Sven Kugathasan / Mbed OS SKAFMO_2

Dependencies:   PID

Committer:
svenkugi
Date:
Fri Mar 24 15:11:39 2017 +0000
Revision:
16:d426b65b4ace
Parent:
15:b0f63ea39943
Child:
17:209ac0b10ba1
thread

Who changed what in which revision?

UserRevisionLine numberNew contents of line
svenkugi 0:b6deec3905f4 1 /*_________________________________LIBRARIES__________________________________*/
svenkugi 0:b6deec3905f4 2
svenkugi 0:b6deec3905f4 3 #include "mbed.h"
svenkugi 0:b6deec3905f4 4 #include "rtos.h"
svenkugi 0:b6deec3905f4 5 #include "PID.h"
svenkugi 10:e974ee1ea1f0 6
svenkugi 10:e974ee1ea1f0 7 #include "ctype.h"
svenkugi 10:e974ee1ea1f0 8 #include <string>
mo713 6:8d18cdcabc3a 9 #include "stdlib.h"
svenkugi 10:e974ee1ea1f0 10 #include "math.h"
svenkugi 10:e974ee1ea1f0 11
svenkugi 0:b6deec3905f4 12
svenkugi 0:b6deec3905f4 13 /*_________________________________PIN SETUP__________________________________*/
svenkugi 0:b6deec3905f4 14
svenkugi 0:b6deec3905f4 15 //PhotoInterrupter Input Pins
svenkugi 0:b6deec3905f4 16 #define I1pin D2
svenkugi 0:b6deec3905f4 17 #define I2pin D11
svenkugi 0:b6deec3905f4 18 #define I3pin D12
svenkugi 0:b6deec3905f4 19
svenkugi 0:b6deec3905f4 20 //Incremental Encoder Input Pins
svenkugi 0:b6deec3905f4 21 #define CHA D7
svenkugi 0:b6deec3905f4 22 #define CHB D8
svenkugi 0:b6deec3905f4 23
svenkugi 0:b6deec3905f4 24 //Motor Drive output pins //Mask in output byte
svenkugi 0:b6deec3905f4 25 #define L1Lpin D4 //0x01
svenkugi 0:b6deec3905f4 26 #define L1Hpin D5 //0x02
svenkugi 0:b6deec3905f4 27 #define L2Lpin D3 //0x04
svenkugi 0:b6deec3905f4 28 #define L2Hpin D6 //0x08
svenkugi 0:b6deec3905f4 29 #define L3Lpin D9 //0x10
svenkugi 0:b6deec3905f4 30 #define L3Hpin D10 //0x20
svenkugi 0:b6deec3905f4 31
svenkugi 0:b6deec3905f4 32 //Photointerrupter Inputs as Interrupts
svenkugi 0:b6deec3905f4 33 InterruptIn InterruptI1(D2);
svenkugi 0:b6deec3905f4 34 InterruptIn InterruptI2(D11);
svenkugi 0:b6deec3905f4 35 InterruptIn InterruptI3(D12);
svenkugi 0:b6deec3905f4 36
svenkugi 0:b6deec3905f4 37 //Incremental Encoder Inputs as Interrupts
svenkugi 0:b6deec3905f4 38 InterruptIn InterruptCHA(D7);
svenkugi 0:b6deec3905f4 39 DigitalIn InterruptCHB(D8);
svenkugi 0:b6deec3905f4 40
svenkugi 0:b6deec3905f4 41 //Motor Drive Outputs in PWM
svenkugi 0:b6deec3905f4 42 PwmOut L1L(L1Lpin);
svenkugi 0:b6deec3905f4 43 PwmOut L1H(L1Hpin);
svenkugi 0:b6deec3905f4 44 PwmOut L2L(L2Lpin);
svenkugi 0:b6deec3905f4 45 PwmOut L2H(L2Hpin);
svenkugi 0:b6deec3905f4 46 PwmOut L3L(L3Lpin);
svenkugi 0:b6deec3905f4 47 PwmOut L3H(L3Hpin);
svenkugi 0:b6deec3905f4 48
svenkugi 0:b6deec3905f4 49 //Status LED
svenkugi 10:e974ee1ea1f0 50 //DigitalOut led1(LED1);
svenkugi 10:e974ee1ea1f0 51 DigitalOut led2(LED2);
svenkugi 10:e974ee1ea1f0 52 DigitalOut led3(LED3);
svenkugi 10:e974ee1ea1f0 53
svenkugi 15:b0f63ea39943 54 DigitalOut TIME(D13); //Toggle Digital Pin to measure Interrupt Times
svenkugi 0:b6deec3905f4 55
svenkugi 0:b6deec3905f4 56 //Initialise the serial port
svenkugi 0:b6deec3905f4 57 Serial pc(SERIAL_TX, SERIAL_RX);
svenkugi 0:b6deec3905f4 58
