415 \f[r = \mathcal{F}^{-1}\{R\}\f]
thedo 166:3a9487d57a5c 2416 - Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
thedo 166:3a9487d57a5c 2417 achieve sub-pixel accuracy.
thedo 166:3a9487d57a5c 2418 \f[(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\f]
thedo 166:3a9487d57a5c 2419 - If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
thedo 166:3a9487d57a5c 2420 centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
thedo 166:3a9487d57a5c 2421 peak) and will be smaller when there are multiple peaks.
thedo 166:3a9487d57a5c 2422
thedo 166:3a9487d57a5c 2423 @param src1 Source floating point array (CV_32FC1 or CV_64FC1)
thedo 166:3a9487d57a5c 2424 @param src2 Source floating point array (CV_32FC1 or CV_64FC1)
thedo 166:3a9487d57a5c 2425 @param window Floating point array with windowing coefficients to reduce edge effects (optional).
thedo 166:3a9487d57a5c 2426 @param response Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional).
thedo 166:3a9487d57a5c 2427 @returns detected phase shift (sub-pixel) between the two arrays.
thedo 166:3a9487d57a5c 2428
thedo 166:3a9487d57a5c 2429 @sa dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow
thedo 166:3a9487d57a5c 2430 */
thedo 166:3a9487d57a5c 2431 CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2,
thedo 166:3a9487d57a5c 2432 InputArray window = noArray(), CV_OUT double* response = 0);
thedo 166:3a9487d57a5c 2433
thedo 166:3a9487d57a5c 2434 /** @brief This function computes a Hanning window coefficients in two dimensions.
thedo 166:3a9487d57a5c 2435
thedo 166:3a9487d57a5c 2436 See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function)
thedo 166:3a9487d57a5c 2437 for more information.
thedo 166:3a9487d57a5c 2438
thedo 166:3a9487d57a5c 2439 An example is shown below:
thedo 166:3a9487d57a5c 2440 @code
thedo 166:3a9487d57a5c 2441 // create hanning window of size 100x100 and type CV_32F
thedo 166:3a9487d57a5c 2442 Mat hann;
thedo 166:3a9487d57a5c 2443 createHanningWindow(hann, Size(100, 100), CV_32F);
thedo 166:3a9487d57a5c 2444 @endcode
thedo 166:3a9487d57a5c 2445 @param dst Destination array to place Hann coefficients in
thedo 166:3a9487d57a5c 2446 @param winSize The window size specifications
thedo 166:3a9487d57a5c 2447 @param type Created array type
thedo 166:3a9487d57a5c 2448 */
thedo 166:3a9487d57a5c 2449 CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type);
thedo 166:3a9487d57a5c 2450
thedo 166:3a9487d57a5c 2451 //! @} imgproc_motion
thedo 166:3a9487d57a5c 2452
thedo 166:3a9487d57a5c 2453 //! @addtogroup imgproc_misc
thedo 166:3a9487d57a5c 2454 //! @{
thedo 166:3a9487d57a5c 2455
thedo 166:3a9487d57a5c 2456 /** @brief Applies a fixed-level threshold to each array element.
thedo 166:3a9487d57a5c 2457
thedo 166:3a9487d57a5c 2458 The function applies fixed-level thresholding to a single-channel array. The function is typically
thedo 166:3a9487d57a5c 2459 used to get a bi-level (binary) image out of a grayscale image ( cv::compare could be also used for
thedo 166:3a9487d57a5c 2460 this purpose) or for removing a noise, that is, filtering out pixels with too small or too large
thedo 166:3a9487d57a5c 2461 values. There are several types of thresholding supported by the function. They are determined by
thedo 166:3a9487d57a5c 2462 type parameter.
thedo 166:3a9487d57a5c 2463
thedo 166:3a9487d57a5c 2464 Also, the special values cv::THRESH_OTSU or cv::THRESH_TRIANGLE may be combined with one of the
thedo 166:3a9487d57a5c 2465 above values. In these cases, the function determines the optimal threshold value using the Otsu's
thedo 166:3a9487d57a5c 2466 or Triangle algorithm and uses it instead of the specified thresh . The function returns the
thedo 166:3a9487d57a5c 2467 computed threshold value. Currently, the Otsu's and Triangle methods are implemented only for 8-bit
thedo 166:3a9487d57a5c 2468 images.
thedo 166:3a9487d57a5c 2469
thedo 166:3a9487d57a5c 2470 @param src input array (single-channel, 8-bit or 32-bit floating point).
thedo 166:3a9487d57a5c 2471 @param dst output array of the same size and type as src.
thedo 166:3a9487d57a5c 2472 @param thresh threshold value.
thedo 166:3a9487d57a5c 2473 @param maxval maximum value to use with the THRESH_BINARY and THRESH_BINARY_INV thresholding
thedo 166:3a9487d57a5c 2474 types.
thedo 166:3a9487d57a5c 2475 @param type thresholding type (see the cv::ThresholdTypes).
thedo 166:3a9487d57a5c 2476
thedo 166:3a9487d57a5c 2477 @sa adaptiveThreshold, findContours, compare, min, max
thedo 166:3a9487d57a5c 2478 */
thedo 166:3a9487d57a5c 2479 CV_EXPORTS_W double threshold( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 2480 double thresh, double maxval, int type );
thedo 166:3a9487d57a5c 2481
thedo 166:3a9487d57a5c 2482
thedo 166:3a9487d57a5c 2483 /** @brief Applies an adaptive threshold to an array.
thedo 166:3a9487d57a5c 2484
thedo 166:3a9487d57a5c 2485 The function transforms a grayscale image to a binary image according to the formulae:
thedo 166:3a9487d57a5c 2486 - **THRESH_BINARY**
thedo 166:3a9487d57a5c 2487 \f[dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\f]
thedo 166:3a9487d57a5c 2488 - **THRESH_BINARY_INV**
thedo 166:3a9487d57a5c 2489 \f[dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f]
thedo 166:3a9487d57a5c 2490 where \f$T(x,y)\f$ is a threshold calculated individually for each pixel (see adaptiveMethod parameter).
thedo 166:3a9487d57a5c 2491
thedo 166:3a9487d57a5c 2492 The function can process the image in-place.
thedo 166:3a9487d57a5c 2493
thedo 166:3a9487d57a5c 2494 @param src Source 8-bit single-channel image.
thedo 166:3a9487d57a5c 2495 @param dst Destination image of the same size and the same type as src.
thedo 166:3a9487d57a5c 2496 @param maxValue Non-zero value assigned to the pixels for which the condition is satisfied
thedo 166:3a9487d57a5c 2497 @param adaptiveMethod Adaptive thresholding algorithm to use, see cv::AdaptiveThresholdTypes
thedo 166:3a9487d57a5c 2498 @param thresholdType Thresholding type that must be either THRESH_BINARY or THRESH_BINARY_INV,
thedo 166:3a9487d57a5c 2499 see cv::ThresholdTypes.
thedo 166:3a9487d57a5c 2500 @param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the
thedo 166:3a9487d57a5c 2501 pixel: 3, 5, 7, and so on.
thedo 166:3a9487d57a5c 2502 @param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it
thedo 166:3a9487d57a5c 2503 is positive but may be zero or negative as well.
thedo 166:3a9487d57a5c 2504
thedo 166:3a9487d57a5c 2505 @sa threshold, blur, GaussianBlur
thedo 166:3a9487d57a5c 2506 */
thedo 166:3a9487d57a5c 2507 CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 2508 double maxValue, int adaptiveMethod,
thedo 166:3a9487d57a5c 2509 int thresholdType, int blockSize, double C );
thedo 166:3a9487d57a5c 2510
thedo 166:3a9487d57a5c 2511 //! @} imgproc_misc
thedo 166:3a9487d57a5c 2512
thedo 166:3a9487d57a5c 2513 //! @addtogroup imgproc_filter
thedo 166:3a9487d57a5c 2514 //! @{
thedo 166:3a9487d57a5c 2515
thedo 166:3a9487d57a5c 2516 /** @brief Blurs an image and downsamples it.
thedo 166:3a9487d57a5c 2517
thedo 166:3a9487d57a5c 2518 By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in
thedo 166:3a9487d57a5c 2519 any case, the following conditions should be satisfied:
thedo 166:3a9487d57a5c 2520
thedo 166:3a9487d57a5c 2521 \f[\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\f]
thedo 166:3a9487d57a5c 2522
thedo 166:3a9487d57a5c 2523 The function performs the downsampling step of the Gaussian pyramid construction. First, it
thedo 166:3a9487d57a5c 2524 convolves the source image with the kernel:
thedo 166:3a9487d57a5c 2525
thedo 166:3a9487d57a5c 2526 \f[\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\f]
thedo 166:3a9487d57a5c 2527
thedo 166:3a9487d57a5c 2528 Then, it downsamples the image by rejecting even rows and columns.
thedo 166:3a9487d57a5c 2529
thedo 166:3a9487d57a5c 2530 @param src input image.
thedo 166:3a9487d57a5c 2531 @param dst output image; it has the specified size and the same type as src.
thedo 166:3a9487d57a5c 2532 @param dstsize size of the output image.
thedo 166:3a9487d57a5c 2533 @param borderType Pixel extrapolation method, see cv::BorderTypes (BORDER_CONSTANT isn't supported)
thedo 166:3a9487d57a5c 2534 */
thedo 166:3a9487d57a5c 2535 CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 2536 const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 2537
thedo 166:3a9487d57a5c 2538 /** @brief Upsamples an image and then blurs it.
thedo 166:3a9487d57a5c 2539
thedo 166:3a9487d57a5c 2540 By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any
thedo 166:3a9487d57a5c 2541 case, the following conditions should be satisfied:
thedo 166:3a9487d57a5c 2542
thedo 166:3a9487d57a5c 2543 \f[\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq ( \texttt{dstsize.width} \mod 2) \\ | \texttt{dstsize.height} -src.rows*2| \leq ( \texttt{dstsize.height} \mod 2) \end{array}\f]
thedo 166:3a9487d57a5c 2544
thedo 166:3a9487d57a5c 2545 The function performs the upsampling step of the Gaussian pyramid construction, though it can
thedo 166:3a9487d57a5c 2546 actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
thedo 166:3a9487d57a5c 2547 injecting even zero rows and columns and then convolves the result with the same kernel as in
thedo 166:3a9487d57a5c 2548 pyrDown multiplied by 4.
thedo 166:3a9487d57a5c 2549
thedo 166:3a9487d57a5c 2550 @param src input image.
thedo 166:3a9487d57a5c 2551 @param dst output image. It has the specified size and the same type as src .
thedo 166:3a9487d57a5c 2552 @param dstsize size of the output image.
thedo 166:3a9487d57a5c 2553 @param borderType Pixel extrapolation method, see cv::BorderTypes (only BORDER_DEFAULT is supported)
thedo 166:3a9487d57a5c 2554 */
thedo 166:3a9487d57a5c 2555 CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 2556 const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 2557
thedo 166:3a9487d57a5c 2558 /** @brief Constructs the Gaussian pyramid for an image.
thedo 166:3a9487d57a5c 2559
thedo 166:3a9487d57a5c 2560 The function constructs a vector of images and builds the Gaussian pyramid by recursively applying
thedo 166:3a9487d57a5c 2561 pyrDown to the previously built pyramid layers, starting from `dst[0]==src`.
thedo 166:3a9487d57a5c 2562
thedo 166:3a9487d57a5c 2563 @param src Source image. Check pyrDown for the list of supported types.
thedo 166:3a9487d57a5c 2564 @param dst Destination vector of maxlevel+1 images of the same type as src. dst[0] will be the
thedo 166:3a9487d57a5c 2565 same as src. dst[1] is the next pyramid layer, a smoothed and down-sized src, and so on.
thedo 166:3a9487d57a5c 2566 @param maxlevel 0-based index of the last (the smallest) pyramid layer. It must be non-negative.
thedo 166:3a9487d57a5c 2567 @param borderType Pixel extrapolation method, see cv::BorderTypes (BORDER_CONSTANT isn't supported)
thedo 166:3a9487d57a5c 2568 */
thedo 166:3a9487d57a5c 2569 CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst,
thedo 166:3a9487d57a5c 2570 int maxlevel, int borderType = BORDER_DEFAULT );
thedo 166:3a9487d57a5c 2571
thedo 166:3a9487d57a5c 2572 //! @} imgproc_filter
thedo 166:3a9487d57a5c 2573
thedo 166:3a9487d57a5c 2574 //! @addtogroup imgproc_transform
thedo 166:3a9487d57a5c 2575 //! @{
thedo 166:3a9487d57a5c 2576
thedo 166:3a9487d57a5c 2577 /** @brief Transforms an image to compensate for lens distortion.
thedo 166:3a9487d57a5c 2578
thedo 166:3a9487d57a5c 2579 The function transforms an image to compensate radial and tangential lens distortion.
thedo 166:3a9487d57a5c 2580
thedo 166:3a9487d57a5c 2581 The function is simply a combination of cv::initUndistortRectifyMap (with unity R ) and cv::remap
thedo 166:3a9487d57a5c 2582 (with bilinear interpolation). See the former function for details of the transformation being
thedo 166:3a9487d57a5c 2583 performed.
thedo 166:3a9487d57a5c 2584
thedo 166:3a9487d57a5c 2585 Those pixels in the destination image, for which there is no correspondent pixels in the source
thedo 166:3a9487d57a5c 2586 image, are filled with zeros (black color).
thedo 166:3a9487d57a5c 2587
thedo 166:3a9487d57a5c 2588 A particular subset of the source image that will be visible in the corrected image can be regulated
thedo 166:3a9487d57a5c 2589 by newCameraMatrix. You can use cv::getOptimalNewCameraMatrix to compute the appropriate
thedo 166:3a9487d57a5c 2590 newCameraMatrix depending on your requirements.
thedo 166:3a9487d57a5c 2591
thedo 166:3a9487d57a5c 2592 The camera matrix and the distortion parameters can be determined using cv::calibrateCamera. If
thedo 166:3a9487d57a5c 2593 the resolution of images is different from the resolution used at the calibration stage, \f$f_x,
thedo 166:3a9487d57a5c 2594 f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain
thedo 166:3a9487d57a5c 2595 the same.
thedo 166:3a9487d57a5c 2596
thedo 166:3a9487d57a5c 2597 @param src Input (distorted) image.
thedo 166:3a9487d57a5c 2598 @param dst Output (corrected) image that has the same size and type as src .
thedo 166:3a9487d57a5c 2599 @param cameraMatrix Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
thedo 166:3a9487d57a5c 2600 @param distCoeffs Input vector of distortion coefficients
thedo 166:3a9487d57a5c 2601 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
thedo 166:3a9487d57a5c 2602 of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
thedo 166:3a9487d57a5c 2603 @param newCameraMatrix Camera matrix of the distorted image. By default, it is the same as
thedo 166:3a9487d57a5c 2604 cameraMatrix but you may additionally scale and shift the result by using a different matrix.
thedo 166:3a9487d57a5c 2605 */
thedo 166:3a9487d57a5c 2606 CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 2607 InputArray cameraMatrix,
thedo 166:3a9487d57a5c 2608 InputArray distCoeffs,
thedo 166:3a9487d57a5c 2609 InputArray newCameraMatrix = noArray() );
thedo 166:3a9487d57a5c 2610
thedo 166:3a9487d57a5c 2611 /** @brief Computes the undistortion and rectification transformation map.
thedo 166:3a9487d57a5c 2612
thedo 166:3a9487d57a5c 2613 The function computes the joint undistortion and rectification transformation and represents the
thedo 166:3a9487d57a5c 2614 result in the form of maps for remap. The undistorted image looks like original, as if it is
thedo 166:3a9487d57a5c 2615 captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a
thedo 166:3a9487d57a5c 2616 monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by
thedo 166:3a9487d57a5c 2617 cv::getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera,
thedo 166:3a9487d57a5c 2618 newCameraMatrix is normally set to P1 or P2 computed by cv::stereoRectify .
thedo 166:3a9487d57a5c 2619
thedo 166:3a9487d57a5c 2620 Also, this new camera is oriented differently in the coordinate space, according to R. That, for
thedo 166:3a9487d57a5c 2621 example, helps to align two heads of a stereo camera so that the epipolar lines on both images
thedo 166:3a9487d57a5c 2622 become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).
thedo 166:3a9487d57a5c 2623
thedo 166:3a9487d57a5c 2624 The function actually builds the maps for the inverse mapping algorithm that is used by remap. That
thedo 166:3a9487d57a5c 2625 is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function
thedo 166:3a9487d57a5c 2626 computes the corresponding coordinates in the source image (that is, in the original image from
thedo 166:3a9487d57a5c 2627 camera). The following process is applied:
thedo 166:3a9487d57a5c 2628 \f[
thedo 166:3a9487d57a5c 2629 \begin{array}{l}
thedo 166:3a9487d57a5c 2630 x \leftarrow (u - {c'}_x)/{f'}_x \\
thedo 166:3a9487d57a5c 2631 y \leftarrow (v - {c'}_y)/{f'}_y \\
thedo 166:3a9487d57a5c 2632 {[X\,Y\,W]} ^T \leftarrow R^{-1}*[x \, y \, 1]^T \\
thedo 166:3a9487d57a5c 2633 x' \leftarrow X/W \\
thedo 166:3a9487d57a5c 2634 y' \leftarrow Y/W \\
thedo 166:3a9487d57a5c 2635 r^2 \leftarrow x'^2 + y'^2 \\
thedo 166:3a9487d57a5c 2636 x'' \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
thedo 166:3a9487d57a5c 2637 + 2p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4\\
thedo 166:3a9487d57a5c 2638 y'' \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
thedo 166:3a9487d57a5c 2639 + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
thedo 166:3a9487d57a5c 2640 s\vecthree{x'''}{y'''}{1} =
thedo 166:3a9487d57a5c 2641 \vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)}
thedo 166:3a9487d57a5c 2642 {0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
thedo 166:3a9487d57a5c 2643 {0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
thedo 166:3a9487d57a5c 2644 map_x(u,v) \leftarrow x''' f_x + c_x \\
thedo 166:3a9487d57a5c 2645 map_y(u,v) \leftarrow y''' f_y + c_y
thedo 166:3a9487d57a5c 2646 \end{array}
thedo 166:3a9487d57a5c 2647 \f]
thedo 166:3a9487d57a5c 2648 where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
thedo 166:3a9487d57a5c 2649 are the distortion coefficients.
thedo 166:3a9487d57a5c 2650
thedo 166:3a9487d57a5c 2651 In case of a stereo camera, this function is called twice: once for each camera head, after
thedo 166:3a9487d57a5c 2652 stereoRectify, which in its turn is called after cv::stereoCalibrate. But if the stereo camera
thedo 166:3a9487d57a5c 2653 was not calibrated, it is still possible to compute the rectification transformations directly from
thedo 166:3a9487d57a5c 2654 the fundamental matrix using cv::stereoRectifyUncalibrated. For each camera, the function computes
thedo 166:3a9487d57a5c 2655 homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
thedo 166:3a9487d57a5c 2656 space. R can be computed from H as
thedo 166:3a9487d57a5c 2657 \f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
thedo 166:3a9487d57a5c 2658 where cameraMatrix can be chosen arbitrarily.
thedo 166:3a9487d57a5c 2659
thedo 166:3a9487d57a5c 2660 @param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
thedo 166:3a9487d57a5c 2661 @param distCoeffs Input vector of distortion coefficients
thedo 166:3a9487d57a5c 2662 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
thedo 166:3a9487d57a5c 2663 of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
thedo 166:3a9487d57a5c 2664 @param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2 ,
thedo 166:3a9487d57a5c 2665 computed by stereoRectify can be passed here. If the matrix is empty, the identity transformation
thedo 166:3a9487d57a5c 2666 is assumed. In cvInitUndistortMap R assumed to be an identity matrix.
