Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp@3:7ee013b0976e, 2017-03-24 (annotated)
- Committer:
- svenkugi
- Date:
- Fri Mar 24 01:57:50 2017 +0000
- Revision:
- 3:7ee013b0976e
- Parent:
- 1:0eb5cc1bd38f
- Child:
- 4:5eb8ac894d0f
Updated function ;
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
svenkugi | 0:b6deec3905f4 | 1 | /*_________________________________LIBRARIES__________________________________*/ |
svenkugi | 0:b6deec3905f4 | 2 | |
svenkugi | 0:b6deec3905f4 | 3 | #include "mbed.h" |
svenkugi | 0:b6deec3905f4 | 4 | #include "rtos.h" |
svenkugi | 0:b6deec3905f4 | 5 | #include "PID.h" |
svenkugi | 0:b6deec3905f4 | 6 | |
svenkugi | 0:b6deec3905f4 | 7 | /*_________________________________PIN SETUP__________________________________*/ |
svenkugi | 0:b6deec3905f4 | 8 | |
svenkugi | 0:b6deec3905f4 | 9 | //PhotoInterrupter Input Pins |
svenkugi | 0:b6deec3905f4 | 10 | #define I1pin D2 |
svenkugi | 0:b6deec3905f4 | 11 | #define I2pin D11 |
svenkugi | 0:b6deec3905f4 | 12 | #define I3pin D12 |
svenkugi | 0:b6deec3905f4 | 13 | |
svenkugi | 0:b6deec3905f4 | 14 | //Incremental Encoder Input Pins |
svenkugi | 0:b6deec3905f4 | 15 | #define CHA D7 |
svenkugi | 0:b6deec3905f4 | 16 | #define CHB D8 |
svenkugi | 0:b6deec3905f4 | 17 | |
svenkugi | 0:b6deec3905f4 | 18 | //Motor Drive output pins //Mask in output byte |
svenkugi | 0:b6deec3905f4 | 19 | #define L1Lpin D4 //0x01 |
svenkugi | 0:b6deec3905f4 | 20 | #define L1Hpin D5 //0x02 |
svenkugi | 0:b6deec3905f4 | 21 | #define L2Lpin D3 //0x04 |
svenkugi | 0:b6deec3905f4 | 22 | #define L2Hpin D6 //0x08 |
svenkugi | 0:b6deec3905f4 | 23 | #define L3Lpin D9 //0x10 |
svenkugi | 0:b6deec3905f4 | 24 | #define L3Hpin D10 //0x20 |
svenkugi | 0:b6deec3905f4 | 25 | |
svenkugi | 0:b6deec3905f4 | 26 | //Photointerrupter Inputs as Interrupts |
svenkugi | 0:b6deec3905f4 | 27 | InterruptIn InterruptI1(D2); |
svenkugi | 0:b6deec3905f4 | 28 | InterruptIn InterruptI2(D11); |
svenkugi | 0:b6deec3905f4 | 29 | InterruptIn InterruptI3(D12); |
svenkugi | 0:b6deec3905f4 | 30 | |
svenkugi | 0:b6deec3905f4 | 31 | //Incremental Encoder Inputs as Interrupts |
svenkugi | 0:b6deec3905f4 | 32 | InterruptIn InterruptCHA(D7); |
svenkugi | 0:b6deec3905f4 | 33 | DigitalIn InterruptCHB(D8); |
svenkugi | 0:b6deec3905f4 | 34 | |
svenkugi | 0:b6deec3905f4 | 35 | //Motor Drive Outputs in PWM |
svenkugi | 0:b6deec3905f4 | 36 | PwmOut L1L(L1Lpin); |
svenkugi | 0:b6deec3905f4 | 37 | PwmOut L1H(L1Hpin); |
svenkugi | 0:b6deec3905f4 | 38 | PwmOut L2L(L2Lpin); |
svenkugi | 0:b6deec3905f4 | 39 | PwmOut L2H(L2Hpin); |
svenkugi | 0:b6deec3905f4 | 40 | PwmOut L3L(L3Lpin); |
svenkugi | 0:b6deec3905f4 | 41 | PwmOut L3H(L3Hpin); |
svenkugi | 0:b6deec3905f4 | 42 | |
svenkugi | 0:b6deec3905f4 | 43 | //Status LED |
svenkugi | 0:b6deec3905f4 | 44 | DigitalOut led1(LED1); |
svenkugi | 0:b6deec3905f4 | 45 | |
svenkugi | 0:b6deec3905f4 | 46 | //Initialise the serial port |