svenkugi 0:b6deec3905f4 59 //Timer
svenkugi 0:b6deec3905f4 60 Timer rps; // Measures Time for complete revolution
svenkugi 0:b6deec3905f4 61 Timer partial_rps; // Measures Time for partial revolutions
svenkugi 0:b6deec3905f4 62 Timer tmp; // Profiler Timer
svenkugi 0:b6deec3905f4 63
svenkugi 0:b6deec3905f4 64 //PID Controller
svenkugi 10:e974ee1ea1f0 65 PID velocity_pid(0.35, 0.35, 0.35, 0.01); // (P, I, D, WAIT)
svenkugi 10:e974ee1ea1f0 66 PID dist_pid(10, 0.0, 0.01, 0.01); // (P, I, D, WAIT)
svenkugi 10:e974ee1ea1f0 67
svenkugi 10:e974ee1ea1f0 68 //Initialize Threads
svenkugi 15:b0f63ea39943 69 Thread pid_thread(osPriorityNormal, 512, NULL);
svenkugi 15:b0f63ea39943 70 Thread melody_thread(osPriorityNormal, 512, NULL);
svenkugi 0:b6deec3905f4 71
svenkugi 0:b6deec3905f4 72 /*________________________Motor Drive States__________________________________*/
svenkugi 0:b6deec3905f4 73
svenkugi 0:b6deec3905f4 74 //Mapping from sequential drive states to motor phase outputs
svenkugi 0:b6deec3905f4 75 /*
svenkugi 0:b6deec3905f4 76 State L1 L2 L3
svenkugi 0:b6deec3905f4 77 0 H - L
svenkugi 0:b6deec3905f4 78 1 - H L
svenkugi 0:b6deec3905f4 79 2 L H -
svenkugi 0:b6deec3905f4 80 3 L - H
svenkugi 0:b6deec3905f4 81 4 - L H
svenkugi 0:b6deec3905f4 82 5 H L -
svenkugi 0:b6deec3905f4 83 6 - - -
svenkugi 0:b6deec3905f4 84 7 - - -
svenkugi 0:b6deec3905f4 85 */
svenkugi 0:b6deec3905f4 86
svenkugi 0:b6deec3905f4 87 //Drive state to output table
svenkugi 0:b6deec3905f4 88 const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00};
svenkugi 0:b6deec3905f4 89
svenkugi 0:b6deec3905f4 90 //Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid
svenkugi 0:b6deec3905f4 91 const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07};
svenkugi 0:b6deec3905f4 92
svenkugi 0:b6deec3905f4 93 /*____________________Global Variable Initialization__________________________*/
svenkugi 0:b6deec3905f4 94
svenkugi 10:e974ee1ea1f0 95 //Rotor Direction Default
svenkugi 10:e974ee1ea1f0 96 const int8_t lead = -2; //Phase lead to make motor spin: 2 for forwards, -2 for backwards
svenkugi 10:e974ee1ea1f0 97 int8_t direction = 1; //+1: Backwards rotation; -1 for Forwards Rotation
svenkugi 0:b6deec3905f4 98
svenkugi 10:e974ee1ea1f0 99 //Optical Disk States
svenkugi 10:e974ee1ea1f0 100 uint8_t orState=0; //Offset of Motor Field and Optical Disk
svenkugi 10:e974ee1ea1f0 101 uint8_t intState=0; //Current Optical Disk state
svenkugi 10:e974ee1ea1f0 102 const uint8_t num_states = 6; //Number of states in one rotation
svenkugi 0:b6deec3905f4 103
svenkugi 0:b6deec3905f4 104 uint32_t count = 0; //Counts number of states traversed
svenkugi 0:b6deec3905f4 105 int8_t completed = 0; //Checks if rotation completed
svenkugi 0:b6deec3905f4 106 int8_t driveto = 0; //Holds value of new motor drive state
svenkugi 0:b6deec3905f4 107
svenkugi 10:e974ee1ea1f0 108 //Angular Velocity Variables
svenkugi 10:e974ee1ea1f0 109 float PWM_freq = 0.001f; //500Hz (> Motor LP cut-off frequency = 10Hz)
svenkugi 10:e974ee1ea1f0 110
svenkugi 10:e974ee1ea1f0 111 float dutyout = 1.0f; //Initialized at 50% duty cycle