thedo 166:3a9487d57a5c 2667 @param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
thedo 166:3a9487d57a5c 2668 @param size Undistorted image size.
thedo 166:3a9487d57a5c 2669 @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2, see cv::convertMaps
thedo 166:3a9487d57a5c 2670 @param map1 The first output map.
thedo 166:3a9487d57a5c 2671 @param map2 The second output map.
thedo 166:3a9487d57a5c 2672 */
thedo 166:3a9487d57a5c 2673 CV_EXPORTS_W void initUndistortRectifyMap( InputArray cameraMatrix, InputArray distCoeffs,
thedo 166:3a9487d57a5c 2674 InputArray R, InputArray newCameraMatrix,
thedo 166:3a9487d57a5c 2675 Size size, int m1type, OutputArray map1, OutputArray map2 );
thedo 166:3a9487d57a5c 2676
thedo 166:3a9487d57a5c 2677 //! initializes maps for cv::remap() for wide-angle
thedo 166:3a9487d57a5c 2678 CV_EXPORTS_W float initWideAngleProjMap( InputArray cameraMatrix, InputArray distCoeffs,
thedo 166:3a9487d57a5c 2679 Size imageSize, int destImageWidth,
thedo 166:3a9487d57a5c 2680 int m1type, OutputArray map1, OutputArray map2,
thedo 166:3a9487d57a5c 2681 int projType = PROJ_SPHERICAL_EQRECT, double alpha = 0);
thedo 166:3a9487d57a5c 2682
thedo 166:3a9487d57a5c 2683 /** @brief Returns the default new camera matrix.
thedo 166:3a9487d57a5c 2684
thedo 166:3a9487d57a5c 2685 The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
thedo 166:3a9487d57a5c 2686 centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).
thedo 166:3a9487d57a5c 2687
thedo 166:3a9487d57a5c 2688 In the latter case, the new camera matrix will be:
thedo 166:3a9487d57a5c 2689
thedo 166:3a9487d57a5c 2690 \f[\begin{bmatrix} f_x && 0 && ( \texttt{imgSize.width} -1)*0.5 \\ 0 && f_y && ( \texttt{imgSize.height} -1)*0.5 \\ 0 && 0 && 1 \end{bmatrix} ,\f]
thedo 166:3a9487d57a5c 2691
thedo 166:3a9487d57a5c 2692 where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively.
thedo 166:3a9487d57a5c 2693
thedo 166:3a9487d57a5c 2694 By default, the undistortion functions in OpenCV (see initUndistortRectifyMap, undistort) do not
thedo 166:3a9487d57a5c 2695 move the principal point. However, when you work with stereo, it is important to move the principal
thedo 166:3a9487d57a5c 2696 points in both views to the same y-coordinate (which is required by most of stereo correspondence
thedo 166:3a9487d57a5c 2697 algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
thedo 166:3a9487d57a5c 2698 each view where the principal points are located at the center.
thedo 166:3a9487d57a5c 2699
thedo 166:3a9487d57a5c 2700 @param cameraMatrix Input camera matrix.
thedo 166:3a9487d57a5c 2701 @param imgsize Camera view image size in pixels.
thedo 166:3a9487d57a5c 2702 @param centerPrincipalPoint Location of the principal point in the new camera matrix. The
thedo 166:3a9487d57a5c 2703 parameter indicates whether this location should be at the image center or not.
thedo 166:3a9487d57a5c 2704 */
thedo 166:3a9487d57a5c 2705 CV_EXPORTS_W Mat getDefaultNewCameraMatrix( InputArray cameraMatrix, Size imgsize = Size(),
thedo 166:3a9487d57a5c 2706 bool centerPrincipalPoint = false );
thedo 166:3a9487d57a5c 2707
thedo 166:3a9487d57a5c 2708 /** @brief Computes the ideal point coordinates from the observed point coordinates.
thedo 166:3a9487d57a5c 2709
thedo 166:3a9487d57a5c 2710 The function is similar to cv::undistort and cv::initUndistortRectifyMap but it operates on a
thedo 166:3a9487d57a5c 2711 sparse set of points instead of a raster image. Also the function performs a reverse transformation
thedo 166:3a9487d57a5c 2712 to projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
thedo 166:3a9487d57a5c 2713 planar object, it does, up to a translation vector, if the proper R is specified.
thedo 166:3a9487d57a5c 2714 @code
thedo 166:3a9487d57a5c 2715 // (u,v) is the input point, (u', v') is the output point
thedo 166:3a9487d57a5c 2716 // camera_matrix=[fx 0 cx; 0 fy cy; 0 0 1]
thedo 166:3a9487d57a5c 2717 // P=[fx' 0 cx' tx; 0 fy' cy' ty; 0 0 1 tz]
thedo 166:3a9487d57a5c 2718 x" = (u - cx)/fx
thedo 166:3a9487d57a5c 2719 y" = (v - cy)/fy
thedo 166:3a9487d57a5c 2720 (x',y') = undistort(x",y",dist_coeffs)
thedo 166:3a9487d57a5c 2721 [X,Y,W]T = R*[x' y' 1]T
thedo 166:3a9487d57a5c 2722 x = X/W, y = Y/W
thedo 166:3a9487d57a5c 2723 // only performed if P=[fx' 0 cx' [tx]; 0 fy' cy' [ty]; 0 0 1 [tz]] is specified
thedo 166:3a9487d57a5c 2724 u' = x*fx' + cx'
thedo 166:3a9487d57a5c 2725 v' = y*fy' + cy',
thedo 166:3a9487d57a5c 2726 @endcode
thedo 166:3a9487d57a5c 2727 where cv::undistort is an approximate iterative algorithm that estimates the normalized original
thedo 166:3a9487d57a5c 2728 point coordinates out of the normalized distorted point coordinates ("normalized" means that the
thedo 166:3a9487d57a5c 2729 coordinates do not depend on the camera matrix).
thedo 166:3a9487d57a5c 2730
thedo 166:3a9487d57a5c 2731 The function can be used for both a stereo camera head or a monocular camera (when R is empty).
thedo 166:3a9487d57a5c 2732
thedo 166:3a9487d57a5c 2733 @param src Observed point coordinates, 1xN or Nx1 2-channel (CV_32FC2 or CV_64FC2).
thedo 166:3a9487d57a5c 2734 @param dst Output ideal point coordinates after undistortion and reverse perspective
thedo 166:3a9487d57a5c 2735 transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.
thedo 166:3a9487d57a5c 2736 @param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
thedo 166:3a9487d57a5c 2737 @param distCoeffs Input vector of distortion coefficients
thedo 166:3a9487d57a5c 2738 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
thedo 166:3a9487d57a5c 2739 of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
thedo 166:3a9487d57a5c 2740 @param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
thedo 166:3a9487d57a5c 2741 cv::stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.
thedo 166:3a9487d57a5c 2742 @param P New camera matrix (3x3) or new projection matrix (3x4). P1 or P2 computed by
thedo 166:3a9487d57a5c 2743 cv::stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.
thedo 166:3a9487d57a5c 2744 */
thedo 166:3a9487d57a5c 2745 CV_EXPORTS_W void undistortPoints( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 2746 InputArray cameraMatrix, InputArray distCoeffs,
thedo 166:3a9487d57a5c 2747 InputArray R = noArray(), InputArray P = noArray());
thedo 166:3a9487d57a5c 2748
thedo 166:3a9487d57a5c 2749 //! @} imgproc_transform
thedo 166:3a9487d57a5c 2750
thedo 166:3a9487d57a5c 2751 //! @addtogroup imgproc_hist
thedo 166:3a9487d57a5c 2752 //! @{
thedo 166:3a9487d57a5c 2753
thedo 166:3a9487d57a5c 2754 /** @example demhist.cpp
thedo 166:3a9487d57a5c 2755 An example for creating histograms of an image
thedo 166:3a9487d57a5c 2756 */
thedo 166:3a9487d57a5c 2757
thedo 166:3a9487d57a5c 2758 /** @brief Calculates a histogram of a set of arrays.
thedo 166:3a9487d57a5c 2759
thedo 166:3a9487d57a5c 2760 The functions calcHist calculate the histogram of one or more arrays. The elements of a tuple used
thedo 166:3a9487d57a5c 2761 to increment a histogram bin are taken from the corresponding input arrays at the same location. The
thedo 166:3a9487d57a5c 2762 sample below shows how to compute a 2D Hue-Saturation histogram for a color image. :
thedo 166:3a9487d57a5c 2763 @code
thedo 166:3a9487d57a5c 2764 #include <opencv2/imgproc.hpp>
thedo 166:3a9487d57a5c 2765 #include <opencv2/highgui.hpp>
thedo 166:3a9487d57a5c 2766
thedo 166:3a9487d57a5c 2767 using namespace cv;
thedo 166:3a9487d57a5c 2768
thedo 166:3a9487d57a5c 2769 int main( int argc, char** argv )
thedo 166:3a9487d57a5c 2770 {
thedo 166:3a9487d57a5c 2771 Mat src, hsv;
thedo 166:3a9487d57a5c 2772 if( argc != 2 || !(src=imread(argv[1], 1)).data )
thedo 166:3a9487d57a5c 2773 return -1;
thedo 166:3a9487d57a5c 2774
thedo 166:3a9487d57a5c 2775 cvtColor(src, hsv, COLOR_BGR2HSV);
thedo 166:3a9487d57a5c 2776
thedo 166:3a9487d57a5c 2777 // Quantize the hue to 30 levels
thedo 166:3a9487d57a5c 2778 // and the saturation to 32 levels
thedo 166:3a9487d57a5c 2779 int hbins = 30, sbins = 32;
thedo 166:3a9487d57a5c 2780 int histSize[] = {hbins, sbins};
thedo 166:3a9487d57a5c 2781 // hue varies from 0 to 179, see cvtColor
thedo 166:3a9487d57a5c 2782 float hranges[] = { 0, 180 };
thedo 166:3a9487d57a5c 2783 // saturation varies from 0 (black-gray-white) to
thedo 166:3a9487d57a5c 2784 // 255 (pure spectrum color)
thedo 166:3a9487d57a5c 2785 float sranges[] = { 0, 256 };
thedo 166:3a9487d57a5c 2786 const float* ranges[] = { hranges, sranges };
thedo 166:3a9487d57a5c 2787 MatND hist;
thedo 166:3a9487d57a5c 2788 // we compute the histogram from the 0-th and 1-st channels
thedo 166:3a9487d57a5c 2789 int channels[] = {0, 1};
thedo 166:3a9487d57a5c 2790
thedo 166:3a9487d57a5c 2791 calcHist( &hsv, 1, channels, Mat(), // do not use mask
thedo 166:3a9487d57a5c 2792 hist, 2, histSize, ranges,
thedo 166:3a9487d57a5c 2793 true, // the histogram is uniform
thedo 166:3a9487d57a5c 2794 false );
thedo 166:3a9487d57a5c 2795 double maxVal=0;
thedo 166:3a9487d57a5c 2796 minMaxLoc(hist, 0, &maxVal, 0, 0);
thedo 166:3a9487d57a5c 2797
thedo 166:3a9487d57a5c 2798 int scale = 10;
thedo 166:3a9487d57a5c 2799 Mat histImg = Mat::zeros(sbins*scale, hbins*10, CV_8UC3);
thedo 166:3a9487d57a5c 2800
thedo 166:3a9487d57a5c 2801 for( int h = 0; h < hbins; h++ )
thedo 166:3a9487d57a5c 2802 for( int s = 0; s < sbins; s++ )
thedo 166:3a9487d57a5c 2803 {
thedo 166:3a9487d57a5c 2804 float binVal = hist.at<float>(h, s);
thedo 166:3a9487d57a5c 2805 int intensity = cvRound(binVal*255/maxVal);
thedo 166:3a9487d57a5c 2806 rectangle( histImg, Point(h*scale, s*scale),
thedo 166:3a9487d57a5c 2807 Point( (h+1)*scale - 1, (s+1)*scale - 1),
thedo 166:3a9487d57a5c 2808 Scalar::all(intensity),
thedo 166:3a9487d57a5c 2809 CV_FILLED );
thedo 166:3a9487d57a5c 2810 }
thedo 166:3a9487d57a5c 2811
thedo 166:3a9487d57a5c 2812 namedWindow( "Source", 1 );
thedo 166:3a9487d57a5c 2813 imshow( "Source", src );
thedo 166:3a9487d57a5c 2814
thedo 166:3a9487d57a5c 2815 namedWindow( "H-S Histogram", 1 );
thedo 166:3a9487d57a5c 2816 imshow( "H-S Histogram", histImg );
thedo 166:3a9487d57a5c 2817 waitKey();
thedo 166:3a9487d57a5c 2818 }
thedo 166:3a9487d57a5c 2819 @endcode
thedo 166:3a9487d57a5c 2820
thedo 166:3a9487d57a5c 2821 @param images Source arrays. They all should have the same depth, CV_8U or CV_32F , and the same
thedo 166:3a9487d57a5c 2822 size. Each of them can have an arbitrary number of channels.
thedo 166:3a9487d57a5c 2823 @param nimages Number of source images.
thedo 166:3a9487d57a5c 2824 @param channels List of the dims channels used to compute the histogram. The first array channels
thedo 166:3a9487d57a5c 2825 are numerated from 0 to images[0].channels()-1 , the second array channels are counted from
thedo 166:3a9487d57a5c 2826 images[0].channels() to images[0].channels() + images[1].channels()-1, and so on.
thedo 166:3a9487d57a5c 2827 @param mask Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size
thedo 166:3a9487d57a5c 2828 as images[i] . The non-zero mask elements mark the array elements counted in the histogram.
thedo 166:3a9487d57a5c 2829 @param hist Output histogram, which is a dense or sparse dims -dimensional array.
thedo 166:3a9487d57a5c 2830 @param dims Histogram dimensionality that must be positive and not greater than CV_MAX_DIMS
thedo 166:3a9487d57a5c 2831 (equal to 32 in the current OpenCV version).
thedo 166:3a9487d57a5c 2832 @param histSize Array of histogram sizes in each dimension.
thedo 166:3a9487d57a5c 2833 @param ranges Array of the dims arrays of the histogram bin boundaries in each dimension. When the
thedo 166:3a9487d57a5c 2834 histogram is uniform ( uniform =true), then for each dimension i it is enough to specify the lower
thedo 166:3a9487d57a5c 2835 (inclusive) boundary \f$L_0\f$ of the 0-th histogram bin and the upper (exclusive) boundary
thedo 166:3a9487d57a5c 2836 \f$U_{\texttt{histSize}[i]-1}\f$ for the last histogram bin histSize[i]-1 . That is, in case of a
thedo 166:3a9487d57a5c 2837 uniform histogram each of ranges[i] is an array of 2 elements. When the histogram is not uniform (
thedo 166:3a9487d57a5c 2838 uniform=false ), then each of ranges[i] contains histSize[i]+1 elements:
thedo 166:3a9487d57a5c 2839 \f$L_0, U_0=L_1, U_1=L_2, ..., U_{\texttt{histSize[i]}-2}=L_{\texttt{histSize[i]}-1}, U_{\texttt{histSize[i]}-1}\f$
thedo 166:3a9487d57a5c 2840 . The array elements, that are not between \f$L_0\f$ and \f$U_{\texttt{histSize[i]}-1}\f$ , are not
thedo 166:3a9487d57a5c 2841 counted in the histogram.
thedo 166:3a9487d57a5c 2842 @param uniform Flag indicating whether the histogram is uniform or not (see above).
thedo 166:3a9487d57a5c 2843 @param accumulate Accumulation flag. If it is set, the histogram is not cleared in the beginning
thedo 166:3a9487d57a5c 2844 when it is allocated. This feature enables you to compute a single histogram from several sets of
thedo 166:3a9487d57a5c 2845 arrays, or to update the histogram in time.
thedo 166:3a9487d57a5c 2846 */
thedo 166:3a9487d57a5c 2847 CV_EXPORTS void calcHist( const Mat* images, int nimages,
thedo 166:3a9487d57a5c 2848 const int* channels, InputArray mask,
thedo 166:3a9487d57a5c 2849 OutputArray hist, int dims, const int* histSize,
thedo 166:3a9487d57a5c 2850 const float** ranges, bool uniform = true, bool accumulate = false );
thedo 166:3a9487d57a5c 2851
thedo 166:3a9487d57a5c 2852 /** @overload
thedo 166:3a9487d57a5c 2853
thedo 166:3a9487d57a5c 2854 this variant uses cv::SparseMat for output
thedo 166:3a9487d57a5c 2855 */
thedo 166:3a9487d57a5c 2856 CV_EXPORTS void calcHist( const Mat* images, int nimages,
thedo 166:3a9487d57a5c 2857 const int* channels, InputArray mask,
thedo 166:3a9487d57a5c 2858 SparseMat& hist, int dims,
thedo 166:3a9487d57a5c 2859 const int* histSize, const float** ranges,
thedo 166:3a9487d57a5c 2860 bool uniform = true, bool accumulate = false );
thedo 166:3a9487d57a5c 2861
thedo 166:3a9487d57a5c 2862 /** @overload */
thedo 166:3a9487d57a5c 2863 CV_EXPORTS_W void calcHist( InputArrayOfArrays images,
thedo 166:3a9487d57a5c 2864 const std::vector<int>& channels,
thedo 166:3a9487d57a5c 2865 InputArray mask, OutputArray hist,
thedo 166:3a9487d57a5c 2866 const std::vector<int>& histSize,
thedo 166:3a9487d57a5c 2867 const std::vector<float>& ranges,
thedo 166:3a9487d57a5c 2868 bool accumulate = false );
thedo 166:3a9487d57a5c 2869
thedo 166:3a9487d57a5c 2870 /** @brief Calculates the back projection of a histogram.
thedo 166:3a9487d57a5c 2871
thedo 166:3a9487d57a5c 2872 The functions calcBackProject calculate the back project of the histogram. That is, similarly to
thedo 166:3a9487d57a5c 2873 cv::calcHist , at each location (x, y) the function collects the values from the selected channels
thedo 166:3a9487d57a5c 2874 in the input images and finds the corresponding histogram bin. But instead of incrementing it, the
thedo 166:3a9487d57a5c 2875 function reads the bin value, scales it by scale , and stores in backProject(x,y) . In terms of
thedo 166:3a9487d57a5c 2876 statistics, the function computes probability of each element value in respect with the empirical
thedo 166:3a9487d57a5c 2877 probability distribution represented by the histogram. See how, for example, you can find and track
thedo 166:3a9487d57a5c 2878 a bright-colored object in a scene:
thedo 166:3a9487d57a5c 2879
thedo 166:3a9487d57a5c 2880 - Before tracking, show the object to the camera so that it covers almost the whole frame.
thedo 166:3a9487d57a5c 2881 Calculate a hue histogram. The histogram may have strong maximums, corresponding to the dominant
thedo 166:3a9487d57a5c 2882 colors in the object.
thedo 166:3a9487d57a5c 2883
thedo 166:3a9487d57a5c 2884 - When tracking, calculate a back projection of a hue plane of each input video frame using that
thedo 166:3a9487d57a5c 2885 pre-computed histogram. Threshold the back projection to suppress weak colors. It may also make
thedo 166:3a9487d57a5c 2886 sense to suppress pixels with non-sufficient color saturation and too dark or too bright pixels.
thedo 166:3a9487d57a5c 2887
thedo 166:3a9487d57a5c 2888 - Find connected components in the resulting picture and choose, for example, the largest
thedo 166:3a9487d57a5c 2889 component.
thedo 166:3a9487d57a5c 2890
thedo 166:3a9487d57a5c 2891 This is an approximate algorithm of the CamShift color object tracker.