svenkugi | 0:b6deec3905f4 | 47 | Serial pc(SERIAL_TX, SERIAL_RX); |
svenkugi | 0:b6deec3905f4 | 48 | |
svenkugi | 0:b6deec3905f4 | 49 | //Initialize Threads |
svenkugi | 0:b6deec3905f4 | 50 | Thread thread; |
svenkugi | 0:b6deec3905f4 | 51 | |
svenkugi | 0:b6deec3905f4 | 52 | //Timer |
svenkugi | 0:b6deec3905f4 | 53 | Timer rps; // Measures Time for complete revolution |
svenkugi | 0:b6deec3905f4 | 54 | Timer partial_rps; // Measures Time for partial revolutions |
svenkugi | 0:b6deec3905f4 | 55 | Timer tmp; // Profiler Timer |
svenkugi | 0:b6deec3905f4 | 56 | |
svenkugi | 0:b6deec3905f4 | 57 | //PID Controller |
svenkugi | 0:b6deec3905f4 | 58 | PID velocity_pid(0.5, 0.5, 0.1, 0.05); // (P, I, D, WAIT) |
svenkugi | 0:b6deec3905f4 | 59 | PID dist_pid(2, 0.0, 0.005, 0.05); // (P, I, D, WAIT) |
svenkugi | 0:b6deec3905f4 | 60 | |
svenkugi | 0:b6deec3905f4 | 61 | /*________________________Motor Drive States__________________________________*/ |
svenkugi | 0:b6deec3905f4 | 62 | |
svenkugi | 0:b6deec3905f4 | 63 | //Mapping from sequential drive states to motor phase outputs |
svenkugi | 0:b6deec3905f4 | 64 | /* |
svenkugi | 0:b6deec3905f4 | 65 | State L1 L2 L3 |
svenkugi | 0:b6deec3905f4 | 66 | 0 H - L |
svenkugi | 0:b6deec3905f4 | 67 | 1 - H L |
svenkugi | 0:b6deec3905f4 | 68 | 2 L H - |
svenkugi | 0:b6deec3905f4 | 69 | 3 L - H |
svenkugi | 0:b6deec3905f4 | 70 | 4 - L H |
svenkugi | 0:b6deec3905f4 | 71 | 5 H L - |
svenkugi | 0:b6deec3905f4 | 72 | 6 - - - |
svenkugi | 0:b6deec3905f4 | 73 | 7 - - - |
svenkugi | 0:b6deec3905f4 | 74 | */ |
svenkugi | 0:b6deec3905f4 | 75 | |
svenkugi | 0:b6deec3905f4 | 76 | //Drive state to output table |
svenkugi | 0:b6deec3905f4 | 77 | const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00}; |
svenkugi | 0:b6deec3905f4 | 78 | |
svenkugi | 0:b6deec3905f4 | 79 | //Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid |
svenkugi | 0:b6deec3905f4 | 80 | const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07}; |
svenkugi | 0:b6deec3905f4 | 81 | |
svenkugi | 0:b6deec3905f4 | 82 | //Alternative if phase order of input or drive is reversed |
svenkugi | 0:b6deec3905f4 | 83 | //const int8_t stateMap_Reverse[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; |
svenkugi | 0:b6deec3905f4 | 84 | |
svenkugi | 0:b6deec3905f4 | 85 | /*____________________Global Variable Initialization__________________________*/ |
svenkugi | 0:b6deec3905f4 | 86 | |
svenkugi | 0:b6deec3905f4 | 87 | //Phase lead to make motor spin: 2 for forwards, -2 for backwards |
svenkugi | 0:b6deec3905f4 | 88 | const int8_t lead = -2; |
svenkugi | 0:b6deec3905f4 | 89 | int8_t direction = 1; //Default Setting: Backwards rotation |
svenkugi | 0:b6deec3905f4 | 90 | |
svenkugi | 0:b6deec3905f4 | 91 | //Rotor Offset |
svenkugi | 0:b6deec3905f4 | 92 | uint8_t orState=0; |
svenkugi | 0:b6deec3905f4 | 93 | |
svenkugi | 0:b6deec3905f4 | 94 | //Disk State |