svenkugi 10:e974ee1ea1f0 112 float dutyout_max = 1.0f; //Maximum Duty Cycle will enable maximum speed
svenkugi 10:e974ee1ea1f0 113
svenkugi 10:e974ee1ea1f0 114 float angular_vel = 0.0f; //Revolution per second (Measured over 360)
svenkugi 10:e974ee1ea1f0 115 float partial_vel = 0.0f; //Revolution per second (Measured over 360/117)
svenkugi 10:e974ee1ea1f0 116
svenkugi 10:e974ee1ea1f0 117 float drive_vel = 0.0f;
svenkugi 10:e974ee1ea1f0 118 float vel_target = 0.0f; //Target Speed
svenkugi 10:e974ee1ea1f0 119 float vel_max = 100; //Maximum Speed at 3.0V achievable is ~60 rps
svenkugi 10:e974ee1ea1f0 120
svenkugi 10:e974ee1ea1f0 121 //Position Variables
svenkugi 10:e974ee1ea1f0 122 uint32_t revstates_count = 0; //Global Variable to pass into interrupt
svenkugi 10:e974ee1ea1f0 123 uint8_t pulse_count = 0; //Max.Pulse count = 117
svenkugi 10:e974ee1ea1f0 124
svenkugi 10:e974ee1ea1f0 125 float total_rev = 0.0f;
svenkugi 10:e974ee1ea1f0 126 float partial_rev = 0.0f;
svenkugi 10:e974ee1ea1f0 127
svenkugi 10:e974ee1ea1f0 128 float rev_target = 0.0f; //Target Rotations
svenkugi 10:e974ee1ea1f0 129 uint32_t revstates_max = 0xFFFFFFFF;
svenkugi 10:e974ee1ea1f0 130
svenkugi 0:b6deec3905f4 131 //Debug Variables
svenkugi 0:b6deec3905f4 132 bool flag = false;
svenkugi 10:e974ee1ea1f0 133 float test_time = 0.0f;
svenkugi 10:e974ee1ea1f0 134 int8_t test = 0;
svenkugi 10:e974ee1ea1f0 135 float a;
svenkugi 10:e974ee1ea1f0 136 float b;
svenkugi 0:b6deec3905f4 137
svenkugi 16:d426b65b4ace 138 typedef struct{
svenkugi 16:d426b65b4ace 139 float a;
svenkugi 16:d426b65b4ace 140 float b;
svenkugi 16:d426b65b4ace 141 }float2;
svenkugi 16:d426b65b4ace 142
svenkugi 16:d426b65b4ace 143
svenkugi 0:b6deec3905f4 144 /*_____Basic Functions (Motor Drive, Synchronization, Reading Rotor State)____*/
svenkugi 0:b6deec3905f4 145
svenkugi 0:b6deec3905f4 146 //Set a given drive state
svenkugi 0:b6deec3905f4 147 void motorOut(int8_t driveState){
svenkugi 0:b6deec3905f4 148
svenkugi 0:b6deec3905f4 149 //Lookup the output byte from the drive state.
svenkugi 0:b6deec3905f4 150 int8_t driveOut = driveTable[driveState & 0x07];
svenkugi 0:b6deec3905f4 151
svenkugi 0:b6deec3905f4 152 //Turn off first (PWM)
svenkugi 0:b6deec3905f4 153 if (~driveOut & 0x01) L1L = 0;
svenkugi 0:b6deec3905f4 154 if (~driveOut & 0x02) L1H.write(dutyout); L1H.period(PWM_freq);
svenkugi 0:b6deec3905f4 155 if (~driveOut & 0x04) L2L = 0;
svenkugi 0:b6deec3905f4 156 if (~driveOut & 0x08) L2H.write(dutyout); L2H.period(PWM_freq);
svenkugi 0:b6deec3905f4 157 if (~driveOut & 0x10) L3L = 0;
svenkugi 0:b6deec3905f4 158 if (~driveOut & 0x20) L3H.write(dutyout); L3H.period(PWM_freq);
svenkugi 0:b6deec3905f4 159
svenkugi 0:b6deec3905f4 160 //Then turn on (PWM)
svenkugi 0:b6deec3905f4 161 if (driveOut & 0x01) L1L.write(dutyout); L1L.period(PWM_freq);
svenkugi 0:b6deec3905f4 162 if (driveOut & 0x02) L1H = 0;
svenkugi 0:b6deec3905f4 163 if (driveOut & 0x04) L2L.write(dutyout); L2L.period(PWM_freq);
svenkugi 0:b6deec3905f4 164 if (driveOut & 0x08) L2H = 0;
svenkugi 0:b6deec3905f4 165 if (driveOut & 0x10) L3L.write(dutyout); L3L.period(PWM_freq);