thedo 166:3a9487d57a5c 2892
thedo 166:3a9487d57a5c 2893 @param images Source arrays. They all should have the same depth, CV_8U or CV_32F , and the same
thedo 166:3a9487d57a5c 2894 size. Each of them can have an arbitrary number of channels.
thedo 166:3a9487d57a5c 2895 @param nimages Number of source images.
thedo 166:3a9487d57a5c 2896 @param channels The list of channels used to compute the back projection. The number of channels
thedo 166:3a9487d57a5c 2897 must match the histogram dimensionality. The first array channels are numerated from 0 to
thedo 166:3a9487d57a5c 2898 images[0].channels()-1 , the second array channels are counted from images[0].channels() to
thedo 166:3a9487d57a5c 2899 images[0].channels() + images[1].channels()-1, and so on.
thedo 166:3a9487d57a5c 2900 @param hist Input histogram that can be dense or sparse.
thedo 166:3a9487d57a5c 2901 @param backProject Destination back projection array that is a single-channel array of the same
thedo 166:3a9487d57a5c 2902 size and depth as images[0] .
thedo 166:3a9487d57a5c 2903 @param ranges Array of arrays of the histogram bin boundaries in each dimension. See calcHist .
thedo 166:3a9487d57a5c 2904 @param scale Optional scale factor for the output back projection.
thedo 166:3a9487d57a5c 2905 @param uniform Flag indicating whether the histogram is uniform or not (see above).
thedo 166:3a9487d57a5c 2906
thedo 166:3a9487d57a5c 2907 @sa cv::calcHist, cv::compareHist
thedo 166:3a9487d57a5c 2908 */
thedo 166:3a9487d57a5c 2909 CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
thedo 166:3a9487d57a5c 2910 const int* channels, InputArray hist,
thedo 166:3a9487d57a5c 2911 OutputArray backProject, const float** ranges,
thedo 166:3a9487d57a5c 2912 double scale = 1, bool uniform = true );
thedo 166:3a9487d57a5c 2913
thedo 166:3a9487d57a5c 2914 /** @overload */
thedo 166:3a9487d57a5c 2915 CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
thedo 166:3a9487d57a5c 2916 const int* channels, const SparseMat& hist,
thedo 166:3a9487d57a5c 2917 OutputArray backProject, const float** ranges,
thedo 166:3a9487d57a5c 2918 double scale = 1, bool uniform = true );
thedo 166:3a9487d57a5c 2919
thedo 166:3a9487d57a5c 2920 /** @overload */
thedo 166:3a9487d57a5c 2921 CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels,
thedo 166:3a9487d57a5c 2922 InputArray hist, OutputArray dst,
thedo 166:3a9487d57a5c 2923 const std::vector<float>& ranges,
thedo 166:3a9487d57a5c 2924 double scale );
thedo 166:3a9487d57a5c 2925
thedo 166:3a9487d57a5c 2926 /** @brief Compares two histograms.
thedo 166:3a9487d57a5c 2927
thedo 166:3a9487d57a5c 2928 The function compare two dense or two sparse histograms using the specified method.
thedo 166:3a9487d57a5c 2929
thedo 166:3a9487d57a5c 2930 The function returns \f$d(H_1, H_2)\f$ .
thedo 166:3a9487d57a5c 2931
thedo 166:3a9487d57a5c 2932 While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable
thedo 166:3a9487d57a5c 2933 for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling
thedo 166:3a9487d57a5c 2934 problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms
thedo 166:3a9487d57a5c 2935 or more general sparse configurations of weighted points, consider using the cv::EMD function.
thedo 166:3a9487d57a5c 2936
thedo 166:3a9487d57a5c 2937 @param H1 First compared histogram.
thedo 166:3a9487d57a5c 2938 @param H2 Second compared histogram of the same size as H1 .
thedo 166:3a9487d57a5c 2939 @param method Comparison method, see cv::HistCompMethods
thedo 166:3a9487d57a5c 2940 */
thedo 166:3a9487d57a5c 2941 CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method );
thedo 166:3a9487d57a5c 2942
thedo 166:3a9487d57a5c 2943 /** @overload */
thedo 166:3a9487d57a5c 2944 CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method );
thedo 166:3a9487d57a5c 2945
thedo 166:3a9487d57a5c 2946 /** @brief Equalizes the histogram of a grayscale image.
thedo 166:3a9487d57a5c 2947
thedo 166:3a9487d57a5c 2948 The function equalizes the histogram of the input image using the following algorithm:
thedo 166:3a9487d57a5c 2949
thedo 166:3a9487d57a5c 2950 - Calculate the histogram \f$H\f$ for src .
thedo 166:3a9487d57a5c 2951 - Normalize the histogram so that the sum of histogram bins is 255.
thedo 166:3a9487d57a5c 2952 - Compute the integral of the histogram:
thedo 166:3a9487d57a5c 2953 \f[H'_i = \sum _{0 \le j < i} H(j)\f]
thedo 166:3a9487d57a5c 2954 - Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$
thedo 166:3a9487d57a5c 2955
thedo 166:3a9487d57a5c 2956 The algorithm normalizes the brightness and increases the contrast of the image.
thedo 166:3a9487d57a5c 2957
thedo 166:3a9487d57a5c 2958 @param src Source 8-bit single channel image.
thedo 166:3a9487d57a5c 2959 @param dst Destination image of the same size and type as src .
thedo 166:3a9487d57a5c 2960 */
thedo 166:3a9487d57a5c 2961 CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst );
thedo 166:3a9487d57a5c 2962
thedo 166:3a9487d57a5c 2963 /** @brief Computes the "minimal work" distance between two weighted point configurations.
thedo 166:3a9487d57a5c 2964
thedo 166:3a9487d57a5c 2965 The function computes the earth mover distance and/or a lower boundary of the distance between the
thedo 166:3a9487d57a5c 2966 two weighted point configurations. One of the applications described in @cite RubnerSept98,
thedo 166:3a9487d57a5c 2967 @cite Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
thedo 166:3a9487d57a5c 2968 problem that is solved using some modification of a simplex algorithm, thus the complexity is
thedo 166:3a9487d57a5c 2969 exponential in the worst case, though, on average it is much faster. In the case of a real metric
thedo 166:3a9487d57a5c 2970 the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
thedo 166:3a9487d57a5c 2971 to determine roughly whether the two signatures are far enough so that they cannot relate to the
thedo 166:3a9487d57a5c 2972 same object.
thedo 166:3a9487d57a5c 2973
thedo 166:3a9487d57a5c 2974 @param signature1 First signature, a \f$\texttt{size1}\times \texttt{dims}+1\f$ floating-point matrix.
thedo 166:3a9487d57a5c 2975 Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
thedo 166:3a9487d57a5c 2976 a single column (weights only) if the user-defined cost matrix is used.
thedo 166:3a9487d57a5c 2977 @param signature2 Second signature of the same format as signature1 , though the number of rows
thedo 166:3a9487d57a5c 2978 may be different. The total weights may be different. In this case an extra "dummy" point is added
thedo 166:3a9487d57a5c 2979 to either signature1 or signature2 .
thedo 166:3a9487d57a5c 2980 @param distType Used metric. See cv::DistanceTypes.
thedo 166:3a9487d57a5c 2981 @param cost User-defined \f$\texttt{size1}\times \texttt{size2}\f$ cost matrix. Also, if a cost matrix
thedo 166:3a9487d57a5c 2982 is used, lower boundary lowerBound cannot be calculated because it needs a metric function.
thedo 166:3a9487d57a5c 2983 @param lowerBound Optional input/output parameter: lower boundary of a distance between the two
thedo 166:3a9487d57a5c 2984 signatures that is a distance between mass centers. The lower boundary may not be calculated if
thedo 166:3a9487d57a5c 2985 the user-defined cost matrix is used, the total weights of point configurations are not equal, or
thedo 166:3a9487d57a5c 2986 if the signatures consist of weights only (the signature matrices have a single column). You
thedo 166:3a9487d57a5c 2987 **must** initialize \*lowerBound . If the calculated distance between mass centers is greater or
thedo 166:3a9487d57a5c 2988 equal to \*lowerBound (it means that the signatures are far enough), the function does not
thedo 166:3a9487d57a5c 2989 calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on
thedo 166:3a9487d57a5c 2990 return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound
thedo 166:3a9487d57a5c 2991 should be set to 0.
thedo 166:3a9487d57a5c 2992 @param flow Resultant \f$\texttt{size1} \times \texttt{size2}\f$ flow matrix: \f$\texttt{flow}_{i,j}\f$ is
thedo 166:3a9487d57a5c 2993 a flow from \f$i\f$ -th point of signature1 to \f$j\f$ -th point of signature2 .
thedo 166:3a9487d57a5c 2994 */
thedo 166:3a9487d57a5c 2995 CV_EXPORTS float EMD( InputArray signature1, InputArray signature2,
thedo 166:3a9487d57a5c 2996 int distType, InputArray cost=noArray(),
thedo 166:3a9487d57a5c 2997 float* lowerBound = 0, OutputArray flow = noArray() );
thedo 166:3a9487d57a5c 2998
thedo 166:3a9487d57a5c 2999 //! @} imgproc_hist
thedo 166:3a9487d57a5c 3000
thedo 166:3a9487d57a5c 3001 /** @example watershed.cpp
thedo 166:3a9487d57a5c 3002 An example using the watershed algorithm
thedo 166:3a9487d57a5c 3003 */
thedo 166:3a9487d57a5c 3004
thedo 166:3a9487d57a5c 3005 /** @brief Performs a marker-based image segmentation using the watershed algorithm.
thedo 166:3a9487d57a5c 3006
thedo 166:3a9487d57a5c 3007 The function implements one of the variants of watershed, non-parametric marker-based segmentation
thedo 166:3a9487d57a5c 3008 algorithm, described in @cite Meyer92 .
thedo 166:3a9487d57a5c 3009
thedo 166:3a9487d57a5c 3010 Before passing the image to the function, you have to roughly outline the desired regions in the
thedo 166:3a9487d57a5c 3011 image markers with positive (\>0) indices. So, every region is represented as one or more connected
thedo 166:3a9487d57a5c 3012 components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary
thedo 166:3a9487d57a5c 3013 mask using findContours and drawContours (see the watershed.cpp demo). The markers are "seeds" of
thedo 166:3a9487d57a5c 3014 the future image regions. All the other pixels in markers , whose relation to the outlined regions
thedo 166:3a9487d57a5c 3015 is not known and should be defined by the algorithm, should be set to 0's. In the function output,
thedo 166:3a9487d57a5c 3016 each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the
thedo 166:3a9487d57a5c 3017 regions.
thedo 166:3a9487d57a5c 3018
thedo 166:3a9487d57a5c 3019 @note Any two neighbor connected components are not necessarily separated by a watershed boundary
thedo 166:3a9487d57a5c 3020 (-1's pixels); for example, they can touch each other in the initial marker image passed to the
thedo 166:3a9487d57a5c 3021 function.
thedo 166:3a9487d57a5c 3022
thedo 166:3a9487d57a5c 3023 @param image Input 8-bit 3-channel image.
thedo 166:3a9487d57a5c 3024 @param markers Input/output 32-bit single-channel image (map) of markers. It should have the same
thedo 166:3a9487d57a5c 3025 size as image .
thedo 166:3a9487d57a5c 3026
thedo 166:3a9487d57a5c 3027 @sa findContours
thedo 166:3a9487d57a5c 3028
thedo 166:3a9487d57a5c 3029 @ingroup imgproc_misc
thedo 166:3a9487d57a5c 3030 */
thedo 166:3a9487d57a5c 3031 CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers );
thedo 166:3a9487d57a5c 3032
thedo 166:3a9487d57a5c 3033 //! @addtogroup imgproc_filter
thedo 166:3a9487d57a5c 3034 //! @{
thedo 166:3a9487d57a5c 3035
thedo 166:3a9487d57a5c 3036 /** @brief Performs initial step of meanshift segmentation of an image.
thedo 166:3a9487d57a5c 3037
thedo 166:3a9487d57a5c 3038 The function implements the filtering stage of meanshift segmentation, that is, the output of the
thedo 166:3a9487d57a5c 3039 function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
thedo 166:3a9487d57a5c 3040 At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
thedo 166:3a9487d57a5c 3041 meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
thedo 166:3a9487d57a5c 3042 considered:
thedo 166:3a9487d57a5c 3043
thedo 166:3a9487d57a5c 3044 \f[(x,y): X- \texttt{sp} \le x \le X+ \texttt{sp} , Y- \texttt{sp} \le y \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)|| \le \texttt{sr}\f]
thedo 166:3a9487d57a5c 3045
thedo 166:3a9487d57a5c 3046 where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
thedo 166:3a9487d57a5c 3047 (though, the algorithm does not depend on the color space used, so any 3-component color space can
thedo 166:3a9487d57a5c 3048 be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
thedo 166:3a9487d57a5c 3049 (R',G',B') are found and they act as the neighborhood center on the next iteration:
thedo 166:3a9487d57a5c 3050
thedo 166:3a9487d57a5c 3051 \f[(X,Y)~(X',Y'), (R,G,B)~(R',G',B').\f]
thedo 166:3a9487d57a5c 3052
thedo 166:3a9487d57a5c 3053 After the iterations over, the color components of the initial pixel (that is, the pixel from where
thedo 166:3a9487d57a5c 3054 the iterations started) are set to the final value (average color at the last iteration):
thedo 166:3a9487d57a5c 3055
thedo 166:3a9487d57a5c 3056 \f[I(X,Y) <- (R*,G*,B*)\f]
thedo 166:3a9487d57a5c 3057
thedo 166:3a9487d57a5c 3058 When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
thedo 166:3a9487d57a5c 3059 run on the smallest layer first. After that, the results are propagated to the larger layer and the
thedo 166:3a9487d57a5c 3060 iterations are run again only on those pixels where the layer colors differ by more than sr from the
thedo 166:3a9487d57a5c 3061 lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
thedo 166:3a9487d57a5c 3062 results will be actually different from the ones obtained by running the meanshift procedure on the
thedo 166:3a9487d57a5c 3063 whole original image (i.e. when maxLevel==0).
thedo 166:3a9487d57a5c 3064
thedo 166:3a9487d57a5c 3065 @param src The source 8-bit, 3-channel image.
thedo 166:3a9487d57a5c 3066 @param dst The destination image of the same format and the same size as the source.
thedo 166:3a9487d57a5c 3067 @param sp The spatial window radius.
thedo 166:3a9487d57a5c 3068 @param sr The color window radius.
thedo 166:3a9487d57a5c 3069 @param maxLevel Maximum level of the pyramid for the segmentation.
thedo 166:3a9487d57a5c 3070 @param termcrit Termination criteria: when to stop meanshift iterations.
thedo 166:3a9487d57a5c 3071 */
thedo 166:3a9487d57a5c 3072 CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 3073 double sp, double sr, int maxLevel = 1,
thedo 166:3a9487d57a5c 3074 TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) );
thedo 166:3a9487d57a5c 3075
thedo 166:3a9487d57a5c 3076 //! @}
thedo 166:3a9487d57a5c 3077
thedo 166:3a9487d57a5c 3078 //! @addtogroup imgproc_misc
thedo 166:3a9487d57a5c 3079 //! @{
thedo 166:3a9487d57a5c 3080
thedo 166:3a9487d57a5c 3081 /** @example grabcut.cpp
thedo 166:3a9487d57a5c 3082 An example using the GrabCut algorithm
thedo 166:3a9487d57a5c 3083 */
thedo 166:3a9487d57a5c 3084
thedo 166:3a9487d57a5c 3085 /** @brief Runs the GrabCut algorithm.
thedo 166:3a9487d57a5c 3086
thedo 166:3a9487d57a5c 3087 The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut).
thedo 166:3a9487d57a5c 3088
thedo 166:3a9487d57a5c 3089 @param img Input 8-bit 3-channel image.
thedo 166:3a9487d57a5c 3090 @param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when
thedo 166:3a9487d57a5c 3091 mode is set to GC_INIT_WITH_RECT. Its elements may have one of the cv::GrabCutClasses.
thedo 166:3a9487d57a5c 3092 @param rect ROI containing a segmented object. The pixels outside of the ROI are marked as
thedo 166:3a9487d57a5c 3093 "obvious background". The parameter is only used when mode==GC_INIT_WITH_RECT .
thedo 166:3a9487d57a5c 3094 @param bgdModel Temporary array for the background model. Do not modify it while you are
thedo 166:3a9487d57a5c 3095 processing the same image.
thedo 166:3a9487d57a5c 3096 @param fgdModel Temporary arrays for the foreground model. Do not modify it while you are
thedo 166:3a9487d57a5c 3097 processing the same image.
thedo 166:3a9487d57a5c 3098 @param iterCount Number of iterations the algorithm should make before returning the result. Note
thedo 166:3a9487d57a5c 3099 that the result can be refined with further calls with mode==GC_INIT_WITH_MASK or
thedo 166:3a9487d57a5c 3100 mode==GC_EVAL .
thedo 166:3a9487d57a5c 3101 @param mode Operation mode that could be one of the cv::GrabCutModes
thedo 166:3a9487d57a5c 3102 */
thedo 166:3a9487d57a5c 3103 CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect,
thedo 166:3a9487d57a5c 3104 InputOutputArray bgdModel, InputOutputArray fgdModel,
thedo 166:3a9487d57a5c 3105 int iterCount, int mode = GC_EVAL );
thedo 166:3a9487d57a5c 3106
thedo 166:3a9487d57a5c 3107 /** @example distrans.cpp
thedo 166:3a9487d57a5c 3108 An example on using the distance transform\
thedo 166:3a9487d57a5c 3109 */
thedo 166:3a9487d57a5c 3110
thedo 166:3a9487d57a5c 3111
thedo 166:3a9487d57a5c 3112 /** @brief Calculates the distance to the closest zero pixel for each pixel of the source image.
thedo 166:3a9487d57a5c 3113
thedo 166:3a9487d57a5c 3114 The functions distanceTransform calculate the approximate or precise distance from every binary
thedo 166:3a9487d57a5c 3115 image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
thedo 166:3a9487d57a5c 3116
thedo 166:3a9487d57a5c 3117 When maskSize == DIST_MASK_PRECISE and distanceType == DIST_L2 , the function runs the
thedo 166:3a9487d57a5c 3118 algorithm described in @cite Felzenszwalb04 . This algorithm is parallelized with the TBB library.
thedo 166:3a9487d57a5c 3119
thedo 166:3a9487d57a5c 3120 In other cases, the algorithm @cite Borgefors86 is used. This means that for a pixel the function
thedo 166:3a9487d57a5c 3121 finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical,
thedo 166:3a9487d57a5c 3122 diagonal, or knight's move (the latest is available for a \f$5\times 5\f$ mask). The overall
thedo 166:3a9487d57a5c 3123 distance is calculated as a sum of these basic distances. Since the distance function should be
thedo 166:3a9487d57a5c 3124 symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all
thedo 166:3a9487d57a5c 3125 the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the
thedo 166:3a9487d57a5c 3126 same cost (denoted as `c`). For the cv::DIST_C and cv::DIST_L1 types, the distance is calculated
thedo 166:3a9487d57a5c 3127 precisely, whereas for cv::DIST_L2 (Euclidean distance) the distance can be calculated only with a
thedo 166:3a9487d57a5c 3128 relative error (a \f$5\times 5\f$ mask gives more accurate results). For `a`,`b`, and `c`, OpenCV
thedo 166:3a9487d57a5c 3129 uses the values suggested in the original paper:
thedo 166:3a9487d57a5c 3130 - DIST_L1: `a = 1, b = 2`
thedo 166:3a9487d57a5c 3131 - DIST_L2:
thedo 166:3a9487d57a5c 3132 - `3 x 3`: `a=0.955, b=1.3693`
thedo 166:3a9487d57a5c 3133 - `5 x 5`: `a=1, b=1.4, c=2.1969`
thedo 166:3a9487d57a5c 3134 - DIST_C: `a = 1, b = 1`
thedo 166:3a9487d57a5c 3135
thedo 166:3a9487d57a5c 3136 Typically, for a fast, coarse distance estimation DIST_L2, a \f$3\times 3\f$ mask is used. For a
thedo 166:3a9487d57a5c 3137 more accurate distance estimation DIST_L2, a \f$5\times 5\f$ mask or the precise algorithm is used.