svenkugi | 0:b6deec3905f4 | 95 | uint8_t intState=0; //Current Optical Disk state |
svenkugi | 0:b6deec3905f4 | 96 | |
svenkugi | 0:b6deec3905f4 | 97 | //State Variables |
svenkugi | 0:b6deec3905f4 | 98 | const uint8_t num_states = 6; //Number of states in one rotation |
svenkugi | 0:b6deec3905f4 | 99 | uint32_t count = 0; //Counts number of states traversed |
svenkugi | 0:b6deec3905f4 | 100 | int8_t completed = 0; //Checks if rotation completed |
svenkugi | 0:b6deec3905f4 | 101 | int8_t driveto = 0; //Holds value of new motor drive state |
svenkugi | 0:b6deec3905f4 | 102 | |
svenkugi | 0:b6deec3905f4 | 103 | //Debug Variables |
svenkugi | 0:b6deec3905f4 | 104 | bool flag = false; |
svenkugi | 0:b6deec3905f4 | 105 | float test_time=0; |
svenkugi | 0:b6deec3905f4 | 106 | uint8_t test = 0; |
svenkugi | 0:b6deec3905f4 | 107 | |
svenkugi | 0:b6deec3905f4 | 108 | //Angular Velocity Variables |
svenkugi | 0:b6deec3905f4 | 109 | float period = 0; //Time taken to complete one rotation |
svenkugi | 0:b6deec3905f4 | 110 | float angular_vel = 0; //Revolution per second |
svenkugi | 0:b6deec3905f4 | 111 | float test_vel = 0; |
svenkugi | 0:b6deec3905f4 | 112 | |
svenkugi | 0:b6deec3905f4 | 113 | float PWM_freq = 0.001f; //500Hz (> Motor LP cut-off frequency = 10Hz) |
svenkugi | 0:b6deec3905f4 | 114 | float dutyout = 1.0f; //Initialized at 50% duty cycle |
svenkugi | 0:b6deec3905f4 | 115 | float dutyout_max = 1.0f; //Maximum Duty Cycle |
svenkugi | 0:b6deec3905f4 | 116 | |
svenkugi | 0:b6deec3905f4 | 117 | //float velocity_set = 10.0; |
svenkugi | 0:b6deec3905f4 | 118 | uint32_t revstates_count = 0; //Global Variable to pass into interrupt |
svenkugi | 0:b6deec3905f4 | 119 | float rev_target = 0.0f; |
svenkugi | 0:b6deec3905f4 | 120 | float vel_target = 10.0f; |
svenkugi | 0:b6deec3905f4 | 121 | |
svenkugi | 0:b6deec3905f4 | 122 | uint8_t pulse_count = 0; |
svenkugi | 0:b6deec3905f4 | 123 | float total_rev = 0.0f; |
svenkugi | 0:b6deec3905f4 | 124 | float partial_rev = 0.0f; |
svenkugi | 0:b6deec3905f4 | 125 | float drive_vel = 0.0f; |
svenkugi | 0:b6deec3905f4 | 126 | |
svenkugi | 0:b6deec3905f4 | 127 | /*_____Basic Functions (Motor Drive, Synchronization, Reading Rotor State)____*/ |
svenkugi | 0:b6deec3905f4 | 128 | |
svenkugi | 0:b6deec3905f4 | 129 | //Set a given drive state |
svenkugi | 0:b6deec3905f4 | 130 | void motorOut(int8_t driveState){ |
svenkugi | 0:b6deec3905f4 | 131 | |
svenkugi | 0:b6deec3905f4 | 132 | //Lookup the output byte from the drive state. |
svenkugi | 0:b6deec3905f4 | 133 | int8_t driveOut = driveTable[driveState & 0x07]; |
svenkugi | 0:b6deec3905f4 | 134 | |
svenkugi | 0:b6deec3905f4 | 135 | //Turn off first (PWM) |
svenkugi | 0:b6deec3905f4 | 136 | if (~driveOut & 0x01) L1L = 0; |
svenkugi | 0:b6deec3905f4 | 137 | if (~driveOut & 0x02) L1H.write(dutyout); L1H.period(PWM_freq); |
svenkugi | 0:b6deec3905f4 | 138 | if (~driveOut & 0x04) L2L = 0; |