svenkugi 0:b6deec3905f4 166 if (driveOut & 0x20) L3H = 0;
svenkugi 3:7ee013b0976e 167
svenkugi 0:b6deec3905f4 168 }
svenkugi 0:b6deec3905f4 169
svenkugi 0:b6deec3905f4 170 //Convert photointerrupter inputs to a rotor state
svenkugi 0:b6deec3905f4 171 inline int8_t readRotorState(){
svenkugi 10:e974ee1ea1f0 172 return stateMap[InterruptI1.read() + 2*InterruptI2.read() + 4*InterruptI3.read()];
svenkugi 0:b6deec3905f4 173 }
svenkugi 0:b6deec3905f4 174
svenkugi 0:b6deec3905f4 175 //Basic synchronisation routine
svenkugi 0:b6deec3905f4 176 int8_t motorHome() {
svenkugi 10:e974ee1ea1f0 177 //Put the motor in drive state X (e.g. 5) to avoid initial jitter
svenkugi 10:e974ee1ea1f0 178 //Set to maximum speed to get maximum momentum
svenkugi 0:b6deec3905f4 179 dutyout = 1.0f;
svenkugi 0:b6deec3905f4 180 motorOut(5);
svenkugi 0:b6deec3905f4 181 wait(1.0);
svenkugi 0:b6deec3905f4 182
svenkugi 0:b6deec3905f4 183 //Put the motor in drive state 0 and wait for it to stabilise
svenkugi 0:b6deec3905f4 184 motorOut(0);
svenkugi 0:b6deec3905f4 185 wait(1.0);
svenkugi 0:b6deec3905f4 186
svenkugi 0:b6deec3905f4 187 //Get the rotor state
svenkugi 0:b6deec3905f4 188 return readRotorState();
svenkugi 0:b6deec3905f4 189 }
svenkugi 0:b6deec3905f4 190
svenkugi 0:b6deec3905f4 191 /*________________Advanced Functions (Speed and Position Control)_____________*/
svenkugi 0:b6deec3905f4 192
svenkugi 10:e974ee1ea1f0 193 // Function involves PID
svenkugi 16:d426b65b4ace 194 void position_control(float2 *cmd){
svenkugi 0:b6deec3905f4 195
svenkugi 16:d426b65b4ace 196 rev_target = cmd->a;
svenkugi 16:d426b65b4ace 197 vel_target = cmd->b;
svenkugi 0:b6deec3905f4 198
svenkugi 10:e974ee1ea1f0 199 //Reverses motor direction if forwards rotation requested
svenkugi 10:e974ee1ea1f0 200 if((rev_target < 0)){
svenkugi 10:e974ee1ea1f0 201 direction = -1;
svenkugi 10:e974ee1ea1f0 202 rev_target = rev_target * -1;
svenkugi 0:b6deec3905f4 203 }
svenkugi 16:d426b65b4ace 204 else if(vel_target < 0){
svenkugi 3:7ee013b0976e 205 direction = -1;
svenkugi 10:e974ee1ea1f0 206 vel_target = vel_target * -1;
svenkugi 3:7ee013b0976e 207 }
svenkugi 3:7ee013b0976e 208
svenkugi 10:e974ee1ea1f0 209 velocity_pid.setInputLimits(0.0, 2*vel_target);
svenkugi 0:b6deec3905f4 210 velocity_pid.setOutputLimits(0.0, 1.0);
svenkugi 0:b6deec3905f4 211 velocity_pid.setMode(1);
svenkugi 0:b6deec3905f4 212 velocity_pid.setSetPoint(vel_target);
svenkugi 0:b6deec3905f4 213
svenkugi 11:f72be5748371 214 dist_pid.setInputLimits(0.0, rev_target);
svenkugi 10:e974ee1ea1f0 215 dist_pid.setOutputLimits(0.0, 1.0);
svenkugi 0:b6deec3905f4 216 dist_pid.setMode(1);
svenkugi 0:b6deec3905f4 217 dist_pid.setSetPoint(rev_target);
svenkugi 0:b6deec3905f4 218
svenkugi 0:b6deec3905f4 219 intState = readRotorState();
svenkugi 4:5eb8ac894d0f 220 driveto = (intState-orState+(direction*lead)+6)%6;
svenkugi 10:e974ee1ea1f0 221 motorOut(driveto);
svenkugi 10:e974ee1ea1f0 222
svenkugi 0:b6deec3905f4 223 while(!completed){
svenkugi 10:e974ee1ea1f0 224
svenkugi 0:b6deec3905f4 225 //pc.printf("dutyout: %f \r\n", dutyout);