thedo 166:3a9487d57a5c 3138 Note that both the precise and the approximate algorithms are linear on the number of pixels.
thedo 166:3a9487d57a5c 3139
thedo 166:3a9487d57a5c 3140 This variant of the function does not only compute the minimum distance for each pixel \f$(x, y)\f$
thedo 166:3a9487d57a5c 3141 but also identifies the nearest connected component consisting of zero pixels
thedo 166:3a9487d57a5c 3142 (labelType==DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==DIST_LABEL_PIXEL). Index of the
thedo 166:3a9487d57a5c 3143 component/pixel is stored in `labels(x, y)`. When labelType==DIST_LABEL_CCOMP, the function
thedo 166:3a9487d57a5c 3144 automatically finds connected components of zero pixels in the input image and marks them with
thedo 166:3a9487d57a5c 3145 distinct labels. When labelType==DIST_LABEL_CCOMP, the function scans through the input image and
thedo 166:3a9487d57a5c 3146 marks all the zero pixels with distinct labels.
thedo 166:3a9487d57a5c 3147
thedo 166:3a9487d57a5c 3148 In this mode, the complexity is still linear. That is, the function provides a very fast way to
thedo 166:3a9487d57a5c 3149 compute the Voronoi diagram for a binary image. Currently, the second variant can use only the
thedo 166:3a9487d57a5c 3150 approximate distance transform algorithm, i.e. maskSize=DIST_MASK_PRECISE is not supported
thedo 166:3a9487d57a5c 3151 yet.
thedo 166:3a9487d57a5c 3152
thedo 166:3a9487d57a5c 3153 @param src 8-bit, single-channel (binary) source image.
thedo 166:3a9487d57a5c 3154 @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
thedo 166:3a9487d57a5c 3155 single-channel image of the same size as src.
thedo 166:3a9487d57a5c 3156 @param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type
thedo 166:3a9487d57a5c 3157 CV_32SC1 and the same size as src.
thedo 166:3a9487d57a5c 3158 @param distanceType Type of distance, see cv::DistanceTypes
thedo 166:3a9487d57a5c 3159 @param maskSize Size of the distance transform mask, see cv::DistanceTransformMasks.
thedo 166:3a9487d57a5c 3160 DIST_MASK_PRECISE is not supported by this variant. In case of the DIST_L1 or DIST_C distance type,
thedo 166:3a9487d57a5c 3161 the parameter is forced to 3 because a \f$3\times 3\f$ mask gives the same result as \f$5\times
thedo 166:3a9487d57a5c 3162 5\f$ or any larger aperture.
thedo 166:3a9487d57a5c 3163 @param labelType Type of the label array to build, see cv::DistanceTransformLabelTypes.
thedo 166:3a9487d57a5c 3164 */
thedo 166:3a9487d57a5c 3165 CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 3166 OutputArray labels, int distanceType, int maskSize,
thedo 166:3a9487d57a5c 3167 int labelType = DIST_LABEL_CCOMP );
thedo 166:3a9487d57a5c 3168
thedo 166:3a9487d57a5c 3169 /** @overload
thedo 166:3a9487d57a5c 3170 @param src 8-bit, single-channel (binary) source image.
thedo 166:3a9487d57a5c 3171 @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
thedo 166:3a9487d57a5c 3172 single-channel image of the same size as src .
thedo 166:3a9487d57a5c 3173 @param distanceType Type of distance, see cv::DistanceTypes
thedo 166:3a9487d57a5c 3174 @param maskSize Size of the distance transform mask, see cv::DistanceTransformMasks. In case of the
thedo 166:3a9487d57a5c 3175 DIST_L1 or DIST_C distance type, the parameter is forced to 3 because a \f$3\times 3\f$ mask gives
thedo 166:3a9487d57a5c 3176 the same result as \f$5\times 5\f$ or any larger aperture.
thedo 166:3a9487d57a5c 3177 @param dstType Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for
thedo 166:3a9487d57a5c 3178 the first variant of the function and distanceType == DIST_L1.
thedo 166:3a9487d57a5c 3179 */
thedo 166:3a9487d57a5c 3180 CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst,
thedo 166:3a9487d57a5c 3181 int distanceType, int maskSize, int dstType=CV_32F);
thedo 166:3a9487d57a5c 3182
thedo 166:3a9487d57a5c 3183 /** @example ffilldemo.cpp
thedo 166:3a9487d57a5c 3184 An example using the FloodFill technique
thedo 166:3a9487d57a5c 3185 */
thedo 166:3a9487d57a5c 3186
thedo 166:3a9487d57a5c 3187 /** @overload
thedo 166:3a9487d57a5c 3188
thedo 166:3a9487d57a5c 3189 variant without `mask` parameter
thedo 166:3a9487d57a5c 3190 */
thedo 166:3a9487d57a5c 3191 CV_EXPORTS int floodFill( InputOutputArray image,
thedo 166:3a9487d57a5c 3192 Point seedPoint, Scalar newVal, CV_OUT Rect* rect = 0,
thedo 166:3a9487d57a5c 3193 Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
thedo 166:3a9487d57a5c 3194 int flags = 4 );
thedo 166:3a9487d57a5c 3195
thedo 166:3a9487d57a5c 3196 /** @brief Fills a connected component with the given color.
thedo 166:3a9487d57a5c 3197
thedo 166:3a9487d57a5c 3198 The functions floodFill fill a connected component starting from the seed point with the specified
thedo 166:3a9487d57a5c 3199 color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
thedo 166:3a9487d57a5c 3200 pixel at \f$(x,y)\f$ is considered to belong to the repainted domain if:
thedo 166:3a9487d57a5c 3201
thedo 166:3a9487d57a5c 3202 - in case of a grayscale image and floating range
thedo 166:3a9487d57a5c 3203 \f[\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}\f]
thedo 166:3a9487d57a5c 3204
thedo 166:3a9487d57a5c 3205
thedo 166:3a9487d57a5c 3206 - in case of a grayscale image and fixed range
thedo 166:3a9487d57a5c 3207 \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\f]
thedo 166:3a9487d57a5c 3208
thedo 166:3a9487d57a5c 3209
thedo 166:3a9487d57a5c 3210 - in case of a color image and floating range
thedo 166:3a9487d57a5c 3211 \f[\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\f]
thedo 166:3a9487d57a5c 3212 \f[\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\f]
thedo 166:3a9487d57a5c 3213 and
thedo 166:3a9487d57a5c 3214 \f[\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\f]
thedo 166:3a9487d57a5c 3215
thedo 166:3a9487d57a5c 3216
thedo 166:3a9487d57a5c 3217 - in case of a color image and fixed range
thedo 166:3a9487d57a5c 3218 \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\f]
thedo 166:3a9487d57a5c 3219 \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\f]
thedo 166:3a9487d57a5c 3220 and
thedo 166:3a9487d57a5c 3221 \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\f]
thedo 166:3a9487d57a5c 3222
thedo 166:3a9487d57a5c 3223
thedo 166:3a9487d57a5c 3224 where \f$src(x',y')\f$ is the value of one of pixel neighbors that is already known to belong to the
thedo 166:3a9487d57a5c 3225 component. That is, to be added to the connected component, a color/brightness of the pixel should
thedo 166:3a9487d57a5c 3226 be close enough to:
thedo 166:3a9487d57a5c 3227 - Color/brightness of one of its neighbors that already belong to the connected component in case
thedo 166:3a9487d57a5c 3228 of a floating range.
thedo 166:3a9487d57a5c 3229 - Color/brightness of the seed point in case of a fixed range.
thedo 166:3a9487d57a5c 3230
thedo 166:3a9487d57a5c 3231 Use these functions to either mark a connected component with the specified color in-place, or build
thedo 166:3a9487d57a5c 3232 a mask and then extract the contour, or copy the region to another image, and so on.
thedo 166:3a9487d57a5c 3233
thedo 166:3a9487d57a5c 3234 @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
thedo 166:3a9487d57a5c 3235 function unless the FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
thedo 166:3a9487d57a5c 3236 the details below.
thedo 166:3a9487d57a5c 3237 @param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
thedo 166:3a9487d57a5c 3238 taller than image. Since this is both an input and output parameter, you must take responsibility
thedo 166:3a9487d57a5c 3239 of initializing it. Flood-filling cannot go across non-zero pixels in the input mask. For example,
thedo 166:3a9487d57a5c 3240 an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
thedo 166:3a9487d57a5c 3241 mask corresponding to filled pixels in the image are set to 1 or to the a value specified in flags
thedo 166:3a9487d57a5c 3242 as described below. It is therefore possible to use the same mask in multiple calls to the function
thedo 166:3a9487d57a5c 3243 to make sure the filled areas do not overlap.
thedo 166:3a9487d57a5c 3244 @param seedPoint Starting point.
thedo 166:3a9487d57a5c 3245 @param newVal New value of the repainted domain pixels.
thedo 166:3a9487d57a5c 3246 @param loDiff Maximal lower brightness/color difference between the currently observed pixel and
thedo 166:3a9487d57a5c 3247 one of its neighbors belonging to the component, or a seed pixel being added to the component.
thedo 166:3a9487d57a5c 3248 @param upDiff Maximal upper brightness/color difference between the currently observed pixel and
thedo 166:3a9487d57a5c 3249 one of its neighbors belonging to the component, or a seed pixel being added to the component.
thedo 166:3a9487d57a5c 3250 @param rect Optional output parameter set by the function to the minimum bounding rectangle of the
thedo 166:3a9487d57a5c 3251 repainted domain.
thedo 166:3a9487d57a5c 3252 @param flags Operation flags. The first 8 bits contain a connectivity value. The default value of
thedo 166:3a9487d57a5c 3253 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
thedo 166:3a9487d57a5c 3254 connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
thedo 166:3a9487d57a5c 3255 will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
thedo 166:3a9487d57a5c 3256 the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest
thedo 166:3a9487d57a5c 3257 neighbours and fill the mask with a value of 255. The following additional options occupy higher
thedo 166:3a9487d57a5c 3258 bits and therefore may be further combined with the connectivity and mask fill values using
thedo 166:3a9487d57a5c 3259 bit-wise or (|), see cv::FloodFillFlags.
thedo 166:3a9487d57a5c 3260
thedo 166:3a9487d57a5c 3261 @note Since the mask is larger than the filled image, a pixel \f$(x, y)\f$ in image corresponds to the
thedo 166:3a9487d57a5c 3262 pixel \f$(x+1, y+1)\f$ in the mask .
thedo 166:3a9487d57a5c 3263
thedo 166:3a9487d57a5c 3264 @sa findContours
thedo 166:3a9487d57a5c 3265 */
thedo 166:3a9487d57a5c 3266 CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask,
thedo 166:3a9487d57a5c 3267 Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
thedo 166:3a9487d57a5c 3268 Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
thedo 166:3a9487d57a5c 3269 int flags = 4 );
thedo 166:3a9487d57a5c 3270
thedo 166:3a9487d57a5c 3271 /** @brief Converts an image from one color space to another.
thedo 166:3a9487d57a5c 3272
thedo 166:3a9487d57a5c 3273 The function converts an input image from one color space to another. In case of a transformation
thedo 166:3a9487d57a5c 3274 to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note
thedo 166:3a9487d57a5c 3275 that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the
thedo 166:3a9487d57a5c 3276 bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue
thedo 166:3a9487d57a5c 3277 component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and
thedo 166:3a9487d57a5c 3278 sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on.
thedo 166:3a9487d57a5c 3279
thedo 166:3a9487d57a5c 3280 The conventional ranges for R, G, and B channel values are:
thedo 166:3a9487d57a5c 3281 - 0 to 255 for CV_8U images
thedo 166:3a9487d57a5c 3282 - 0 to 65535 for CV_16U images
thedo 166:3a9487d57a5c 3283 - 0 to 1 for CV_32F images
thedo 166:3a9487d57a5c 3284
thedo 166:3a9487d57a5c 3285 In case of linear transformations, the range does not matter. But in case of a non-linear
thedo 166:3a9487d57a5c 3286 transformation, an input RGB image should be normalized to the proper value range to get the correct
thedo 166:3a9487d57a5c 3287 results, for example, for RGB \f$\rightarrow\f$ L\*u\*v\* transformation. For example, if you have a
thedo 166:3a9487d57a5c 3288 32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will
thedo 166:3a9487d57a5c 3289 have the 0..255 value range instead of 0..1 assumed by the function. So, before calling cvtColor ,
thedo 166:3a9487d57a5c 3290 you need first to scale the image down:
thedo 166:3a9487d57a5c 3291 @code
thedo 166:3a9487d57a5c 3292 img *= 1./255;
thedo 166:3a9487d57a5c 3293 cvtColor(img, img, COLOR_BGR2Luv);
thedo 166:3a9487d57a5c 3294 @endcode
thedo 166:3a9487d57a5c 3295 If you use cvtColor with 8-bit images, the conversion will have some information lost. For many
thedo 166:3a9487d57a5c 3296 applications, this will not be noticeable but it is recommended to use 32-bit images in applications
thedo 166:3a9487d57a5c 3297 that need the full range of colors or that convert an image before an operation and then convert
thedo 166:3a9487d57a5c 3298 back.
thedo 166:3a9487d57a5c 3299
thedo 166:3a9487d57a5c 3300 If conversion adds the alpha channel, its value will set to the maximum of corresponding channel
thedo 166:3a9487d57a5c 3301 range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F.
thedo 166:3a9487d57a5c 3302
thedo 166:3a9487d57a5c 3303 @param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision
thedo 166:3a9487d57a5c 3304 floating-point.
thedo 166:3a9487d57a5c 3305 @param dst output image of the same size and depth as src.
thedo 166:3a9487d57a5c 3306 @param code color space conversion code (see cv::ColorConversionCodes).
thedo 166:3a9487d57a5c 3307 @param dstCn number of channels in the destination image; if the parameter is 0, the number of the
thedo 166:3a9487d57a5c 3308 channels is derived automatically from src and code.
thedo 166:3a9487d57a5c 3309
thedo 166:3a9487d57a5c 3310 @see @ref imgproc_color_conversions
thedo 166:3a9487d57a5c 3311 */
thedo 166:3a9487d57a5c 3312 CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );
thedo 166:3a9487d57a5c 3313
thedo 166:3a9487d57a5c 3314 //! @} imgproc_misc
thedo 166:3a9487d57a5c 3315
thedo 166:3a9487d57a5c 3316 // main function for all demosaicing procceses
thedo 166:3a9487d57a5c 3317 CV_EXPORTS_W void demosaicing(InputArray _src, OutputArray _dst, int code, int dcn = 0);
thedo 166:3a9487d57a5c 3318
thedo 166:3a9487d57a5c 3319 //! @addtogroup imgproc_shape
thedo 166:3a9487d57a5c 3320 //! @{
thedo 166:3a9487d57a5c 3321
thedo 166:3a9487d57a5c 3322 /** @brief Calculates all of the moments up to the third order of a polygon or rasterized shape.
thedo 166:3a9487d57a5c 3323
thedo 166:3a9487d57a5c 3324 The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The
thedo 166:3a9487d57a5c 3325 results are returned in the structure cv::Moments.
thedo 166:3a9487d57a5c 3326
thedo 166:3a9487d57a5c 3327 @param array Raster image (single-channel, 8-bit or floating-point 2D array) or an array (
thedo 166:3a9487d57a5c 3328 \f$1 \times N\f$ or \f$N \times 1\f$ ) of 2D points (Point or Point2f ).
thedo 166:3a9487d57a5c 3329 @param binaryImage If it is true, all non-zero image pixels are treated as 1's. The parameter is
thedo 166:3a9487d57a5c 3330 used for images only.
thedo 166:3a9487d57a5c 3331 @returns moments.
thedo 166:3a9487d57a5c 3332
thedo 166:3a9487d57a5c 3333 @sa contourArea, arcLength
thedo 166:3a9487d57a5c 3334 */
thedo 166:3a9487d57a5c 3335 CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage = false );
thedo 166:3a9487d57a5c 3336
thedo 166:3a9487d57a5c 3337 /** @brief Calculates seven Hu invariants.
thedo 166:3a9487d57a5c 3338
thedo 166:3a9487d57a5c 3339 The function calculates seven Hu invariants (introduced in @cite Hu62; see also
thedo 166:3a9487d57a5c 3340 <http://en.wikipedia.org/wiki/Image_moment>) defined as:
thedo 166:3a9487d57a5c 3341
thedo 166:3a9487d57a5c 3342 \f[\begin{array}{l} hu[0]= \eta _{20}+ \eta _{02} \\ hu[1]=( \eta _{20}- \eta _{02})^{2}+4 \eta _{11}^{2} \\ hu[2]=( \eta _{30}-3 \eta _{12})^{2}+ (3 \eta _{21}- \eta _{03})^{2} \\ hu[3]=( \eta _{30}+ \eta _{12})^{2}+ ( \eta _{21}+ \eta _{03})^{2} \\ hu[4]=( \eta _{30}-3 \eta _{12})( \eta _{30}+ \eta _{12})[( \eta _{30}+ \eta _{12})^{2}-3( \eta _{21}+ \eta _{03})^{2}]+(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ hu[5]=( \eta _{20}- \eta _{02})[( \eta _{30}+ \eta _{12})^{2}- ( \eta _{21}+ \eta _{03})^{2}]+4 \eta _{11}( \eta _{30}+ \eta _{12})( \eta _{21}+ \eta _{03}) \\ hu[6]=(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}]-( \eta _{30}-3 \eta _{12})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ \end{array}\f]
thedo 166:3a9487d57a5c 3343
thedo 166:3a9487d57a5c 3344 where \f$\eta_{ji}\f$ stands for \f$\texttt{Moments::nu}_{ji}\f$ .
thedo 166:3a9487d57a5c 3345
thedo 166:3a9487d57a5c 3346 These values are proved to be invariants to the image scale, rotation, and reflection except the
thedo 166:3a9487d57a5c 3347 seventh one, whose sign is changed by reflection. This invariance is proved with the assumption of
thedo 166:3a9487d57a5c 3348 infinite image resolution. In case of raster images, the computed Hu invariants for the original and
thedo 166:3a9487d57a5c 3349 transformed images are a bit different.
thedo 166:3a9487d57a5c 3350
thedo 166:3a9487d57a5c 3351 @param moments Input moments computed with moments .
thedo 166:3a9487d57a5c 3352 @param hu Output Hu invariants.