svenkugi | 0:b6deec3905f4 | 139 | if (~driveOut & 0x08) L2H.write(dutyout); L2H.period(PWM_freq); |
svenkugi | 0:b6deec3905f4 | 140 | if (~driveOut & 0x10) L3L = 0; |
svenkugi | 0:b6deec3905f4 | 141 | if (~driveOut & 0x20) L3H.write(dutyout); L3H.period(PWM_freq); |
svenkugi | 0:b6deec3905f4 | 142 | |
svenkugi | 0:b6deec3905f4 | 143 | //Then turn on (PWM) |
svenkugi | 0:b6deec3905f4 | 144 | if (driveOut & 0x01) L1L.write(dutyout); L1L.period(PWM_freq); |
svenkugi | 0:b6deec3905f4 | 145 | if (driveOut & 0x02) L1H = 0; |
svenkugi | 0:b6deec3905f4 | 146 | if (driveOut & 0x04) L2L.write(dutyout); L2L.period(PWM_freq); |
svenkugi | 0:b6deec3905f4 | 147 | if (driveOut & 0x08) L2H = 0; |
svenkugi | 0:b6deec3905f4 | 148 | if (driveOut & 0x10) L3L.write(dutyout); L3L.period(PWM_freq); |
svenkugi | 0:b6deec3905f4 | 149 | if (driveOut & 0x20) L3H = 0; |
svenkugi | 3:7ee013b0976e | 150 | |
svenkugi | 0:b6deec3905f4 | 151 | } |
svenkugi | 0:b6deec3905f4 | 152 | |
svenkugi | 0:b6deec3905f4 | 153 | //Convert photointerrupter inputs to a rotor state |
svenkugi | 0:b6deec3905f4 | 154 | inline int8_t readRotorState(){ |
svenkugi | 0:b6deec3905f4 | 155 | return stateMap[InterruptI1.read() + 2*InterruptI2.read() + 4*InterruptI3.read()]; |
svenkugi | 0:b6deec3905f4 | 156 | } |
svenkugi | 0:b6deec3905f4 | 157 | |
svenkugi | 0:b6deec3905f4 | 158 | //Basic synchronisation routine |
svenkugi | 0:b6deec3905f4 | 159 | int8_t motorHome() { |
svenkugi | 0:b6deec3905f4 | 160 | dutyout = 1.0f; |
svenkugi | 0:b6deec3905f4 | 161 | |
svenkugi | 3:7ee013b0976e | 162 | //Put the motor in drive state X (e.g. 5) tp avoid initial jittevbo |
svenkugi | 0:b6deec3905f4 | 163 | motorOut(5); |
svenkugi | 0:b6deec3905f4 | 164 | wait(1.0); |
svenkugi | 0:b6deec3905f4 | 165 | |
svenkugi | 0:b6deec3905f4 | 166 | //Put the motor in drive state 0 and wait for it to stabilise |
svenkugi | 0:b6deec3905f4 | 167 | motorOut(0); |
svenkugi | 0:b6deec3905f4 | 168 | wait(1.0); |
svenkugi | 0:b6deec3905f4 | 169 | |
svenkugi | 0:b6deec3905f4 | 170 | //Get the rotor state |
svenkugi | 0:b6deec3905f4 | 171 | return readRotorState(); |
svenkugi | 0:b6deec3905f4 | 172 | } |
svenkugi | 0:b6deec3905f4 | 173 | |
svenkugi | 0:b6deec3905f4 | 174 | /*________________Advanced Functions (Speed and Position Control)_____________*/ |
svenkugi | 0:b6deec3905f4 | 175 | |
svenkugi | 0:b6deec3905f4 | 176 | // Function has no PID |
svenkugi | 0:b6deec3905f4 | 177 | void rotation_control(int8_t num_revs, int8_t sign){ |
svenkugi | 0:b6deec3905f4 | 178 | |
svenkugi | 0:b6deec3905f4 | 179 | revstates_count = num_revs*num_states; |
svenkugi | 0:b6deec3905f4 | 180 | |
svenkugi | 0:b6deec3905f4 | 181 | intState = readRotorState(); |
svenkugi | 0:b6deec3905f4 | 182 | driveto = (intState-orState+(sign*lead)+6)%6; |
svenkugi | 0:b6deec3905f4 | 183 | motorOut(driveto); |
svenkugi | 0:b6deec3905f4 | 184 | |
svenkugi | 0:b6deec3905f4 | 185 | while(!completed){ |