svenkugi 10:e974ee1ea1f0 226 //pc.printf("Error: %f \r\n", (rev_target - total_rev));
svenkugi 10:e974ee1ea1f0 227 pc.printf("DutyA: %f \r\n", a);
svenkugi 10:e974ee1ea1f0 228 pc.printf("DutyB: %f \r\n", b);
svenkugi 0:b6deec3905f4 229 //pc.printf("\n");
svenkugi 10:e974ee1ea1f0 230
svenkugi 0:b6deec3905f4 231 }
svenkugi 0:b6deec3905f4 232
svenkugi 0:b6deec3905f4 233 }
svenkugi 0:b6deec3905f4 234
svenkugi 0:b6deec3905f4 235 void changestate_isr(){
svenkugi 0:b6deec3905f4 236
svenkugi 10:e974ee1ea1f0 237 //led2 = !led2;
svenkugi 0:b6deec3905f4 238 // Profiling: Test time duration of ISR
svenkugi 0:b6deec3905f4 239 /*if(test == 0){
svenkugi 0:b6deec3905f4 240 tmp.start();
svenkugi 0:b6deec3905f4 241 test = 1;
svenkugi 0:b6deec3905f4 242 }
svenkugi 0:b6deec3905f4 243
svenkugi 0:b6deec3905f4 244 else{
svenkugi 0:b6deec3905f4 245 tmp.stop();
svenkugi 0:b6deec3905f4 246 test_time = tmp.read();
svenkugi 0:b6deec3905f4 247 tmp.reset();
svenkugi 0:b6deec3905f4 248 test = 0;
svenkugi 0:b6deec3905f4 249 }*/
svenkugi 0:b6deec3905f4 250
svenkugi 0:b6deec3905f4 251 // Measure time for 360 Rotation
svenkugi 0:b6deec3905f4 252 if(driveto == 0x04){ //Next time drivestate=4, 360 degrees revolution
svenkugi 10:e974ee1ea1f0 253 pulse_count = 0;
svenkugi 10:e974ee1ea1f0 254 /*if(flag){
svenkugi 0:b6deec3905f4 255 rps.stop();
svenkugi 0:b6deec3905f4 256 angular_vel = 1/(rps.read());
svenkugi 0:b6deec3905f4 257 rps.reset();
svenkugi 0:b6deec3905f4 258 flag = 0;
svenkugi 10:e974ee1ea1f0 259 }*/
svenkugi 0:b6deec3905f4 260 }
svenkugi 0:b6deec3905f4 261
svenkugi 10:e974ee1ea1f0 262 /*if(driveto == 0x04){ //First time drivestate=4, Timer started at 0 degrees
svenkugi 10:e974ee1ea1f0 263 pulse_count = 0; //Synchronize Quadrature Encoder with PhotoInterrupter
svenkugi 0:b6deec3905f4 264 rps.start();
svenkugi 0:b6deec3905f4 265 flag = 1;
svenkugi 10:e974ee1ea1f0 266 }*/
svenkugi 0:b6deec3905f4 267
svenkugi 0:b6deec3905f4 268 // Measure number of revolutions
svenkugi 0:b6deec3905f4 269 count++;
svenkugi 0:b6deec3905f4 270
svenkugi 0:b6deec3905f4 271 //Turn-off when target reached
svenkugi 0:b6deec3905f4 272 if(total_rev >= rev_target){
svenkugi 0:b6deec3905f4 273 completed = 1;
svenkugi 0:b6deec3905f4 274 dutyout = 0;
svenkugi 0:b6deec3905f4 275 motorOut(0);
svenkugi 10:e974ee1ea1f0 276 led3 = 0;
svenkugi 0:b6deec3905f4 277 __disable_irq();
svenkugi 0:b6deec3905f4 278 }
svenkugi 0:b6deec3905f4 279 else{
svenkugi 0:b6deec3905f4 280 intState = readRotorState();
svenkugi 10:e974ee1ea1f0 281 driveto = (intState-orState+(direction*lead)+6)%6;
svenkugi 0:b6deec3905f4 282 motorOut(driveto);
svenkugi 0:b6deec3905f4 283 }
svenkugi 0:b6deec3905f4 284
svenkugi 0:b6deec3905f4 285 }
svenkugi 0:b6deec3905f4 286
svenkugi 0:b6deec3905f4 287 void pid_isr(){
svenkugi 16:d426b65b4ace 288
svenkugi 10:e974ee1ea1f0 289 TIME = 1;
svenkugi 0:b6deec3905f4 290
svenkugi 0:b6deec3905f4 291 //117 Pulses per revolution
svenkugi 0:b6deec3905f4 292 pulse_count++;
svenkugi 0:b6deec3905f4 293
svenkugi 0:b6deec3905f4 294 //Measure Time to do 3 degrees of rotation
svenkugi 0:b6deec3905f4 295 if(test == 0){