thedo 166:3a9487d57a5c 3353
thedo 166:3a9487d57a5c 3354 @sa matchShapes
thedo 166:3a9487d57a5c 3355 */
thedo 166:3a9487d57a5c 3356 CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] );
thedo 166:3a9487d57a5c 3357
thedo 166:3a9487d57a5c 3358 /** @overload */
thedo 166:3a9487d57a5c 3359 CV_EXPORTS_W void HuMoments( const Moments& m, OutputArray hu );
thedo 166:3a9487d57a5c 3360
thedo 166:3a9487d57a5c 3361 //! @} imgproc_shape
thedo 166:3a9487d57a5c 3362
thedo 166:3a9487d57a5c 3363 //! @addtogroup imgproc_object
thedo 166:3a9487d57a5c 3364 //! @{
thedo 166:3a9487d57a5c 3365
thedo 166:3a9487d57a5c 3366 //! type of the template matching operation
thedo 166:3a9487d57a5c 3367 enum TemplateMatchModes {
thedo 166:3a9487d57a5c 3368 TM_SQDIFF = 0, //!< \f[R(x,y)= \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2\f]
thedo 166:3a9487d57a5c 3369 TM_SQDIFF_NORMED = 1, //!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y')-I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f]
thedo 166:3a9487d57a5c 3370 TM_CCORR = 2, //!< \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y'))\f]
thedo 166:3a9487d57a5c 3371 TM_CCORR_NORMED = 3, //!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f]
thedo 166:3a9487d57a5c 3372 TM_CCOEFF = 4, //!< \f[R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))\f]
thedo 166:3a9487d57a5c 3373 //!< where
thedo 166:3a9487d57a5c 3374 //!< \f[\begin{array}{l} T'(x',y')=T(x',y') - 1/(w \cdot h) \cdot \sum _{x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w \cdot h) \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array}\f]
thedo 166:3a9487d57a5c 3375 TM_CCOEFF_NORMED = 5 //!< \f[R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{ \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2} }\f]
thedo 166:3a9487d57a5c 3376 };
thedo 166:3a9487d57a5c 3377
thedo 166:3a9487d57a5c 3378 /** @brief Compares a template against overlapped image regions.
thedo 166:3a9487d57a5c 3379
thedo 166:3a9487d57a5c 3380 The function slides through image , compares the overlapped patches of size \f$w \times h\f$ against
thedo 166:3a9487d57a5c 3381 templ using the specified method and stores the comparison results in result . Here are the formulae
thedo 166:3a9487d57a5c 3382 for the available comparison methods ( \f$I\f$ denotes image, \f$T\f$ template, \f$R\f$ result ). The summation
thedo 166:3a9487d57a5c 3383 is done over template and/or the image patch: \f$x' = 0...w-1, y' = 0...h-1\f$
thedo 166:3a9487d57a5c 3384
thedo 166:3a9487d57a5c 3385 After the function finishes the comparison, the best matches can be found as global minimums (when
thedo 166:3a9487d57a5c 3386 TM_SQDIFF was used) or maximums (when TM_CCORR or TM_CCOEFF was used) using the
thedo 166:3a9487d57a5c 3387 minMaxLoc function. In case of a color image, template summation in the numerator and each sum in
thedo 166:3a9487d57a5c 3388 the denominator is done over all of the channels and separate mean values are used for each channel.
thedo 166:3a9487d57a5c 3389 That is, the function can take a color template and a color image. The result will still be a
thedo 166:3a9487d57a5c 3390 single-channel image, which is easier to analyze.
thedo 166:3a9487d57a5c 3391
thedo 166:3a9487d57a5c 3392 @param image Image where the search is running. It must be 8-bit or 32-bit floating-point.
thedo 166:3a9487d57a5c 3393 @param templ Searched template. It must be not greater than the source image and have the same
thedo 166:3a9487d57a5c 3394 data type.
thedo 166:3a9487d57a5c 3395 @param result Map of comparison results. It must be single-channel 32-bit floating-point. If image
thedo 166:3a9487d57a5c 3396 is \f$W \times H\f$ and templ is \f$w \times h\f$ , then result is \f$(W-w+1) \times (H-h+1)\f$ .
thedo 166:3a9487d57a5c 3397 @param method Parameter specifying the comparison method, see cv::TemplateMatchModes
thedo 166:3a9487d57a5c 3398 @param mask Mask of searched template. It must have the same datatype and size with templ. It is
thedo 166:3a9487d57a5c 3399 not set by default.
thedo 166:3a9487d57a5c 3400 */
thedo 166:3a9487d57a5c 3401 CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
thedo 166:3a9487d57a5c 3402 OutputArray result, int method, InputArray mask = noArray() );
thedo 166:3a9487d57a5c 3403
thedo 166:3a9487d57a5c 3404 //! @}
thedo 166:3a9487d57a5c 3405
thedo 166:3a9487d57a5c 3406 //! @addtogroup imgproc_shape
thedo 166:3a9487d57a5c 3407 //! @{
thedo 166:3a9487d57a5c 3408
thedo 166:3a9487d57a5c 3409 /** @brief computes the connected components labeled image of boolean image
thedo 166:3a9487d57a5c 3410
thedo 166:3a9487d57a5c 3411 image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
thedo 166:3a9487d57a5c 3412 represents the background label. ltype specifies the output label image type, an important
thedo 166:3a9487d57a5c 3413 consideration based on the total number of labels or alternatively the total number of pixels in
thedo 166:3a9487d57a5c 3414 the source image.
thedo 166:3a9487d57a5c 3415
thedo 166:3a9487d57a5c 3416 @param image the 8-bit single-channel image to be labeled
thedo 166:3a9487d57a5c 3417 @param labels destination labeled image
thedo 166:3a9487d57a5c 3418 @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
thedo 166:3a9487d57a5c 3419 @param ltype output image label type. Currently CV_32S and CV_16U are supported.
thedo 166:3a9487d57a5c 3420 */
thedo 166:3a9487d57a5c 3421 CV_EXPORTS_W int connectedComponents(InputArray image, OutputArray labels,
thedo 166:3a9487d57a5c 3422 int connectivity = 8, int ltype = CV_32S);
thedo 166:3a9487d57a5c 3423
thedo 166:3a9487d57a5c 3424 /** @overload
thedo 166:3a9487d57a5c 3425 @param image the 8-bit single-channel image to be labeled
thedo 166:3a9487d57a5c 3426 @param labels destination labeled image
thedo 166:3a9487d57a5c 3427 @param stats statistics output for each label, including the background label, see below for
thedo 166:3a9487d57a5c 3428 available statistics. Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
thedo 166:3a9487d57a5c 3429 cv::ConnectedComponentsTypes. The data type is CV_32S.
thedo 166:3a9487d57a5c 3430 @param centroids centroid output for each label, including the background label. Centroids are
thedo 166:3a9487d57a5c 3431 accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
thedo 166:3a9487d57a5c 3432 @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
thedo 166:3a9487d57a5c 3433 @param ltype output image label type. Currently CV_32S and CV_16U are supported.
thedo 166:3a9487d57a5c 3434 */
thedo 166:3a9487d57a5c 3435 CV_EXPORTS_W int connectedComponentsWithStats(InputArray image, OutputArray labels,
thedo 166:3a9487d57a5c 3436 OutputArray stats, OutputArray centroids,
thedo 166:3a9487d57a5c 3437 int connectivity = 8, int ltype = CV_32S);
thedo 166:3a9487d57a5c 3438
thedo 166:3a9487d57a5c 3439
thedo 166:3a9487d57a5c 3440 /** @brief Finds contours in a binary image.
thedo 166:3a9487d57a5c 3441
thedo 166:3a9487d57a5c 3442 The function retrieves contours from the binary image using the algorithm @cite Suzuki85 . The contours
thedo 166:3a9487d57a5c 3443 are a useful tool for shape analysis and object detection and recognition. See squares.c in the
thedo 166:3a9487d57a5c 3444 OpenCV sample directory.
thedo 166:3a9487d57a5c 3445
thedo 166:3a9487d57a5c 3446 @note Source image is modified by this function. Also, the function does not take into account
thedo 166:3a9487d57a5c 3447 1-pixel border of the image (it's filled with 0's and used for neighbor analysis in the algorithm),
thedo 166:3a9487d57a5c 3448 therefore the contours touching the image border will be clipped.
thedo 166:3a9487d57a5c 3449
thedo 166:3a9487d57a5c 3450 @param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero
thedo 166:3a9487d57a5c 3451 pixels remain 0's, so the image is treated as binary . You can use compare , inRange , threshold ,
thedo 166:3a9487d57a5c 3452 adaptiveThreshold , Canny , and others to create a binary image out of a grayscale or color one.
thedo 166:3a9487d57a5c 3453 The function modifies the image while extracting the contours. If mode equals to RETR_CCOMP
thedo 166:3a9487d57a5c 3454 or RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1).
thedo 166:3a9487d57a5c 3455 @param contours Detected contours. Each contour is stored as a vector of points.
thedo 166:3a9487d57a5c 3456 @param hierarchy Optional output vector, containing information about the image topology. It has
thedo 166:3a9487d57a5c 3457 as many elements as the number of contours. For each i-th contour contours[i] , the elements
thedo 166:3a9487d57a5c 3458 hierarchy[i][0] , hiearchy[i][1] , hiearchy[i][2] , and hiearchy[i][3] are set to 0-based indices
thedo 166:3a9487d57a5c 3459 in contours of the next and previous contours at the same hierarchical level, the first child
thedo 166:3a9487d57a5c 3460 contour and the parent contour, respectively. If for the contour i there are no next, previous,
thedo 166:3a9487d57a5c 3461 parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.
thedo 166:3a9487d57a5c 3462 @param mode Contour retrieval mode, see cv::RetrievalModes
thedo 166:3a9487d57a5c 3463 @param method Contour approximation method, see cv::ContourApproximationModes
thedo 166:3a9487d57a5c 3464 @param offset Optional offset by which every contour point is shifted. This is useful if the
thedo 166:3a9487d57a5c 3465 contours are extracted from the image ROI and then they should be analyzed in the whole image
thedo 166:3a9487d57a5c 3466 context.
thedo 166:3a9487d57a5c 3467 */
thedo 166:3a9487d57a5c 3468 CV_EXPORTS_W void findContours( InputOutputArray image, OutputArrayOfArrays contours,
thedo 166:3a9487d57a5c 3469 OutputArray hierarchy, int mode,
thedo 166:3a9487d57a5c 3470 int method, Point offset = Point());
thedo 166:3a9487d57a5c 3471
thedo 166:3a9487d57a5c 3472 /** @overload */
thedo 166:3a9487d57a5c 3473 CV_EXPORTS void findContours( InputOutputArray image, OutputArrayOfArrays contours,
thedo 166:3a9487d57a5c 3474 int mode, int method, Point offset = Point());
thedo 166:3a9487d57a5c 3475
thedo 166:3a9487d57a5c 3476 /** @brief Approximates a polygonal curve(s) with the specified precision.
thedo 166:3a9487d57a5c 3477
thedo 166:3a9487d57a5c 3478 The functions approxPolyDP approximate a curve or a polygon with another curve/polygon with less
thedo 166:3a9487d57a5c 3479 vertices so that the distance between them is less or equal to the specified precision. It uses the
thedo 166:3a9487d57a5c 3480 Douglas-Peucker algorithm <http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm>
thedo 166:3a9487d57a5c 3481
thedo 166:3a9487d57a5c 3482 @param curve Input vector of a 2D point stored in std::vector or Mat
thedo 166:3a9487d57a5c 3483 @param approxCurve Result of the approximation. The type should match the type of the input curve.
thedo 166:3a9487d57a5c 3484 @param epsilon Parameter specifying the approximation accuracy. This is the maximum distance
thedo 166:3a9487d57a5c 3485 between the original curve and its approximation.
thedo 166:3a9487d57a5c 3486 @param closed If true, the approximated curve is closed (its first and last vertices are
thedo 166:3a9487d57a5c 3487 connected). Otherwise, it is not closed.
thedo 166:3a9487d57a5c 3488 */
thedo 166:3a9487d57a5c 3489 CV_EXPORTS_W void approxPolyDP( InputArray curve,
thedo 166:3a9487d57a5c 3490 OutputArray approxCurve,
thedo 166:3a9487d57a5c 3491 double epsilon, bool closed );
thedo 166:3a9487d57a5c 3492
thedo 166:3a9487d57a5c 3493 /** @brief Calculates a contour perimeter or a curve length.
thedo 166:3a9487d57a5c 3494
thedo 166:3a9487d57a5c 3495 The function computes a curve length or a closed contour perimeter.
thedo 166:3a9487d57a5c 3496
thedo 166:3a9487d57a5c 3497 @param curve Input vector of 2D points, stored in std::vector or Mat.
thedo 166:3a9487d57a5c 3498 @param closed Flag indicating whether the curve is closed or not.
thedo 166:3a9487d57a5c 3499 */
thedo 166:3a9487d57a5c 3500 CV_EXPORTS_W double arcLength( InputArray curve, bool closed );
thedo 166:3a9487d57a5c 3501
thedo 166:3a9487d57a5c 3502 /** @brief Calculates the up-right bounding rectangle of a point set.
thedo 166:3a9487d57a5c 3503
thedo 166:3a9487d57a5c 3504 The function calculates and returns the minimal up-right bounding rectangle for the specified point set.
thedo 166:3a9487d57a5c 3505
thedo 166:3a9487d57a5c 3506 @param points Input 2D point set, stored in std::vector or Mat.
thedo 166:3a9487d57a5c 3507 */
thedo 166:3a9487d57a5c 3508 CV_EXPORTS_W Rect boundingRect( InputArray points );
thedo 166:3a9487d57a5c 3509
thedo 166:3a9487d57a5c 3510 /** @brief Calculates a contour area.
thedo 166:3a9487d57a5c 3511
thedo 166:3a9487d57a5c 3512 The function computes a contour area. Similarly to moments , the area is computed using the Green
thedo 166:3a9487d57a5c 3513 formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using
thedo 166:3a9487d57a5c 3514 drawContours or fillPoly , can be different. Also, the function will most certainly give a wrong
thedo 166:3a9487d57a5c 3515 results for contours with self-intersections.
thedo 166:3a9487d57a5c 3516
thedo 166:3a9487d57a5c 3517 Example:
thedo 166:3a9487d57a5c 3518 @code
thedo 166:3a9487d57a5c 3519 vector<Point> contour;
thedo 166:3a9487d57a5c 3520 contour.push_back(Point2f(0, 0));
thedo 166:3a9487d57a5c 3521 contour.push_back(Point2f(10, 0));
thedo 166:3a9487d57a5c 3522 contour.push_back(Point2f(10, 10));
thedo 166:3a9487d57a5c 3523 contour.push_back(Point2f(5, 4));
thedo 166:3a9487d57a5c 3524
thedo 166:3a9487d57a5c 3525 double area0 = contourArea(contour);
thedo 166:3a9487d57a5c 3526 vector<Point> approx;
thedo 166:3a9487d57a5c 3527 approxPolyDP(contour, approx, 5, true);
thedo 166:3a9487d57a5c 3528 double area1 = contourArea(approx);
thedo 166:3a9487d57a5c 3529
thedo 166:3a9487d57a5c 3530 cout << "area0 =" << area0 << endl <<
thedo 166:3a9487d57a5c 3531 "area1 =" << area1 << endl <<
thedo 166:3a9487d57a5c 3532 "approx poly vertices" << approx.size() << endl;
thedo 166:3a9487d57a5c 3533 @endcode
thedo 166:3a9487d57a5c 3534 @param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat.
thedo 166:3a9487d57a5c 3535 @param oriented Oriented area flag. If it is true, the function returns a signed area value,
thedo 166:3a9487d57a5c 3536 depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can
thedo 166:3a9487d57a5c 3537 determine orientation of a contour by taking the sign of an area. By default, the parameter is
thedo 166:3a9487d57a5c 3538 false, which means that the absolute value is returned.
thedo 166:3a9487d57a5c 3539 */
thedo 166:3a9487d57a5c 3540 CV_EXPORTS_W double contourArea( InputArray contour, bool oriented = false );
thedo 166:3a9487d57a5c 3541
thedo 166:3a9487d57a5c 3542 /** @brief Finds a rotated rectangle of the minimum area enclosing the input 2D point set.
thedo 166:3a9487d57a5c 3543
thedo 166:3a9487d57a5c 3544 The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a
thedo 166:3a9487d57a5c 3545 specified point set. See the OpenCV sample minarea.cpp . Developer should keep in mind that the
thedo 166:3a9487d57a5c 3546 returned rotatedRect can contain negative indices when data is close to the containing Mat element
thedo 166:3a9487d57a5c 3547 boundary.
thedo 166:3a9487d57a5c 3548
thedo 166:3a9487d57a5c 3549 @param points Input vector of 2D points, stored in std::vector\<\> or Mat
thedo 166:3a9487d57a5c 3550 */
thedo 166:3a9487d57a5c 3551 CV_EXPORTS_W RotatedRect minAreaRect( InputArray points );
thedo 166:3a9487d57a5c 3552
thedo 166:3a9487d57a5c 3553 /** @brief Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
thedo 166:3a9487d57a5c 3554
thedo 166:3a9487d57a5c 3555 The function finds the four vertices of a rotated rectangle. This function is useful to draw the
thedo 166:3a9487d57a5c 3556 rectangle. In C++, instead of using this function, you can directly use box.points() method. Please
thedo 166:3a9487d57a5c 3557 visit the [tutorial on bounding
thedo 166:3a9487d57a5c 3558 rectangle](http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/bounding_rects_circles/bounding_rects_circles.html#bounding-rects-circles)
thedo 166:3a9487d57a5c 3559 for more information.
thedo 166:3a9487d57a5c 3560
thedo 166:3a9487d57a5c 3561 @param box The input rotated rectangle. It may be the output of
thedo 166:3a9487d57a5c 3562 @param points The output array of four vertices of rectangles.
thedo 166:3a9487d57a5c 3563 */
thedo 166:3a9487d57a5c 3564 CV_EXPORTS_W void boxPoints(RotatedRect box, OutputArray points);
thedo 166:3a9487d57a5c 3565
thedo 166:3a9487d57a5c 3566 /** @brief Finds a circle of the minimum area enclosing a 2D point set.
thedo 166:3a9487d57a5c 3567
thedo 166:3a9487d57a5c 3568 The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm. See
thedo 166:3a9487d57a5c 3569 the OpenCV sample minarea.cpp .
thedo 166:3a9487d57a5c 3570
thedo 166:3a9487d57a5c 3571 @param points Input vector of 2D points, stored in std::vector\<\> or Mat
thedo 166:3a9487d57a5c 3572 @param center Output center of the circle.
thedo 166:3a9487d57a5c 3573 @param radius Output radius of the circle.
thedo 166:3a9487d57a5c 3574 */
thedo 166:3a9487d57a5c 3575 CV_EXPORTS_W void minEnclosingCircle( InputArray points,
thedo 166:3a9487d57a5c 3576 CV_OUT Point2f& center, CV_OUT float& radius );
thedo 166:3a9487d57a5c 3577
thedo 166:3a9487d57a5c 3578 /** @example minarea.cpp
thedo 166:3a9487d57a5c 3579 */
thedo 166:3a9487d57a5c 3580
thedo 166:3a9487d57a5c 3581 /** @brief Finds a triangle of minimum area enclosing a 2D point set and returns its area.
thedo 166:3a9487d57a5c 3582
thedo 166:3a9487d57a5c 3583 The function finds a triangle of minimum area enclosing the given set of 2D points and returns its
thedo 166:3a9487d57a5c 3584 area. The output for a given 2D point set is shown in the image below. 2D points are depicted in
thedo 166:3a9487d57a5c 3585 *red* and the enclosing triangle in *yellow*.
thedo 166:3a9487d57a5c 3586
thedo 166:3a9487d57a5c 3587 ![Sample output of the minimum enclosing triangle function](pics/minenclosingtriangle.png)
thedo 166:3a9487d57a5c 3588
thedo 166:3a9487d57a5c 3589 The implementation of the algorithm is based on O'Rourke's @cite ORourke86 and Klee and Laskowski's
thedo 166:3a9487d57a5c 3590 @cite KleeLaskowski85 papers. O'Rourke provides a \f$\theta(n)\f$ algorithm for finding the minimal
thedo 166:3a9487d57a5c 3591 enclosing triangle of a 2D convex polygon with n vertices. Since the minEnclosingTriangle function
thedo 166:3a9487d57a5c 3592 takes a 2D point set as input an additional preprocessing step of computing the convex hull of the
thedo 166:3a9487d57a5c 3593 2D point set is required. The complexity of the convexHull function is \f$O(n log(n))\f$ which is higher
thedo 166:3a9487d57a5c 3594 than \f$\theta(n)\f$. Thus the overall complexity of the function is \f$O(n log(n))\f$.