svenkugi | 0:b6deec3905f4 | 186 | |
svenkugi | 0:b6deec3905f4 | 187 | //pc.printf("Angular velocity: %f \n", angular_vel); |
svenkugi | 0:b6deec3905f4 | 188 | pc.printf("Partial Angular: %f \n", test_vel); |
svenkugi | 0:b6deec3905f4 | 189 | //pc.printf("Count: %d \r\n", (count/6)); |
svenkugi | 0:b6deec3905f4 | 190 | |
svenkugi | 0:b6deec3905f4 | 191 | } |
svenkugi | 0:b6deec3905f4 | 192 | } |
svenkugi | 0:b6deec3905f4 | 193 | |
svenkugi | 0:b6deec3905f4 | 194 | // Funciton involves PID |
svenkugi | 3:7ee013b0976e | 195 | void position_control(float num_revs, float vel_target){ |
svenkugi | 0:b6deec3905f4 | 196 | |
svenkugi | 3:7ee013b0976e | 197 | if(num_revs < 0){ |
svenkugi | 3:7ee013b0976e | 198 | direction = -1; |
svenkugi | 3:7ee013b0976e | 199 | } |
svenkugi | 3:7ee013b0976e | 200 | |
svenkugi | 3:7ee013b0976e | 201 | rev_target = abs(num_revs); |
svenkugi | 0:b6deec3905f4 | 202 | |
svenkugi | 0:b6deec3905f4 | 203 | velocity_pid.setInputLimits(0.0, 50.0); |
svenkugi | 0:b6deec3905f4 | 204 | velocity_pid.setOutputLimits(0.0, 1.0); |
svenkugi | 0:b6deec3905f4 | 205 | velocity_pid.setMode(1); |
svenkugi | 0:b6deec3905f4 | 206 | velocity_pid.setSetPoint(vel_target); |
svenkugi | 0:b6deec3905f4 | 207 | |
svenkugi | 0:b6deec3905f4 | 208 | dist_pid.setInputLimits(0.0, 1000.0); |
svenkugi | 0:b6deec3905f4 | 209 | dist_pid.setOutputLimits(0.2, 1.0); |
svenkugi | 0:b6deec3905f4 | 210 | dist_pid.setMode(1); |
svenkugi | 0:b6deec3905f4 | 211 | dist_pid.setSetPoint(rev_target); |
svenkugi | 0:b6deec3905f4 | 212 | |
svenkugi | 0:b6deec3905f4 | 213 | intState = readRotorState(); |
svenkugi | 0:b6deec3905f4 | 214 | driveto = (intState-orState+(sign*lead)+6)%6; |
svenkugi | 0:b6deec3905f4 | 215 | motorOut(driveto); |
svenkugi | 0:b6deec3905f4 | 216 | |
svenkugi | 0:b6deec3905f4 | 217 | while(!completed){ |
svenkugi | 0:b6deec3905f4 | 218 | |
svenkugi | 0:b6deec3905f4 | 219 | //pc.printf("dutyout: %f \r\n", dutyout); |
svenkugi | 0:b6deec3905f4 | 220 | pc.printf("Angular velocity: %f \r\n", angular_vel); |
svenkugi | 0:b6deec3905f4 | 221 | pc.printf("Count: %d \r\n", count); |
svenkugi | 0:b6deec3905f4 | 222 | //pc.printf("Total_rev: %f \r\n", total_rev); |
svenkugi | 0:b6deec3905f4 | 223 | //pc.printf("\n"); |
svenkugi | 0:b6deec3905f4 | 224 | wait(0.05); |
svenkugi | 0:b6deec3905f4 | 225 | } |
svenkugi | 0:b6deec3905f4 | 226 | |
svenkugi | 0:b6deec3905f4 | 227 | } |
svenkugi | 0:b6deec3905f4 | 228 | |
svenkugi | 0:b6deec3905f4 | 229 | void changestate_isr(){ |
svenkugi | 0:b6deec3905f4 | 230 | |
svenkugi | 0:b6deec3905f4 | 231 | // Profiling: Test time duration of ISR |
svenkugi | 0:b6deec3905f4 | 232 | /*if(test == 0){ |
svenkugi | 0:b6deec3905f4 | 233 | tmp.start(); |
svenkugi | 0:b6deec3905f4 | 234 | test = 1; |
svenkugi | 0:b6deec3905f4 | 235 | } |
svenkugi | 0:b6deec3905f4 | 236 | |
svenkugi | 0:b6deec3905f4 | 237 | else{ |
svenkugi | 0:b6deec3905f4 | 238 | tmp.stop(); |