svenkugi 0:b6deec3905f4 296 partial_rps.start();
svenkugi 0:b6deec3905f4 297 test = 1;
svenkugi 0:b6deec3905f4 298 }
svenkugi 0:b6deec3905f4 299 else{
svenkugi 0:b6deec3905f4 300 partial_rps.stop();
svenkugi 10:e974ee1ea1f0 301 partial_vel = 1/((117.0f * partial_rps.read()));
svenkugi 0:b6deec3905f4 302 partial_rps.reset();
svenkugi 0:b6deec3905f4 303 test = 0;
svenkugi 0:b6deec3905f4 304 }
svenkugi 0:b6deec3905f4 305
svenkugi 0:b6deec3905f4 306 //Partial Revolution Count
svenkugi 0:b6deec3905f4 307 partial_rev = pulse_count/117.0f;
svenkugi 0:b6deec3905f4 308
svenkugi 0:b6deec3905f4 309 //Total Revolution Count
svenkugi 0:b6deec3905f4 310 total_rev = (count/6.0f) + partial_rev;
svenkugi 0:b6deec3905f4 311
svenkugi 10:e974ee1ea1f0 312 //Calculate new PID Control Point
svenkugi 16:d426b65b4ace 313 if((total_rev/rev_target) > 0.75f){
svenkugi 0:b6deec3905f4 314 dist_pid.setProcessValue(total_rev);
svenkugi 0:b6deec3905f4 315 dutyout = dist_pid.compute();
svenkugi 0:b6deec3905f4 316 }
svenkugi 0:b6deec3905f4 317 else{
svenkugi 10:e974ee1ea1f0 318 velocity_pid.setProcessValue(partial_vel);
svenkugi 0:b6deec3905f4 319 dutyout = velocity_pid.compute();
svenkugi 15:b0f63ea39943 320 }
svenkugi 11:f72be5748371 321
svenkugi 16:d426b65b4ace 322 TIME = 0;
svenkugi 15:b0f63ea39943 323
svenkugi 0:b6deec3905f4 324 }
svenkugi 0:b6deec3905f4 325
svenkugi 10:e974ee1ea1f0 326 /*__________________________Main Function_____________________________________*/
svenkugi 10:e974ee1ea1f0 327
svenkugi 15:b0f63ea39943 328 void serial_com(){
svenkugi 10:e974ee1ea1f0 329
af2213 12:943207547cb1 330 pc.baud(9600);
af2213 12:943207547cb1 331 float r=0;
af2213 12:943207547cb1 332 float v=0; //velocity
af2213 12:943207547cb1 333 bool r_val=true;
af2213 12:943207547cb1 334 bool v_val=true;
af2213 12:943207547cb1 335 int t_loc=0;
af2213 12:943207547cb1 336 int r_loc=0;
af2213 12:943207547cb1 337 int v_loc=0;
af2213 12:943207547cb1 338 char buf[80];
svenkugi 10:e974ee1ea1f0 339
svenkugi 10:e974ee1ea1f0 340
af2213 12:943207547cb1 341 string input;
svenkugi 10:e974ee1ea1f0 342
af2213 12:943207547cb1 343 while(1){
af2213 12:943207547cb1 344 r=0;
af2213 12:943207547cb1 345 v=0;
af2213 12:943207547cb1 346 r_val=true;
af2213 12:943207547cb1 347 v_val=true;
af2213 12:943207547cb1 348 pc.printf("Please enter something\r\n");
af2213 12:943207547cb1 349 pc.scanf("%s",&buf);
af2213 12:943207547cb1 350 input=buf;
af2213 12:943207547cb1 351 pc.printf("The input string is %s\r\n",buf);
af2213 12:943207547cb1 352
af2213 12:943207547cb1 353 t_loc=input.find('T');
af2213 12:943207547cb1 354 r_loc=input.find('R');
af2213 12:943207547cb1 355 v_loc=input.find('V');
af2213 12:943207547cb1 356 pc.printf("Location of T is %d\r\n",t_loc);
af2213 12:943207547cb1 357 pc.printf("Location of R is %d\r\n",r_loc);
af2213 12:943207547cb1 358 pc.printf("Location of V is %d\r\n",v_loc);
svenkugi 10:e974ee1ea1f0 359
af2213 12:943207547cb1 360 if(t_loc==0){ //if melody marker present
af2213 12:943207547cb1 361 pc.printf("Note sequence detected\r\n");
af2213 12:943207547cb1 362 }
af2213 12:943207547cb1 363