thedo 166:3a9487d57a5c 3595
thedo 166:3a9487d57a5c 3596 @param points Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<\> or Mat
thedo 166:3a9487d57a5c 3597 @param triangle Output vector of three 2D points defining the vertices of the triangle. The depth
thedo 166:3a9487d57a5c 3598 of the OutputArray must be CV_32F.
thedo 166:3a9487d57a5c 3599 */
thedo 166:3a9487d57a5c 3600 CV_EXPORTS_W double minEnclosingTriangle( InputArray points, CV_OUT OutputArray triangle );
thedo 166:3a9487d57a5c 3601
thedo 166:3a9487d57a5c 3602 /** @brief Compares two shapes.
thedo 166:3a9487d57a5c 3603
thedo 166:3a9487d57a5c 3604 The function compares two shapes. All three implemented methods use the Hu invariants (see cv::HuMoments)
thedo 166:3a9487d57a5c 3605
thedo 166:3a9487d57a5c 3606 @param contour1 First contour or grayscale image.
thedo 166:3a9487d57a5c 3607 @param contour2 Second contour or grayscale image.
thedo 166:3a9487d57a5c 3608 @param method Comparison method, see ::ShapeMatchModes
thedo 166:3a9487d57a5c 3609 @param parameter Method-specific parameter (not supported now).
thedo 166:3a9487d57a5c 3610 */
thedo 166:3a9487d57a5c 3611 CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2,
thedo 166:3a9487d57a5c 3612 int method, double parameter );
thedo 166:3a9487d57a5c 3613
thedo 166:3a9487d57a5c 3614 /** @example convexhull.cpp
thedo 166:3a9487d57a5c 3615 An example using the convexHull functionality
thedo 166:3a9487d57a5c 3616 */
thedo 166:3a9487d57a5c 3617
thedo 166:3a9487d57a5c 3618 /** @brief Finds the convex hull of a point set.
thedo 166:3a9487d57a5c 3619
thedo 166:3a9487d57a5c 3620 The functions find the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82
thedo 166:3a9487d57a5c 3621 that has *O(N logN)* complexity in the current implementation. See the OpenCV sample convexhull.cpp
thedo 166:3a9487d57a5c 3622 that demonstrates the usage of different function variants.
thedo 166:3a9487d57a5c 3623
thedo 166:3a9487d57a5c 3624 @param points Input 2D point set, stored in std::vector or Mat.
thedo 166:3a9487d57a5c 3625 @param hull Output convex hull. It is either an integer vector of indices or vector of points. In
thedo 166:3a9487d57a5c 3626 the first case, the hull elements are 0-based indices of the convex hull points in the original
thedo 166:3a9487d57a5c 3627 array (since the set of convex hull points is a subset of the original point set). In the second
thedo 166:3a9487d57a5c 3628 case, hull elements are the convex hull points themselves.
thedo 166:3a9487d57a5c 3629 @param clockwise Orientation flag. If it is true, the output convex hull is oriented clockwise.
thedo 166:3a9487d57a5c 3630 Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing
thedo 166:3a9487d57a5c 3631 to the right, and its Y axis pointing upwards.
thedo 166:3a9487d57a5c 3632 @param returnPoints Operation flag. In case of a matrix, when the flag is true, the function
thedo 166:3a9487d57a5c 3633 returns convex hull points. Otherwise, it returns indices of the convex hull points. When the
thedo 166:3a9487d57a5c 3634 output array is std::vector, the flag is ignored, and the output depends on the type of the
thedo 166:3a9487d57a5c 3635 vector: std::vector\<int\> implies returnPoints=true, std::vector\<Point\> implies
thedo 166:3a9487d57a5c 3636 returnPoints=false.
thedo 166:3a9487d57a5c 3637 */
thedo 166:3a9487d57a5c 3638 CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull,
thedo 166:3a9487d57a5c 3639 bool clockwise = false, bool returnPoints = true );
thedo 166:3a9487d57a5c 3640
thedo 166:3a9487d57a5c 3641 /** @brief Finds the convexity defects of a contour.
thedo 166:3a9487d57a5c 3642
thedo 166:3a9487d57a5c 3643 The figure below displays convexity defects of a hand contour:
thedo 166:3a9487d57a5c 3644
thedo 166:3a9487d57a5c 3645 ![image](pics/defects.png)
thedo 166:3a9487d57a5c 3646
thedo 166:3a9487d57a5c 3647 @param contour Input contour.
thedo 166:3a9487d57a5c 3648 @param convexhull Convex hull obtained using convexHull that should contain indices of the contour
thedo 166:3a9487d57a5c 3649 points that make the hull.
thedo 166:3a9487d57a5c 3650 @param convexityDefects The output vector of convexity defects. In C++ and the new Python/Java
thedo 166:3a9487d57a5c 3651 interface each convexity defect is represented as 4-element integer vector (a.k.a. cv::Vec4i):
thedo 166:3a9487d57a5c 3652 (start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices
thedo 166:3a9487d57a5c 3653 in the original contour of the convexity defect beginning, end and the farthest point, and
thedo 166:3a9487d57a5c 3654 fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the
thedo 166:3a9487d57a5c 3655 farthest contour point and the hull. That is, to get the floating-point value of the depth will be
thedo 166:3a9487d57a5c 3656 fixpt_depth/256.0.
thedo 166:3a9487d57a5c 3657 */
thedo 166:3a9487d57a5c 3658 CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects );
thedo 166:3a9487d57a5c 3659
thedo 166:3a9487d57a5c 3660 /** @brief Tests a contour convexity.
thedo 166:3a9487d57a5c 3661
thedo 166:3a9487d57a5c 3662 The function tests whether the input contour is convex or not. The contour must be simple, that is,
thedo 166:3a9487d57a5c 3663 without self-intersections. Otherwise, the function output is undefined.
thedo 166:3a9487d57a5c 3664
thedo 166:3a9487d57a5c 3665 @param contour Input vector of 2D points, stored in std::vector\<\> or Mat
thedo 166:3a9487d57a5c 3666 */
thedo 166:3a9487d57a5c 3667 CV_EXPORTS_W bool isContourConvex( InputArray contour );
thedo 166:3a9487d57a5c 3668
thedo 166:3a9487d57a5c 3669 //! finds intersection of two convex polygons
thedo 166:3a9487d57a5c 3670 CV_EXPORTS_W float intersectConvexConvex( InputArray _p1, InputArray _p2,
thedo 166:3a9487d57a5c 3671 OutputArray _p12, bool handleNested = true );
thedo 166:3a9487d57a5c 3672
thedo 166:3a9487d57a5c 3673 /** @example fitellipse.cpp
thedo 166:3a9487d57a5c 3674 An example using the fitEllipse technique
thedo 166:3a9487d57a5c 3675 */
thedo 166:3a9487d57a5c 3676
thedo 166:3a9487d57a5c 3677 /** @brief Fits an ellipse around a set of 2D points.
thedo 166:3a9487d57a5c 3678
thedo 166:3a9487d57a5c 3679 The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of
thedo 166:3a9487d57a5c 3680 all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by @cite Fitzgibbon95
thedo 166:3a9487d57a5c 3681 is used. Developer should keep in mind that it is possible that the returned
thedo 166:3a9487d57a5c 3682 ellipse/rotatedRect data contains negative indices, due to the data points being close to the
thedo 166:3a9487d57a5c 3683 border of the containing Mat element.
thedo 166:3a9487d57a5c 3684
thedo 166:3a9487d57a5c 3685 @param points Input 2D point set, stored in std::vector\<\> or Mat
thedo 166:3a9487d57a5c 3686 */
thedo 166:3a9487d57a5c 3687 CV_EXPORTS_W RotatedRect fitEllipse( InputArray points );
thedo 166:3a9487d57a5c 3688
thedo 166:3a9487d57a5c 3689 /** @brief Fits a line to a 2D or 3D point set.
thedo 166:3a9487d57a5c 3690
thedo 166:3a9487d57a5c 3691 The function fitLine fits a line to a 2D or 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where
thedo 166:3a9487d57a5c 3692 \f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance function, one
thedo 166:3a9487d57a5c 3693 of the following:
thedo 166:3a9487d57a5c 3694 - DIST_L2
thedo 166:3a9487d57a5c 3695 \f[\rho (r) = r^2/2 \quad \text{(the simplest and the fastest least-squares method)}\f]
thedo 166:3a9487d57a5c 3696 - DIST_L1
thedo 166:3a9487d57a5c 3697 \f[\rho (r) = r\f]
thedo 166:3a9487d57a5c 3698 - DIST_L12
thedo 166:3a9487d57a5c 3699 \f[\rho (r) = 2 \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f]
thedo 166:3a9487d57a5c 3700 - DIST_FAIR
thedo 166:3a9487d57a5c 3701 \f[\rho \left (r \right ) = C^2 \cdot \left ( \frac{r}{C} - \log{\left(1 + \frac{r}{C}\right)} \right ) \quad \text{where} \quad C=1.3998\f]
thedo 166:3a9487d57a5c 3702 - DIST_WELSCH
thedo 166:3a9487d57a5c 3703 \f[\rho \left (r \right ) = \frac{C^2}{2} \cdot \left ( 1 - \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right ) \quad \text{where} \quad C=2.9846\f]
thedo 166:3a9487d57a5c 3704 - DIST_HUBER
thedo 166:3a9487d57a5c 3705 \f[\rho (r) = \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f]
thedo 166:3a9487d57a5c 3706
thedo 166:3a9487d57a5c 3707 The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique
thedo 166:3a9487d57a5c 3708 that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
thedo 166:3a9487d57a5c 3709 weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ .
thedo 166:3a9487d57a5c 3710
thedo 166:3a9487d57a5c 3711 @param points Input vector of 2D or 3D points, stored in std::vector\<\> or Mat.
thedo 166:3a9487d57a5c 3712 @param line Output line parameters. In case of 2D fitting, it should be a vector of 4 elements
thedo 166:3a9487d57a5c 3713 (like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and
thedo 166:3a9487d57a5c 3714 (x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like
thedo 166:3a9487d57a5c 3715 Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line
thedo 166:3a9487d57a5c 3716 and (x0, y0, z0) is a point on the line.
thedo 166:3a9487d57a5c 3717 @param distType Distance used by the M-estimator, see cv::DistanceTypes
thedo 166:3a9487d57a5c 3718 @param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
thedo 166:3a9487d57a5c 3719 is chosen.
thedo 166:3a9487d57a5c 3720 @param reps Sufficient accuracy for the radius (distance between the coordinate origin and the line).
thedo 166:3a9487d57a5c 3721 @param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps.
thedo 166:3a9487d57a5c 3722 */
thedo 166:3a9487d57a5c 3723 CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType,
thedo 166:3a9487d57a5c 3724 double param, double reps, double aeps );
thedo 166:3a9487d57a5c 3725
thedo 166:3a9487d57a5c 3726 /** @brief Performs a point-in-contour test.
thedo 166:3a9487d57a5c 3727
thedo 166:3a9487d57a5c 3728 The function determines whether the point is inside a contour, outside, or lies on an edge (or
thedo 166:3a9487d57a5c 3729 coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge)
thedo 166:3a9487d57a5c 3730 value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively.
thedo 166:3a9487d57a5c 3731 Otherwise, the return value is a signed distance between the point and the nearest contour edge.
thedo 166:3a9487d57a5c 3732
thedo 166:3a9487d57a5c 3733 See below a sample output of the function where each image pixel is tested against the contour:
thedo 166:3a9487d57a5c 3734
thedo 166:3a9487d57a5c 3735 ![sample output](pics/pointpolygon.png)
thedo 166:3a9487d57a5c 3736
thedo 166:3a9487d57a5c 3737 @param contour Input contour.
thedo 166:3a9487d57a5c 3738 @param pt Point tested against the contour.
thedo 166:3a9487d57a5c 3739 @param measureDist If true, the function estimates the signed distance from the point to the
thedo 166:3a9487d57a5c 3740 nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not.
thedo 166:3a9487d57a5c 3741 */
thedo 166:3a9487d57a5c 3742 CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist );
thedo 166:3a9487d57a5c 3743
thedo 166:3a9487d57a5c 3744 /** @brief Finds out if there is any intersection between two rotated rectangles.
thedo 166:3a9487d57a5c 3745
thedo 166:3a9487d57a5c 3746 If there is then the vertices of the interesecting region are returned as well.
thedo 166:3a9487d57a5c 3747
thedo 166:3a9487d57a5c 3748 Below are some examples of intersection configurations. The hatched pattern indicates the
thedo 166:3a9487d57a5c 3749 intersecting region and the red vertices are returned by the function.
thedo 166:3a9487d57a5c 3750
thedo 166:3a9487d57a5c 3751 ![intersection examples](pics/intersection.png)
thedo 166:3a9487d57a5c 3752
thedo 166:3a9487d57a5c 3753 @param rect1 First rectangle
thedo 166:3a9487d57a5c 3754 @param rect2 Second rectangle
thedo 166:3a9487d57a5c 3755 @param intersectingRegion The output array of the verticies of the intersecting region. It returns
thedo 166:3a9487d57a5c 3756 at most 8 vertices. Stored as std::vector\<cv::Point2f\> or cv::Mat as Mx1 of type CV_32FC2.
thedo 166:3a9487d57a5c 3757 @returns One of cv::RectanglesIntersectTypes
thedo 166:3a9487d57a5c 3758 */
thedo 166:3a9487d57a5c 3759 CV_EXPORTS_W int rotatedRectangleIntersection( const RotatedRect& rect1, const RotatedRect& rect2, OutputArray intersectingRegion );
thedo 166:3a9487d57a5c 3760
thedo 166:3a9487d57a5c 3761 //! @} imgproc_shape
thedo 166:3a9487d57a5c 3762
thedo 166:3a9487d57a5c 3763 CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
thedo 166:3a9487d57a5c 3764
thedo 166:3a9487d57a5c 3765 //! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
thedo 166:3a9487d57a5c 3766 //! Detects position only without traslation and rotation
thedo 166:3a9487d57a5c 3767 CV_EXPORTS Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
thedo 166:3a9487d57a5c 3768
thedo 166:3a9487d57a5c 3769 //! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
thedo 166:3a9487d57a5c 3770 //! Detects position, traslation and rotation
thedo 166:3a9487d57a5c 3771 CV_EXPORTS Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
thedo 166:3a9487d57a5c 3772
thedo 166:3a9487d57a5c 3773 //! Performs linear blending of two images
thedo 166:3a9487d57a5c 3774 CV_EXPORTS void blendLinear(InputArray src1, InputArray src2, InputArray weights1, InputArray weights2, OutputArray dst);
thedo 166:3a9487d57a5c 3775
thedo 166:3a9487d57a5c 3776 //! @addtogroup imgproc_colormap
thedo 166:3a9487d57a5c 3777 //! @{
thedo 166:3a9487d57a5c 3778
thedo 166:3a9487d57a5c 3779 //! GNU Octave/MATLAB equivalent colormaps
thedo 166:3a9487d57a5c 3780 enum ColormapTypes
thedo 166:3a9487d57a5c 3781 {
thedo 166:3a9487d57a5c 3782 COLORMAP_AUTUMN = 0, //!< ![autumn](pics/colormaps/colorscale_autumn.jpg)
thedo 166:3a9487d57a5c 3783 COLORMAP_BONE = 1, //!< ![bone](pics/colormaps/colorscale_bone.jpg)
thedo 166:3a9487d57a5c 3784 COLORMAP_JET = 2, //!< ![jet](pics/colormaps/colorscale_jet.jpg)
thedo 166:3a9487d57a5c 3785 COLORMAP_WINTER = 3, //!< ![winter](pics/colormaps/colorscale_winter.jpg)
thedo 166:3a9487d57a5c 3786 COLORMAP_RAINBOW = 4, //!< ![rainbow](pics/colormaps/colorscale_rainbow.jpg)
thedo 166:3a9487d57a5c 3787 COLORMAP_OCEAN = 5, //!< ![ocean](pics/colormaps/colorscale_ocean.jpg)
thedo 166:3a9487d57a5c 3788 COLORMAP_SUMMER = 6, //!< ![summer](pics/colormaps/colorscale_summer.jpg)
thedo 166:3a9487d57a5c 3789 COLORMAP_SPRING = 7, //!< ![spring](pics/colormaps/colorscale_spring.jpg)
thedo 166:3a9487d57a5c 3790 COLORMAP_COOL = 8, //!< ![cool](pics/colormaps/colorscale_cool.jpg)
thedo 166:3a9487d57a5c 3791 COLORMAP_HSV = 9, //!< ![HSV](pics/colormaps/colorscale_hsv.jpg)
thedo 166:3a9487d57a5c 3792 COLORMAP_PINK = 10, //!< ![pink](pics/colormaps/colorscale_pink.jpg)
thedo 166:3a9487d57a5c 3793 COLORMAP_HOT = 11, //!< ![hot](pics/colormaps/colorscale_hot.jpg)
thedo 166:3a9487d57a5c 3794 COLORMAP_PARULA = 12 //!< ![parula](pics/colormaps/colorscale_parula.jpg)
thedo 166:3a9487d57a5c 3795 };
thedo 166:3a9487d57a5c 3796
thedo 166:3a9487d57a5c 3797 /** @brief Applies a GNU Octave/MATLAB equivalent colormap on a given image.
thedo 166:3a9487d57a5c 3798
thedo 166:3a9487d57a5c 3799 @param src The source image, grayscale or colored does not matter.
thedo 166:3a9487d57a5c 3800 @param dst The result is the colormapped source image. Note: Mat::create is called on dst.
thedo 166:3a9487d57a5c 3801 @param colormap The colormap to apply, see cv::ColormapTypes
thedo 166:3a9487d57a5c 3802 */
thedo 166:3a9487d57a5c 3803 CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap);
thedo 166:3a9487d57a5c 3804
thedo 166:3a9487d57a5c 3805 //! @} imgproc_colormap
thedo 166:3a9487d57a5c 3806
thedo 166:3a9487d57a5c 3807 //! @addtogroup imgproc_draw
thedo 166:3a9487d57a5c 3808 //! @{
thedo 166:3a9487d57a5c 3809
thedo 166:3a9487d57a5c 3810 /** @brief Draws a line segment connecting two points.
thedo 166:3a9487d57a5c 3811
thedo 166:3a9487d57a5c 3812 The function line draws the line segment between pt1 and pt2 points in the image. The line is
thedo 166:3a9487d57a5c 3813 clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
thedo 166:3a9487d57a5c 3814 or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
thedo 166:3a9487d57a5c 3815 lines are drawn using Gaussian filtering.
thedo 166:3a9487d57a5c 3816
thedo 166:3a9487d57a5c 3817 @param img Image.
thedo 166:3a9487d57a5c 3818 @param pt1 First point of the line segment.
thedo 166:3a9487d57a5c 3819 @param pt2 Second point of the line segment.
thedo 166:3a9487d57a5c 3820 @param color Line color.
thedo 166:3a9487d57a5c 3821 @param thickness Line thickness.
thedo 166:3a9487d57a5c 3822 @param lineType Type of the line, see cv::LineTypes.
thedo 166:3a9487d57a5c 3823 @param shift Number of fractional bits in the point coordinates.
thedo 166:3a9487d57a5c 3824 */
thedo 166:3a9487d57a5c 3825 CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
thedo 166:3a9487d57a5c 3826 int thickness = 1, int lineType = LINE_8, int shift = 0);
thedo 166:3a9487d57a5c 3827
thedo 166:3a9487d57a5c 3828 /** @brief Draws a arrow segment pointing from the first point to the second one.