svenkugi | 0:b6deec3905f4 | 239 | test_time = tmp.read(); |
svenkugi | 0:b6deec3905f4 | 240 | tmp.reset(); |
svenkugi | 0:b6deec3905f4 | 241 | test = 0; |
svenkugi | 0:b6deec3905f4 | 242 | }*/ |
svenkugi | 0:b6deec3905f4 | 243 | |
svenkugi | 0:b6deec3905f4 | 244 | // Measure time for 360 Rotation |
svenkugi | 0:b6deec3905f4 | 245 | if(driveto == 0x04){ //Next time drivestate=4, 360 degrees revolution |
svenkugi | 0:b6deec3905f4 | 246 | if(flag){ |
svenkugi | 0:b6deec3905f4 | 247 | rps.stop(); |
svenkugi | 0:b6deec3905f4 | 248 | angular_vel = 1/(rps.read()); |
svenkugi | 0:b6deec3905f4 | 249 | rps.reset(); |
svenkugi | 0:b6deec3905f4 | 250 | flag = 0; |
svenkugi | 0:b6deec3905f4 | 251 | } |
svenkugi | 0:b6deec3905f4 | 252 | } |
svenkugi | 0:b6deec3905f4 | 253 | |
svenkugi | 0:b6deec3905f4 | 254 | if(driveto == 0x04){ //First time drivestate=4, Timer started at 0 degrees |
svenkugi | 0:b6deec3905f4 | 255 | pulse_count = 0; |
svenkugi | 0:b6deec3905f4 | 256 | rps.start(); |
svenkugi | 0:b6deec3905f4 | 257 | flag = 1; |
svenkugi | 0:b6deec3905f4 | 258 | } |
svenkugi | 0:b6deec3905f4 | 259 | |
svenkugi | 0:b6deec3905f4 | 260 | // Measure number of revolutions |
svenkugi | 0:b6deec3905f4 | 261 | count++; |
svenkugi | 0:b6deec3905f4 | 262 | |
svenkugi | 0:b6deec3905f4 | 263 | //Turn-off when target reached |
svenkugi | 0:b6deec3905f4 | 264 | if(total_rev >= rev_target){ |
svenkugi | 0:b6deec3905f4 | 265 | completed = 1; |
svenkugi | 0:b6deec3905f4 | 266 | dutyout = 0; |
svenkugi | 0:b6deec3905f4 | 267 | motorOut(0); |
svenkugi | 0:b6deec3905f4 | 268 | led1 = 0; |
svenkugi | 0:b6deec3905f4 | 269 | __disable_irq(); |
svenkugi | 0:b6deec3905f4 | 270 | } |
svenkugi | 0:b6deec3905f4 | 271 | else{ |
svenkugi | 0:b6deec3905f4 | 272 | intState = readRotorState(); |
svenkugi | 0:b6deec3905f4 | 273 | driveto = (intState-orState+direction*lead+6)%6; |
svenkugi | 0:b6deec3905f4 | 274 | motorOut(driveto); |
svenkugi | 0:b6deec3905f4 | 275 | } |
svenkugi | 0:b6deec3905f4 | 276 | |
svenkugi | 0:b6deec3905f4 | 277 | } |
svenkugi | 0:b6deec3905f4 | 278 | |
svenkugi | 0:b6deec3905f4 | 279 | void pid_isr(){ |
svenkugi | 0:b6deec3905f4 | 280 | |
svenkugi | 0:b6deec3905f4 | 281 | led1 = !led1; |
svenkugi | 0:b6deec3905f4 | 282 | //tmp.start(); |
svenkugi | 0:b6deec3905f4 | 283 | |
svenkugi | 0:b6deec3905f4 | 284 | //117 Pulses per revolution |
svenkugi | 0:b6deec3905f4 | 285 | pulse_count++; |
svenkugi | 0:b6deec3905f4 | 286 | |
svenkugi | 0:b6deec3905f4 | 287 | //Measure Time to do 3 degrees of rotation |
svenkugi | 0:b6deec3905f4 | 288 | if(test == 0){ |
svenkugi | 0:b6deec3905f4 | 289 | partial_rps.start(); |
svenkugi | 0:b6deec3905f4 | 290 | test = 1; |
svenkugi | 0:b6deec3905f4 | 291 | } |
svenkugi | 0:b6deec3905f4 | 292 | else{ |
svenkugi | 0:b6deec3905f4 | 293 | partial_rps.stop(); |
svenkugi | 0:b6deec3905f4 | 294 | test_vel = 1/((117.0f * partial_rps.read())); |
svenkugi | 0:b6deec3905f4 | 295 | partial_rps.reset(); |