af2213 12:943207547cb1 364 else if(t_loc==-1){ //if no melody marker present
af2213 12:943207547cb1 365 pc.printf("Note sequence NOT detected\r\n");
af2213 12:943207547cb1 366
af2213 12:943207547cb1 367 if(r_loc==0 && v_loc==-1 && input.length()>1){ //check if first letter is R
af2213 12:943207547cb1 368 pc.printf("Checking for sole R input type...\r\n");
svenkugi 10:e974ee1ea1f0 369
af2213 12:943207547cb1 370 for(int j=1; j<input.length();j++){
af2213 12:943207547cb1 371 if(!isdigit(input[j]) && input[j]!='-' && input[j]!='.'){
af2213 12:943207547cb1 372 r_val=false;
af2213 12:943207547cb1 373 }
svenkugi 10:e974ee1ea1f0 374 }
af2213 12:943207547cb1 375
af2213 12:943207547cb1 376 if(r_val==true){
af2213 12:943207547cb1 377 r=atof(input.substr(1).c_str());
af2213 12:943207547cb1 378 pc.printf("Spin for %.3f number of rotations\r\n",r);
svenkugi 10:e974ee1ea1f0 379 }
af2213 12:943207547cb1 380 else{
af2213 12:943207547cb1 381 pc.printf("Invalid input\r\n");
af2213 12:943207547cb1 382 }
svenkugi 10:e974ee1ea1f0 383 }
af2213 12:943207547cb1 384 else if(r_loc==0 && v_loc!=-1 && v_loc < input.length()-1){ //check if first letter is R and V is also present
af2213 12:943207547cb1 385 pc.printf("Checking for combined R and V input type...\r\n");
svenkugi 10:e974ee1ea1f0 386
af2213 12:943207547cb1 387 for(int j=1; j<v_loc;j++){
af2213 12:943207547cb1 388 if(!isdigit(input[j]) && input[j]!='-' && input[j]!='.'){
af2213 12:943207547cb1 389 r_val=false;
af2213 12:943207547cb1 390 }
svenkugi 10:e974ee1ea1f0 391 }
af2213 12:943207547cb1 392 for(int j=v_loc+1; j<input.length();j++){
af2213 12:943207547cb1 393 if(!isdigit(input[j]) && input[j]!='-' && input[j]!='.'){
af2213 12:943207547cb1 394 v_val=false;
svenkugi 10:e974ee1ea1f0 395 }
svenkugi 10:e974ee1ea1f0 396 }
af2213 12:943207547cb1 397
af2213 12:943207547cb1 398 if(r_val==true && v_val==true){
af2213 12:943207547cb1 399 r=atof(input.substr(1,v_loc-1).c_str());
af2213 12:943207547cb1 400 v=atof(input.substr(v_loc+1).c_str());
af2213 12:943207547cb1 401 if(v<0){
af2213 12:943207547cb1 402 v=abs(v);
af2213 12:943207547cb1 403 }
af2213 12:943207547cb1 404
af2213 12:943207547cb1 405 pc.printf("Spin for %.3f number of rotations at %.3f speed \r\n",r,v);
svenkugi 10:e974ee1ea1f0 406 }
af2213 12:943207547cb1 407 else{
af2213 12:943207547cb1 408 pc.printf("Invalid input\r\n");
svenkugi 10:e974ee1ea1f0 409 }
svenkugi 10:e974ee1ea1f0 410 }
af2213 12:943207547cb1 411 else if(v_loc==0 && input.length()>1){ //check if first letter is V
af2213 12:943207547cb1 412 pc.printf("Checking for sole V input type...\r\n");
af2213 12:943207547cb1 413 for(int j=1; j<input.length();j++){
af2213 12:943207547cb1 414 if(!isdigit(input[j]) && input[j]!='-' && input[j]!='.'){
af2213 12:943207547cb1 415 v_val=false;
af2213 12:943207547cb1 416 }
af2213 12:943207547cb1 417 }
af2213 12:943207547cb1 418 if(v_val==true){
af2213 12:943207547cb1 419 v=atof(input.substr(1).c_str());
af2213 12:943207547cb1 420 pc.printf("Spin at %.3f speed\r\n",v);
af2213 12:943207547cb1 421 }
af2213 12:943207547cb1 422 else{