thedo 166:3a9487d57a5c 3829
thedo 166:3a9487d57a5c 3830 The function arrowedLine draws an arrow between pt1 and pt2 points in the image. See also cv::line.
thedo 166:3a9487d57a5c 3831
thedo 166:3a9487d57a5c 3832 @param img Image.
thedo 166:3a9487d57a5c 3833 @param pt1 The point the arrow starts from.
thedo 166:3a9487d57a5c 3834 @param pt2 The point the arrow points to.
thedo 166:3a9487d57a5c 3835 @param color Line color.
thedo 166:3a9487d57a5c 3836 @param thickness Line thickness.
thedo 166:3a9487d57a5c 3837 @param line_type Type of the line, see cv::LineTypes
thedo 166:3a9487d57a5c 3838 @param shift Number of fractional bits in the point coordinates.
thedo 166:3a9487d57a5c 3839 @param tipLength The length of the arrow tip in relation to the arrow length
thedo 166:3a9487d57a5c 3840 */
thedo 166:3a9487d57a5c 3841 CV_EXPORTS_W void arrowedLine(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
thedo 166:3a9487d57a5c 3842 int thickness=1, int line_type=8, int shift=0, double tipLength=0.1);
thedo 166:3a9487d57a5c 3843
thedo 166:3a9487d57a5c 3844 /** @brief Draws a simple, thick, or filled up-right rectangle.
thedo 166:3a9487d57a5c 3845
thedo 166:3a9487d57a5c 3846 The function rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
thedo 166:3a9487d57a5c 3847 are pt1 and pt2.
thedo 166:3a9487d57a5c 3848
thedo 166:3a9487d57a5c 3849 @param img Image.
thedo 166:3a9487d57a5c 3850 @param pt1 Vertex of the rectangle.
thedo 166:3a9487d57a5c 3851 @param pt2 Vertex of the rectangle opposite to pt1 .
thedo 166:3a9487d57a5c 3852 @param color Rectangle color or brightness (grayscale image).
thedo 166:3a9487d57a5c 3853 @param thickness Thickness of lines that make up the rectangle. Negative values, like CV_FILLED ,
thedo 166:3a9487d57a5c 3854 mean that the function has to draw a filled rectangle.
thedo 166:3a9487d57a5c 3855 @param lineType Type of the line. See the line description.
thedo 166:3a9487d57a5c 3856 @param shift Number of fractional bits in the point coordinates.
thedo 166:3a9487d57a5c 3857 */
thedo 166:3a9487d57a5c 3858 CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2,
thedo 166:3a9487d57a5c 3859 const Scalar& color, int thickness = 1,
thedo 166:3a9487d57a5c 3860 int lineType = LINE_8, int shift = 0);
thedo 166:3a9487d57a5c 3861
thedo 166:3a9487d57a5c 3862 /** @overload
thedo 166:3a9487d57a5c 3863
thedo 166:3a9487d57a5c 3864 use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and
thedo 166:3a9487d57a5c 3865 r.br()-Point(1,1)` are opposite corners
thedo 166:3a9487d57a5c 3866 */
thedo 166:3a9487d57a5c 3867 CV_EXPORTS void rectangle(CV_IN_OUT Mat& img, Rect rec,
thedo 166:3a9487d57a5c 3868 const Scalar& color, int thickness = 1,
thedo 166:3a9487d57a5c 3869 int lineType = LINE_8, int shift = 0);
thedo 166:3a9487d57a5c 3870
thedo 166:3a9487d57a5c 3871 /** @brief Draws a circle.
thedo 166:3a9487d57a5c 3872
thedo 166:3a9487d57a5c 3873 The function circle draws a simple or filled circle with a given center and radius.
thedo 166:3a9487d57a5c 3874 @param img Image where the circle is drawn.
thedo 166:3a9487d57a5c 3875 @param center Center of the circle.
thedo 166:3a9487d57a5c 3876 @param radius Radius of the circle.
thedo 166:3a9487d57a5c 3877 @param color Circle color.
thedo 166:3a9487d57a5c 3878 @param thickness Thickness of the circle outline, if positive. Negative thickness means that a
thedo 166:3a9487d57a5c 3879 filled circle is to be drawn.
thedo 166:3a9487d57a5c 3880 @param lineType Type of the circle boundary. See the line description.
thedo 166:3a9487d57a5c 3881 @param shift Number of fractional bits in the coordinates of the center and in the radius value.
thedo 166:3a9487d57a5c 3882 */
thedo 166:3a9487d57a5c 3883 CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius,
thedo 166:3a9487d57a5c 3884 const Scalar& color, int thickness = 1,
thedo 166:3a9487d57a5c 3885 int lineType = LINE_8, int shift = 0);
thedo 166:3a9487d57a5c 3886
thedo 166:3a9487d57a5c 3887 /** @brief Draws a simple or thick elliptic arc or fills an ellipse sector.
thedo 166:3a9487d57a5c 3888
thedo 166:3a9487d57a5c 3889 The functions ellipse with less parameters draw an ellipse outline, a filled ellipse, an elliptic
thedo 166:3a9487d57a5c 3890 arc, or a filled ellipse sector. A piecewise-linear curve is used to approximate the elliptic arc
thedo 166:3a9487d57a5c 3891 boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
thedo 166:3a9487d57a5c 3892 ellipse2Poly and then render it with polylines or fill it with fillPoly . If you use the first
thedo 166:3a9487d57a5c 3893 variant of the function and want to draw the whole ellipse, not an arc, pass startAngle=0 and
thedo 166:3a9487d57a5c 3894 endAngle=360 . The figure below explains the meaning of the parameters.
thedo 166:3a9487d57a5c 3895
thedo 166:3a9487d57a5c 3896 ![Parameters of Elliptic Arc](pics/ellipse.png)
thedo 166:3a9487d57a5c 3897
thedo 166:3a9487d57a5c 3898 @param img Image.
thedo 166:3a9487d57a5c 3899 @param center Center of the ellipse.
thedo 166:3a9487d57a5c 3900 @param axes Half of the size of the ellipse main axes.
thedo 166:3a9487d57a5c 3901 @param angle Ellipse rotation angle in degrees.
thedo 166:3a9487d57a5c 3902 @param startAngle Starting angle of the elliptic arc in degrees.
thedo 166:3a9487d57a5c 3903 @param endAngle Ending angle of the elliptic arc in degrees.
thedo 166:3a9487d57a5c 3904 @param color Ellipse color.
thedo 166:3a9487d57a5c 3905 @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
thedo 166:3a9487d57a5c 3906 a filled ellipse sector is to be drawn.
thedo 166:3a9487d57a5c 3907 @param lineType Type of the ellipse boundary. See the line description.
thedo 166:3a9487d57a5c 3908 @param shift Number of fractional bits in the coordinates of the center and values of axes.
thedo 166:3a9487d57a5c 3909 */
thedo 166:3a9487d57a5c 3910 CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes,
thedo 166:3a9487d57a5c 3911 double angle, double startAngle, double endAngle,
thedo 166:3a9487d57a5c 3912 const Scalar& color, int thickness = 1,
thedo 166:3a9487d57a5c 3913 int lineType = LINE_8, int shift = 0);
thedo 166:3a9487d57a5c 3914
thedo 166:3a9487d57a5c 3915 /** @overload
thedo 166:3a9487d57a5c 3916 @param img Image.
thedo 166:3a9487d57a5c 3917 @param box Alternative ellipse representation via RotatedRect. This means that the function draws
thedo 166:3a9487d57a5c 3918 an ellipse inscribed in the rotated rectangle.
thedo 166:3a9487d57a5c 3919 @param color Ellipse color.
thedo 166:3a9487d57a5c 3920 @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
thedo 166:3a9487d57a5c 3921 a filled ellipse sector is to be drawn.
thedo 166:3a9487d57a5c 3922 @param lineType Type of the ellipse boundary. See the line description.
thedo 166:3a9487d57a5c 3923 */
thedo 166:3a9487d57a5c 3924 CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color,
thedo 166:3a9487d57a5c 3925 int thickness = 1, int lineType = LINE_8);
thedo 166:3a9487d57a5c 3926
thedo 166:3a9487d57a5c 3927 /* ----------------------------------------------------------------------------------------- */
thedo 166:3a9487d57a5c 3928 /* ADDING A SET OF PREDEFINED MARKERS WHICH COULD BE USED TO HIGHLIGHT POSITIONS IN AN IMAGE */
thedo 166:3a9487d57a5c 3929 /* ----------------------------------------------------------------------------------------- */
thedo 166:3a9487d57a5c 3930
thedo 166:3a9487d57a5c 3931 //! Possible set of marker types used for the cv::drawMarker function
thedo 166:3a9487d57a5c 3932 enum MarkerTypes
thedo 166:3a9487d57a5c 3933 {
thedo 166:3a9487d57a5c 3934 MARKER_CROSS = 0, //!< A crosshair marker shape
thedo 166:3a9487d57a5c 3935 MARKER_TILTED_CROSS = 1, //!< A 45 degree tilted crosshair marker shape
thedo 166:3a9487d57a5c 3936 MARKER_STAR = 2, //!< A star marker shape, combination of cross and tilted cross
thedo 166:3a9487d57a5c 3937 MARKER_DIAMOND = 3, //!< A diamond marker shape
thedo 166:3a9487d57a5c 3938 MARKER_SQUARE = 4, //!< A square marker shape
thedo 166:3a9487d57a5c 3939 MARKER_TRIANGLE_UP = 5, //!< An upwards pointing triangle marker shape
thedo 166:3a9487d57a5c 3940 MARKER_TRIANGLE_DOWN = 6 //!< A downwards pointing triangle marker shape
thedo 166:3a9487d57a5c 3941 };
thedo 166:3a9487d57a5c 3942
thedo 166:3a9487d57a5c 3943 /** @brief Draws a marker on a predefined position in an image.
thedo 166:3a9487d57a5c 3944
thedo 166:3a9487d57a5c 3945 The function drawMarker draws a marker on a given position in the image. For the moment several
thedo 166:3a9487d57a5c 3946 marker types are supported, see cv::MarkerTypes for more information.
thedo 166:3a9487d57a5c 3947
thedo 166:3a9487d57a5c 3948 @param img Image.
thedo 166:3a9487d57a5c 3949 @param position The point where the crosshair is positioned.
thedo 166:3a9487d57a5c 3950 @param markerType The specific type of marker you want to use, see cv::MarkerTypes
thedo 166:3a9487d57a5c 3951 @param color Line color.
thedo 166:3a9487d57a5c 3952 @param thickness Line thickness.
thedo 166:3a9487d57a5c 3953 @param line_type Type of the line, see cv::LineTypes
thedo 166:3a9487d57a5c 3954 @param markerSize The length of the marker axis [default = 20 pixels]
thedo 166:3a9487d57a5c 3955 */
thedo 166:3a9487d57a5c 3956 CV_EXPORTS_W void drawMarker(CV_IN_OUT Mat& img, Point position, const Scalar& color,
thedo 166:3a9487d57a5c 3957 int markerType = MARKER_CROSS, int markerSize=20, int thickness=1,
thedo 166:3a9487d57a5c 3958 int line_type=8);
thedo 166:3a9487d57a5c 3959
thedo 166:3a9487d57a5c 3960 /* ----------------------------------------------------------------------------------------- */
thedo 166:3a9487d57a5c 3961 /* END OF MARKER SECTION */
thedo 166:3a9487d57a5c 3962 /* ----------------------------------------------------------------------------------------- */
thedo 166:3a9487d57a5c 3963
thedo 166:3a9487d57a5c 3964 /** @overload */
thedo 166:3a9487d57a5c 3965 CV_EXPORTS void fillConvexPoly(Mat& img, const Point* pts, int npts,
thedo 166:3a9487d57a5c 3966 const Scalar& color, int lineType = LINE_8,
thedo 166:3a9487d57a5c 3967 int shift = 0);
thedo 166:3a9487d57a5c 3968
thedo 166:3a9487d57a5c 3969 /** @brief Fills a convex polygon.
thedo 166:3a9487d57a5c 3970
thedo 166:3a9487d57a5c 3971 The function fillConvexPoly draws a filled convex polygon. This function is much faster than the
thedo 166:3a9487d57a5c 3972 function cv::fillPoly . It can fill not only convex polygons but any monotonic polygon without
thedo 166:3a9487d57a5c 3973 self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
thedo 166:3a9487d57a5c 3974 twice at the most (though, its top-most and/or the bottom edge could be horizontal).
thedo 166:3a9487d57a5c 3975
thedo 166:3a9487d57a5c 3976 @param img Image.
thedo 166:3a9487d57a5c 3977 @param points Polygon vertices.
thedo 166:3a9487d57a5c 3978 @param color Polygon color.
thedo 166:3a9487d57a5c 3979 @param lineType Type of the polygon boundaries. See the line description.
thedo 166:3a9487d57a5c 3980 @param shift Number of fractional bits in the vertex coordinates.
thedo 166:3a9487d57a5c 3981 */
thedo 166:3a9487d57a5c 3982 CV_EXPORTS_W void fillConvexPoly(InputOutputArray img, InputArray points,
thedo 166:3a9487d57a5c 3983 const Scalar& color, int lineType = LINE_8,
thedo 166:3a9487d57a5c 3984 int shift = 0);
thedo 166:3a9487d57a5c 3985
thedo 166:3a9487d57a5c 3986 /** @overload */
thedo 166:3a9487d57a5c 3987 CV_EXPORTS void fillPoly(Mat& img, const Point** pts,
thedo 166:3a9487d57a5c 3988 const int* npts, int ncontours,
thedo 166:3a9487d57a5c 3989 const Scalar& color, int lineType = LINE_8, int shift = 0,
thedo 166:3a9487d57a5c 3990 Point offset = Point() );
thedo 166:3a9487d57a5c 3991
thedo 166:3a9487d57a5c 3992 /** @brief Fills the area bounded by one or more polygons.
thedo 166:3a9487d57a5c 3993
thedo 166:3a9487d57a5c 3994 The function fillPoly fills an area bounded by several polygonal contours. The function can fill
thedo 166:3a9487d57a5c 3995 complex areas, for example, areas with holes, contours with self-intersections (some of their
thedo 166:3a9487d57a5c 3996 parts), and so forth.
thedo 166:3a9487d57a5c 3997
thedo 166:3a9487d57a5c 3998 @param img Image.
thedo 166:3a9487d57a5c 3999 @param pts Array of polygons where each polygon is represented as an array of points.
thedo 166:3a9487d57a5c 4000 @param color Polygon color.
thedo 166:3a9487d57a5c 4001 @param lineType Type of the polygon boundaries. See the line description.
thedo 166:3a9487d57a5c 4002 @param shift Number of fractional bits in the vertex coordinates.
thedo 166:3a9487d57a5c 4003 @param offset Optional offset of all points of the contours.
thedo 166:3a9487d57a5c 4004 */
thedo 166:3a9487d57a5c 4005 CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts,
thedo 166:3a9487d57a5c 4006 const Scalar& color, int lineType = LINE_8, int shift = 0,
thedo 166:3a9487d57a5c 4007 Point offset = Point() );
thedo 166:3a9487d57a5c 4008
thedo 166:3a9487d57a5c 4009 /** @overload */
thedo 166:3a9487d57a5c 4010 CV_EXPORTS void polylines(Mat& img, const Point* const* pts, const int* npts,
thedo 166:3a9487d57a5c 4011 int ncontours, bool isClosed, const Scalar& color,
thedo 166:3a9487d57a5c 4012 int thickness = 1, int lineType = LINE_8, int shift = 0 );
thedo 166:3a9487d57a5c 4013
thedo 166:3a9487d57a5c 4014 /** @brief Draws several polygonal curves.
thedo 166:3a9487d57a5c 4015
thedo 166:3a9487d57a5c 4016 @param img Image.
thedo 166:3a9487d57a5c 4017 @param pts Array of polygonal curves.
thedo 166:3a9487d57a5c 4018 @param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed,
thedo 166:3a9487d57a5c 4019 the function draws a line from the last vertex of each curve to its first vertex.
thedo 166:3a9487d57a5c 4020 @param color Polyline color.
thedo 166:3a9487d57a5c 4021 @param thickness Thickness of the polyline edges.
thedo 166:3a9487d57a5c 4022 @param lineType Type of the line segments. See the line description.
thedo 166:3a9487d57a5c 4023 @param shift Number of fractional bits in the vertex coordinates.
thedo 166:3a9487d57a5c 4024
thedo 166:3a9487d57a5c 4025 The function polylines draws one or more polygonal curves.
thedo 166:3a9487d57a5c 4026 */
thedo 166:3a9487d57a5c 4027 CV_EXPORTS_W void polylines(InputOutputArray img, InputArrayOfArrays pts,
thedo 166:3a9487d57a5c 4028 bool isClosed, const Scalar& color,
thedo 166:3a9487d57a5c 4029 int thickness = 1, int lineType = LINE_8, int shift = 0 );
thedo 166:3a9487d57a5c 4030
thedo 166:3a9487d57a5c 4031 /** @example contours2.cpp
thedo 166:3a9487d57a5c 4032 An example using the drawContour functionality
thedo 166:3a9487d57a5c 4033 */
thedo 166:3a9487d57a5c 4034
thedo 166:3a9487d57a5c 4035 /** @example segment_objects.cpp
thedo 166:3a9487d57a5c 4036 An example using drawContours to clean up a background segmentation result
thedo 166:3a9487d57a5c 4037 */
thedo 166:3a9487d57a5c 4038
thedo 166:3a9487d57a5c 4039 /** @brief Draws contours outlines or filled contours.
thedo 166:3a9487d57a5c 4040
thedo 166:3a9487d57a5c 4041 The function draws contour outlines in the image if \f$\texttt{thickness} \ge 0\f$ or fills the area
thedo 166:3a9487d57a5c 4042 bounded by the contours if \f$\texttt{thickness}<0\f$ . The example below shows how to retrieve
thedo 166:3a9487d57a5c 4043 connected components from the binary image and label them: :
thedo 166:3a9487d57a5c 4044 @code
thedo 166:3a9487d57a5c 4045 #include "opencv2/imgproc.hpp"
thedo 166:3a9487d57a5c 4046 #include "opencv2/highgui.hpp"
thedo 166:3a9487d57a5c 4047
thedo 166:3a9487d57a5c 4048 using namespace cv;
thedo 166:3a9487d57a5c 4049 using namespace std;
thedo 166:3a9487d57a5c 4050
thedo 166:3a9487d57a5c 4051 int main( int argc, char** argv )
thedo 166:3a9487d57a5c 4052 {
thedo 166:3a9487d57a5c 4053 Mat src;
thedo 166:3a9487d57a5c 4054 // the first command-line parameter must be a filename of the binary
thedo 166:3a9487d57a5c 4055 // (black-n-white) image
thedo 166:3a9487d57a5c 4056 if( argc != 2 || !(src=imread(argv[1], 0)).data)
thedo 166:3a9487d57a5c 4057 return -1;
thedo 166:3a9487d57a5c 4058
thedo 166:3a9487d57a5c 4059 Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3);
thedo 166:3a9487d57a5c 4060
thedo 166:3a9487d57a5c 4061 src = src > 1;
thedo 166:3a9487d57a5c 4062 namedWindow( "Source", 1 );
thedo 166:3a9487d57a5c 4063 imshow( "Source", src );
thedo 166:3a9487d57a5c 4064
thedo 166:3a9487d57a5c 4065 vector<vector<Point> > contours;
thedo 166:3a9487d57a5c 4066 vector<Vec4i> hierarchy;
thedo 166:3a9487d57a5c 4067
thedo 166:3a9487d57a5c 4068 findContours( src, contours, hierarchy,
thedo 166:3a9487d57a5c 4069 RETR_CCOMP, CHAIN_APPROX_SIMPLE );
thedo 166:3a9487d57a5c 4070
thedo 166:3a9487d57a5c 4071 // iterate through all the top-level contours,
thedo 166:3a9487d57a5c 4072 // draw each connected component with its own random color
thedo 166:3a9487d57a5c 4073 int idx = 0;
thedo 166:3a9487d57a5c 4074 for( ; idx >= 0; idx = hierarchy[idx][0] )
thedo 166:3a9487d57a5c 4075 {
thedo 166:3a9487d57a5c 4076 Scalar color( rand()&255, rand()&255, rand()&255 );
thedo 166:3a9487d57a5c 4077 drawContours( dst, contours, idx, color, FILLED, 8, hierarchy );
thedo 166:3a9487d57a5c 4078 }
thedo 166:3a9487d57a5c 4079
thedo 166:3a9487d57a5c 4080 namedWindow( "Components", 1 );
thedo 166:3a9487d57a5c 4081 imshow( "Components", dst );
thedo 166:3a9487d57a5c 4082 waitKey(0);
thedo 166:3a9487d57a5c 4083 }
thedo 166:3a9487d57a5c 4084 @endcode
thedo 166:3a9487d57a5c 4085
thedo 166:3a9487d57a5c 4086 @param image Destination image.