svenkugi | 0:b6deec3905f4 | 296 | test = 0; |
svenkugi | 0:b6deec3905f4 | 297 | } |
svenkugi | 0:b6deec3905f4 | 298 | |
svenkugi | 0:b6deec3905f4 | 299 | //Partial Revolution Count |
svenkugi | 0:b6deec3905f4 | 300 | partial_rev = pulse_count/117.0f; |
svenkugi | 0:b6deec3905f4 | 301 | |
svenkugi | 0:b6deec3905f4 | 302 | //Total Revolution Count |
svenkugi | 0:b6deec3905f4 | 303 | total_rev = (count/6.0f) + partial_rev; |
svenkugi | 0:b6deec3905f4 | 304 | |
svenkugi | 0:b6deec3905f4 | 305 | //Calculate new PID Control Point |
svenkugi | 0:b6deec3905f4 | 306 | if((total_rev/rev_target) > 0.7f){ |
svenkugi | 0:b6deec3905f4 | 307 | dist_pid.setProcessValue(total_rev); |
svenkugi | 0:b6deec3905f4 | 308 | dutyout = dist_pid.compute(); |
svenkugi | 0:b6deec3905f4 | 309 | } |
svenkugi | 0:b6deec3905f4 | 310 | else{ |
svenkugi | 0:b6deec3905f4 | 311 | velocity_pid.setProcessValue(test_vel); |
svenkugi | 0:b6deec3905f4 | 312 | dutyout = velocity_pid.compute(); |
svenkugi | 0:b6deec3905f4 | 313 | } |
svenkugi | 0:b6deec3905f4 | 314 | |
svenkugi | 0:b6deec3905f4 | 315 | //dist_pid.setProcessValue(total_rev); |
svenkugi | 0:b6deec3905f4 | 316 | //dutyout = dist_pid.compute(); |
svenkugi | 0:b6deec3905f4 | 317 | |
svenkugi | 0:b6deec3905f4 | 318 | //tmp.stop(); |
svenkugi | 0:b6deec3905f4 | 319 | //test_time = tmp.read(); |
svenkugi | 0:b6deec3905f4 | 320 | //tmp.reset(); |
svenkugi | 0:b6deec3905f4 | 321 | } |
svenkugi | 0:b6deec3905f4 | 322 | |
svenkugi | 0:b6deec3905f4 | 323 | /*_______________________Testing and Tuning Function__________________________*/ |
svenkugi | 0:b6deec3905f4 | 324 | |
svenkugi | 0:b6deec3905f4 | 325 | /*Measures Angular Velocity using PhotoInterrupters by checking time taken to go |
svenkugi | 0:b6deec3905f4 | 326 | from State 4 to State 4 in this case. Avoid sensor phasing as it measures one |
svenkugi | 0:b6deec3905f4 | 327 | complete cycle */ |
svenkugi | 0:b6deec3905f4 | 328 | |
svenkugi | 0:b6deec3905f4 | 329 | void meas_velocity(){ |
svenkugi | 0:b6deec3905f4 | 330 | |
svenkugi | 0:b6deec3905f4 | 331 | intState = readRotorState(); |
svenkugi | 0:b6deec3905f4 | 332 | driveto = (intState-orState+direction*lead+6)%6; |
svenkugi | 0:b6deec3905f4 | 333 | motorOut(driveto); |
svenkugi | 0:b6deec3905f4 | 334 | |
svenkugi | 0:b6deec3905f4 | 335 | while (1) { |
svenkugi | 0:b6deec3905f4 | 336 | |
svenkugi | 0:b6deec3905f4 | 337 | pc.printf("Rotations per second: %f \n\r", angular_vel); |
svenkugi | 0:b6deec3905f4 | 338 | |
svenkugi | 0:b6deec3905f4 | 339 | } |
svenkugi | 0:b6deec3905f4 | 340 | } |
svenkugi | 0:b6deec3905f4 | 341 | |
svenkugi | 0:b6deec3905f4 | 342 | void PID_tuning(){ |
svenkugi | 0:b6deec3905f4 | 343 | |
svenkugi | 0:b6deec3905f4 | 344 | dutyout = 0.5; |
svenkugi | 0:b6deec3905f4 | 345 | |
svenkugi | 0:b6deec3905f4 | 346 | intState = readRotorState(); |
svenkugi | 0:b6deec3905f4 | 347 | driveto = (intState-orState+lead+6)%6; |