thedo 166:3a9487d57a5c 4087 @param contours All the input contours. Each contour is stored as a point vector.
thedo 166:3a9487d57a5c 4088 @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
thedo 166:3a9487d57a5c 4089 @param color Color of the contours.
thedo 166:3a9487d57a5c 4090 @param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
thedo 166:3a9487d57a5c 4091 thickness=CV_FILLED ), the contour interiors are drawn.
thedo 166:3a9487d57a5c 4092 @param lineType Line connectivity. See cv::LineTypes.
thedo 166:3a9487d57a5c 4093 @param hierarchy Optional information about hierarchy. It is only needed if you want to draw only
thedo 166:3a9487d57a5c 4094 some of the contours (see maxLevel ).
thedo 166:3a9487d57a5c 4095 @param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
thedo 166:3a9487d57a5c 4096 If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
thedo 166:3a9487d57a5c 4097 draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
thedo 166:3a9487d57a5c 4098 parameter is only taken into account when there is hierarchy available.
thedo 166:3a9487d57a5c 4099 @param offset Optional contour shift parameter. Shift all the drawn contours by the specified
thedo 166:3a9487d57a5c 4100 \f$\texttt{offset}=(dx,dy)\f$ .
thedo 166:3a9487d57a5c 4101 */
thedo 166:3a9487d57a5c 4102 CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,
thedo 166:3a9487d57a5c 4103 int contourIdx, const Scalar& color,
thedo 166:3a9487d57a5c 4104 int thickness = 1, int lineType = LINE_8,
thedo 166:3a9487d57a5c 4105 InputArray hierarchy = noArray(),
thedo 166:3a9487d57a5c 4106 int maxLevel = INT_MAX, Point offset = Point() );
thedo 166:3a9487d57a5c 4107
thedo 166:3a9487d57a5c 4108 /** @brief Clips the line against the image rectangle.
thedo 166:3a9487d57a5c 4109
thedo 166:3a9487d57a5c 4110 The functions clipLine calculate a part of the line segment that is entirely within the specified
thedo 166:3a9487d57a5c 4111 rectangle. They return false if the line segment is completely outside the rectangle. Otherwise,
thedo 166:3a9487d57a5c 4112 they return true .
thedo 166:3a9487d57a5c 4113 @param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
thedo 166:3a9487d57a5c 4114 @param pt1 First line point.
thedo 166:3a9487d57a5c 4115 @param pt2 Second line point.
thedo 166:3a9487d57a5c 4116 */
thedo 166:3a9487d57a5c 4117 CV_EXPORTS bool clipLine(Size imgSize, CV_IN_OUT Point& pt1, CV_IN_OUT Point& pt2);
thedo 166:3a9487d57a5c 4118
thedo 166:3a9487d57a5c 4119 /** @overload
thedo 166:3a9487d57a5c 4120 @param imgRect Image rectangle.
thedo 166:3a9487d57a5c 4121 @param pt1 First line point.
thedo 166:3a9487d57a5c 4122 @param pt2 Second line point.
thedo 166:3a9487d57a5c 4123 */
thedo 166:3a9487d57a5c 4124 CV_EXPORTS_W bool clipLine(Rect imgRect, CV_OUT CV_IN_OUT Point& pt1, CV_OUT CV_IN_OUT Point& pt2);
thedo 166:3a9487d57a5c 4125
thedo 166:3a9487d57a5c 4126 /** @brief Approximates an elliptic arc with a polyline.
thedo 166:3a9487d57a5c 4127
thedo 166:3a9487d57a5c 4128 The function ellipse2Poly computes the vertices of a polyline that approximates the specified
thedo 166:3a9487d57a5c 4129 elliptic arc. It is used by cv::ellipse.
thedo 166:3a9487d57a5c 4130
thedo 166:3a9487d57a5c 4131 @param center Center of the arc.
thedo 166:3a9487d57a5c 4132 @param axes Half of the size of the ellipse main axes. See the ellipse for details.
thedo 166:3a9487d57a5c 4133 @param angle Rotation angle of the ellipse in degrees. See the ellipse for details.
thedo 166:3a9487d57a5c 4134 @param arcStart Starting angle of the elliptic arc in degrees.
thedo 166:3a9487d57a5c 4135 @param arcEnd Ending angle of the elliptic arc in degrees.
thedo 166:3a9487d57a5c 4136 @param delta Angle between the subsequent polyline vertices. It defines the approximation
thedo 166:3a9487d57a5c 4137 accuracy.
thedo 166:3a9487d57a5c 4138 @param pts Output vector of polyline vertices.
thedo 166:3a9487d57a5c 4139 */
thedo 166:3a9487d57a5c 4140 CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle,
thedo 166:3a9487d57a5c 4141 int arcStart, int arcEnd, int delta,
thedo 166:3a9487d57a5c 4142 CV_OUT std::vector<Point>& pts );
thedo 166:3a9487d57a5c 4143
thedo 166:3a9487d57a5c 4144 /** @brief Draws a text string.
thedo 166:3a9487d57a5c 4145
thedo 166:3a9487d57a5c 4146 The function putText renders the specified text string in the image. Symbols that cannot be rendered
thedo 166:3a9487d57a5c 4147 using the specified font are replaced by question marks. See getTextSize for a text rendering code
thedo 166:3a9487d57a5c 4148 example.
thedo 166:3a9487d57a5c 4149
thedo 166:3a9487d57a5c 4150 @param img Image.
thedo 166:3a9487d57a5c 4151 @param text Text string to be drawn.
thedo 166:3a9487d57a5c 4152 @param org Bottom-left corner of the text string in the image.
thedo 166:3a9487d57a5c 4153 @param fontFace Font type, see cv::HersheyFonts.
thedo 166:3a9487d57a5c 4154 @param fontScale Font scale factor that is multiplied by the font-specific base size.
thedo 166:3a9487d57a5c 4155 @param color Text color.
thedo 166:3a9487d57a5c 4156 @param thickness Thickness of the lines used to draw a text.
thedo 166:3a9487d57a5c 4157 @param lineType Line type. See the line for details.
thedo 166:3a9487d57a5c 4158 @param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise,
thedo 166:3a9487d57a5c 4159 it is at the top-left corner.
thedo 166:3a9487d57a5c 4160 */
thedo 166:3a9487d57a5c 4161 CV_EXPORTS_W void putText( InputOutputArray img, const String& text, Point org,
thedo 166:3a9487d57a5c 4162 int fontFace, double fontScale, Scalar color,
thedo 166:3a9487d57a5c 4163 int thickness = 1, int lineType = LINE_8,
thedo 166:3a9487d57a5c 4164 bool bottomLeftOrigin = false );
thedo 166:3a9487d57a5c 4165
thedo 166:3a9487d57a5c 4166 /** @brief Calculates the width and height of a text string.
thedo 166:3a9487d57a5c 4167
thedo 166:3a9487d57a5c 4168 The function getTextSize calculates and returns the size of a box that contains the specified text.
thedo 166:3a9487d57a5c 4169 That is, the following code renders some text, the tight box surrounding it, and the baseline: :
thedo 166:3a9487d57a5c 4170 @code
thedo 166:3a9487d57a5c 4171 String text = "Funny text inside the box";
thedo 166:3a9487d57a5c 4172 int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX;
thedo 166:3a9487d57a5c 4173 double fontScale = 2;
thedo 166:3a9487d57a5c 4174 int thickness = 3;
thedo 166:3a9487d57a5c 4175
thedo 166:3a9487d57a5c 4176 Mat img(600, 800, CV_8UC3, Scalar::all(0));
thedo 166:3a9487d57a5c 4177
thedo 166:3a9487d57a5c 4178 int baseline=0;
thedo 166:3a9487d57a5c 4179 Size textSize = getTextSize(text, fontFace,
thedo 166:3a9487d57a5c 4180 fontScale, thickness, &baseline);
thedo 166:3a9487d57a5c 4181 baseline += thickness;
thedo 166:3a9487d57a5c 4182
thedo 166:3a9487d57a5c 4183 // center the text
thedo 166:3a9487d57a5c 4184 Point textOrg((img.cols - textSize.width)/2,
thedo 166:3a9487d57a5c 4185 (img.rows + textSize.height)/2);
thedo 166:3a9487d57a5c 4186
thedo 166:3a9487d57a5c 4187 // draw the box
thedo 166:3a9487d57a5c 4188 rectangle(img, textOrg + Point(0, baseline),
thedo 166:3a9487d57a5c 4189 textOrg + Point(textSize.width, -textSize.height),
thedo 166:3a9487d57a5c 4190 Scalar(0,0,255));
thedo 166:3a9487d57a5c 4191 // ... and the baseline first
thedo 166:3a9487d57a5c 4192 line(img, textOrg + Point(0, thickness),
thedo 166:3a9487d57a5c 4193 textOrg + Point(textSize.width, thickness),
thedo 166:3a9487d57a5c 4194 Scalar(0, 0, 255));
thedo 166:3a9487d57a5c 4195
thedo 166:3a9487d57a5c 4196 // then put the text itself
thedo 166:3a9487d57a5c 4197 putText(img, text, textOrg, fontFace, fontScale,
thedo 166:3a9487d57a5c 4198 Scalar::all(255), thickness, 8);
thedo 166:3a9487d57a5c 4199 @endcode
thedo 166:3a9487d57a5c 4200
thedo 166:3a9487d57a5c 4201 @param text Input text string.
thedo 166:3a9487d57a5c 4202 @param fontFace Font to use, see cv::HersheyFonts.
thedo 166:3a9487d57a5c 4203 @param fontScale Font scale factor that is multiplied by the font-specific base size.
thedo 166:3a9487d57a5c 4204 @param thickness Thickness of lines used to render the text. See putText for details.
thedo 166:3a9487d57a5c 4205 @param[out] baseLine y-coordinate of the baseline relative to the bottom-most text
thedo 166:3a9487d57a5c 4206 point.
thedo 166:3a9487d57a5c 4207 @return The size of a box that contains the specified text.
thedo 166:3a9487d57a5c 4208
thedo 166:3a9487d57a5c 4209 @see cv::putText
thedo 166:3a9487d57a5c 4210 */
thedo 166:3a9487d57a5c 4211 CV_EXPORTS_W Size getTextSize(const String& text, int fontFace,
thedo 166:3a9487d57a5c 4212 double fontScale, int thickness,
thedo 166:3a9487d57a5c 4213 CV_OUT int* baseLine);
thedo 166:3a9487d57a5c 4214
thedo 166:3a9487d57a5c 4215 /** @brief Line iterator
thedo 166:3a9487d57a5c 4216
thedo 166:3a9487d57a5c 4217 The class is used to iterate over all the pixels on the raster line
thedo 166:3a9487d57a5c 4218 segment connecting two specified points.
thedo 166:3a9487d57a5c 4219
thedo 166:3a9487d57a5c 4220 The class LineIterator is used to get each pixel of a raster line. It
thedo 166:3a9487d57a5c 4221 can be treated as versatile implementation of the Bresenham algorithm
thedo 166:3a9487d57a5c 4222 where you can stop at each pixel and do some extra processing, for
thedo 166:3a9487d57a5c 4223 example, grab pixel values along the line or draw a line with an effect
thedo 166:3a9487d57a5c 4224 (for example, with XOR operation).
thedo 166:3a9487d57a5c 4225
thedo 166:3a9487d57a5c 4226 The number of pixels along the line is stored in LineIterator::count.
thedo 166:3a9487d57a5c 4227 The method LineIterator::pos returns the current position in the image:
thedo 166:3a9487d57a5c 4228
thedo 166:3a9487d57a5c 4229 @code{.cpp}
thedo 166:3a9487d57a5c 4230 // grabs pixels along the line (pt1, pt2)
thedo 166:3a9487d57a5c 4231 // from 8-bit 3-channel image to the buffer
thedo 166:3a9487d57a5c 4232 LineIterator it(img, pt1, pt2, 8);
thedo 166:3a9487d57a5c 4233 LineIterator it2 = it;
thedo 166:3a9487d57a5c 4234 vector<Vec3b> buf(it.count);
thedo 166:3a9487d57a5c 4235
thedo 166:3a9487d57a5c 4236 for(int i = 0; i < it.count; i++, ++it)
thedo 166:3a9487d57a5c 4237 buf[i] = *(const Vec3b)*it;
thedo 166:3a9487d57a5c 4238
thedo 166:3a9487d57a5c 4239 // alternative way of iterating through the line
thedo 166:3a9487d57a5c 4240 for(int i = 0; i < it2.count; i++, ++it2)
thedo 166:3a9487d57a5c 4241 {
thedo 166:3a9487d57a5c 4242 Vec3b val = img.at<Vec3b>(it2.pos());
thedo 166:3a9487d57a5c 4243 CV_Assert(buf[i] == val);
thedo 166:3a9487d57a5c 4244 }
thedo 166:3a9487d57a5c 4245 @endcode
thedo 166:3a9487d57a5c 4246 */
thedo 166:3a9487d57a5c 4247 class CV_EXPORTS LineIterator
thedo 166:3a9487d57a5c 4248 {
thedo 166:3a9487d57a5c 4249 public:
thedo 166:3a9487d57a5c 4250 /** @brief intializes the iterator
thedo 166:3a9487d57a5c 4251
thedo 166:3a9487d57a5c 4252 creates iterators for the line connecting pt1 and pt2
thedo 166:3a9487d57a5c 4253 the line will be clipped on the image boundaries
thedo 166:3a9487d57a5c 4254 the line is 8-connected or 4-connected
thedo 166:3a9487d57a5c 4255 If leftToRight=true, then the iteration is always done
thedo 166:3a9487d57a5c 4256 from the left-most point to the right most,
thedo 166:3a9487d57a5c 4257 not to depend on the ordering of pt1 and pt2 parameters
thedo 166:3a9487d57a5c 4258 */
thedo 166:3a9487d57a5c 4259 LineIterator( const Mat& img, Point pt1, Point pt2,
thedo 166:3a9487d57a5c 4260 int connectivity = 8, bool leftToRight = false );
thedo 166:3a9487d57a5c 4261 /** @brief returns pointer to the current pixel
thedo 166:3a9487d57a5c 4262 */
thedo 166:3a9487d57a5c 4263 uchar* operator *();
thedo 166:3a9487d57a5c 4264 /** @brief prefix increment operator (++it). shifts iterator to the next pixel
thedo 166:3a9487d57a5c 4265 */
thedo 166:3a9487d57a5c 4266 LineIterator& operator ++();
thedo 166:3a9487d57a5c 4267 /** @brief postfix increment operator (it++). shifts iterator to the next pixel
thedo 166:3a9487d57a5c 4268 */
thedo 166:3a9487d57a5c 4269 LineIterator operator ++(int);
thedo 166:3a9487d57a5c 4270 /** @brief returns coordinates of the current pixel
thedo 166:3a9487d57a5c 4271 */
thedo 166:3a9487d57a5c 4272 Point pos() const;
thedo 166:3a9487d57a5c 4273
thedo 166:3a9487d57a5c 4274 uchar* ptr;
thedo 166:3a9487d57a5c 4275 const uchar* ptr0;
thedo 166:3a9487d57a5c 4276 int step, elemSize;
thedo 166:3a9487d57a5c 4277 int err, count;
thedo 166:3a9487d57a5c 4278 int minusDelta, plusDelta;
thedo 166:3a9487d57a5c 4279 int minusStep, plusStep;
thedo 166:3a9487d57a5c 4280 };
thedo 166:3a9487d57a5c 4281
thedo 166:3a9487d57a5c 4282 //! @cond IGNORED
thedo 166:3a9487d57a5c 4283
thedo 166:3a9487d57a5c 4284 // === LineIterator implementation ===
thedo 166:3a9487d57a5c 4285
thedo 166:3a9487d57a5c 4286 inline
thedo 166:3a9487d57a5c 4287 uchar* LineIterator::operator *()
thedo 166:3a9487d57a5c 4288 {
thedo 166:3a9487d57a5c 4289 return ptr;
thedo 166:3a9487d57a5c 4290 }
thedo 166:3a9487d57a5c 4291
thedo 166:3a9487d57a5c 4292 inline
thedo 166:3a9487d57a5c 4293 LineIterator& LineIterator::operator ++()
thedo 166:3a9487d57a5c 4294 {
thedo 166:3a9487d57a5c 4295 int mask = err < 0 ? -1 : 0;
thedo 166:3a9487d57a5c 4296 err += minusDelta + (plusDelta & mask);
thedo 166:3a9487d57a5c 4297 ptr += minusStep + (plusStep & mask);
thedo 166:3a9487d57a5c 4298 return *this;
thedo 166:3a9487d57a5c 4299 }
thedo 166:3a9487d57a5c 4300
thedo 166:3a9487d57a5c 4301 inline
thedo 166:3a9487d57a5c 4302 LineIterator LineIterator::operator ++(int)
thedo 166:3a9487d57a5c 4303 {
thedo 166:3a9487d57a5c 4304 LineIterator it = *this;
thedo 166:3a9487d57a5c 4305 ++(*this);
thedo 166:3a9487d57a5c 4306 return it;
thedo 166:3a9487d57a5c 4307 }
thedo 166:3a9487d57a5c 4308
thedo 166:3a9487d57a5c 4309 inline
thedo 166:3a9487d57a5c 4310 Point LineIterator::pos() const
thedo 166:3a9487d57a5c 4311 {
thedo 166:3a9487d57a5c 4312 Point p;
thedo 166:3a9487d57a5c 4313 p.y = (int)((ptr - ptr0)/step);
thedo 166:3a9487d57a5c 4314 p.x = (int)(((ptr - ptr0) - p.y*step)/elemSize);
thedo 166:3a9487d57a5c 4315 return p;
thedo 166:3a9487d57a5c 4316 }
thedo 166:3a9487d57a5c 4317
thedo 166:3a9487d57a5c 4318 //! @endcond
thedo 166:3a9487d57a5c 4319
thedo 166:3a9487d57a5c 4320 //! @} imgproc_draw
thedo 166:3a9487d57a5c 4321
thedo 166:3a9487d57a5c 4322 //! @} imgproc
thedo 166:3a9487d57a5c 4323
thedo 166:3a9487d57a5c 4324 } // cv
thedo 166:3a9487d57a5c 4325
thedo 166:3a9487d57a5c 4326 #ifndef DISABLE_OPENCV_24_COMPATIBILITY
thedo 166:3a9487d57a5c 4327 #include "opencv2/imgproc/imgproc_c.h"
thedo 166:3a9487d57a5c 4328 #endif
thedo 166:3a9487d57a5c 4329
thedo 166:3a9487d57a5c 4330 #endif
thedo 166:3a9487d57a5c 4331