svenkugi | 0:b6deec3905f4 | 348 | motorOut(driveto); |
svenkugi | 0:b6deec3905f4 | 349 | |
svenkugi | 0:b6deec3905f4 | 350 | while (1) { |
svenkugi | 0:b6deec3905f4 | 351 | |
svenkugi | 0:b6deec3905f4 | 352 | // Testing Step Response by increasing D.C. from 0.5 to 0.7 |
svenkugi | 0:b6deec3905f4 | 353 | // Gradient is equal to Kc |
svenkugi | 0:b6deec3905f4 | 354 | |
svenkugi | 0:b6deec3905f4 | 355 | if(count > 3000){ |
svenkugi | 0:b6deec3905f4 | 356 | dutyout = 0.7; |
svenkugi | 0:b6deec3905f4 | 357 | } |
svenkugi | 0:b6deec3905f4 | 358 | |
svenkugi | 0:b6deec3905f4 | 359 | pc.printf("Duty Cycle: %f ", dutyout); |
svenkugi | 0:b6deec3905f4 | 360 | pc.printf("Rotations per second: %f ", angular_vel); |
svenkugi | 0:b6deec3905f4 | 361 | pc.printf("Count: %d \n\r", count); |
svenkugi | 0:b6deec3905f4 | 362 | |
svenkugi | 0:b6deec3905f4 | 363 | } |
svenkugi | 0:b6deec3905f4 | 364 | } |
svenkugi | 0:b6deec3905f4 | 365 | |
svenkugi | 0:b6deec3905f4 | 366 | /*__________________________Main Function_____________________________________*/ |
svenkugi | 0:b6deec3905f4 | 367 | int main(){ |
svenkugi | 0:b6deec3905f4 | 368 | |
svenkugi | 0:b6deec3905f4 | 369 | //Start of Program |
svenkugi | 0:b6deec3905f4 | 370 | pc.printf("STARTING SKAFMO BRUSHLESS MOTOR PROJECT! \n\r"); |
svenkugi | 0:b6deec3905f4 | 371 | led1 = 1; |
svenkugi | 0:b6deec3905f4 | 372 | |
svenkugi | 0:b6deec3905f4 | 373 | //Run the motor synchronisation: orState is subtracted from future rotor state inputs |
svenkugi | 0:b6deec3905f4 | 374 | orState = motorHome(); |
svenkugi | 0:b6deec3905f4 | 375 | //pc.printf("Synchronization Complete: Rotor and Motor aligned with Offset: %x\n\r",orState); |
svenkugi | 0:b6deec3905f4 | 376 | |
svenkugi | 0:b6deec3905f4 | 377 | //Interrupts (Optical Disk State Change): Drives to next state, Measures whole revolution count, Measures angular velocity over a whole revolution |
svenkugi | 0:b6deec3905f4 | 378 | InterruptI1.rise(&changestate_isr); |
svenkugi | 0:b6deec3905f4 | 379 | InterruptI1.fall(&changestate_isr); |
svenkugi | 0:b6deec3905f4 | 380 | InterruptI2.rise(&changestate_isr); |
svenkugi | 0:b6deec3905f4 | 381 | InterruptI2.fall(&changestate_isr); |
svenkugi | 0:b6deec3905f4 | 382 | InterruptI3.rise(&changestate_isr); |
svenkugi | 0:b6deec3905f4 | 383 | InterruptI3.fall(&changestate_isr); |
svenkugi | 0:b6deec3905f4 | 384 | |
svenkugi | 0:b6deec3905f4 | 385 | //Interrupts (Incremental Encoder CHA Phase) |
svenkugi | 0:b6deec3905f4 | 386 | InterruptCHA.rise(&pid_isr); |
svenkugi | 0:b6deec3905f4 | 387 | |
svenkugi | 3:7ee013b0976e | 388 | // Melody in a Thread |
svenkugi | 3:7ee013b0976e | 389 | // PID in Thread |
svenkugi | 0:b6deec3905f4 | 390 | |
svenkugi | 3:7ee013b0976e | 391 | position_control(-350.34, 2.0); // Second parameter is 1 or -1 (Backwards or Forwards Rotation) |
svenkugi | 3:7ee013b0976e | 392 | |
svenkugi | 3:7ee013b0976e | 393 | } |