af2213 12:943207547cb1 423 pc.printf("Invalid input\r\n");
af2213 12:943207547cb1 424 }
svenkugi 10:e974ee1ea1f0 425 }
af2213 12:943207547cb1 426 else{
af2213 12:943207547cb1 427 pc.printf("Invalid input\r\n");
af2213 12:943207547cb1 428 }
svenkugi 10:e974ee1ea1f0 429 }
svenkugi 10:e974ee1ea1f0 430 }
svenkugi 10:e974ee1ea1f0 431 }
svenkugi 10:e974ee1ea1f0 432
svenkugi 15:b0f63ea39943 433
svenkugi 15:b0f63ea39943 434 int main(){
svenkugi 15:b0f63ea39943 435
svenkugi 15:b0f63ea39943 436 //Start of Program
svenkugi 15:b0f63ea39943 437 pc.printf("STARTING SKAFMO BRUSHLESS MOTOR PROJECT! \n\r");
svenkugi 15:b0f63ea39943 438 led3 = 0;
svenkugi 15:b0f63ea39943 439
svenkugi 15:b0f63ea39943 440 //Run the motor synchronisation: orState is subtracted from future rotor state inputs
svenkugi 15:b0f63ea39943 441 orState = motorHome();
svenkugi 15:b0f63ea39943 442 pc.printf("Synchronization Complete: Rotor and Motor aligned with Offset: %x\n\r",orState);
svenkugi 15:b0f63ea39943 443
svenkugi 15:b0f63ea39943 444 //Interrupts (Optical Disk State Change): Drives to next state, Measures whole revolution count, Measures angular velocity over a whole revolution
svenkugi 15:b0f63ea39943 445 InterruptI1.rise(&changestate_isr);
svenkugi 15:b0f63ea39943 446 InterruptI1.fall(&changestate_isr);
svenkugi 15:b0f63ea39943 447 InterruptI2.rise(&changestate_isr);
svenkugi 15:b0f63ea39943 448 InterruptI2.fall(&changestate_isr);
svenkugi 15:b0f63ea39943 449 InterruptI3.rise(&changestate_isr);
svenkugi 15:b0f63ea39943 450 InterruptI3.fall(&changestate_isr);
svenkugi 15:b0f63ea39943 451
svenkugi 15:b0f63ea39943 452 //Interrupts (Incremental Encoder CHA Phase)
svenkugi 15:b0f63ea39943 453 InterruptCHA.rise(&pid_isr);
svenkugi 15:b0f63ea39943 454
svenkugi 15:b0f63ea39943 455 //Initial Target Settings
svenkugi 16:d426b65b4ace 456 float rotation_set = 100.00;
svenkugi 16:d426b65b4ace 457 float velocity_set = 10.00;
svenkugi 16:d426b65b4ace 458 float2 cmd_set = {rotation_set,velocity_set};
svenkugi 15:b0f63ea39943 459 // Melody in a Thread
svenkugi 15:b0f63ea39943 460 // PID in Thread
svenkugi 15:b0f63ea39943 461
svenkugi 15:b0f63ea39943 462 //If speed not defined, use vel_max! If Rotation not defined, use revstates_max
svenkugi 15:b0f63ea39943 463 //float rotation_set = revstates_max;
svenkugi 15:b0f63ea39943 464 //float velocity_set = vel_max;
svenkugi 15:b0f63ea39943 465
svenkugi 16:d426b65b4ace 466 pid_thread.start(callback(position_control, &cmd_set));
svenkugi 15:b0f63ea39943 467
svenkugi 16:d426b65b4ace 468 //serial_com();
svenkugi 15:b0f63ea39943 469
svenkugi 15:b0f63ea39943 470 }
svenkugi 15:b0f63ea39943 471
svenkugi 15:b0f63ea39943 472
svenkugi 15:b0f63ea39943 473
svenkugi 0:b6deec3905f4 474 /*_______________________Testing and Tuning Function__________________________*/
svenkugi 0:b6deec3905f4 475
svenkugi 0:b6deec3905f4 476 /*Measures Angular Velocity using PhotoInterrupters by checking time taken to go
svenkugi 0:b6deec3905f4 477 from State 4 to State 4 in this case. Avoid sensor phasing as it measures one
svenkugi 0:b6deec3905f4 478 complete cycle */
svenkugi 0:b6deec3905f4 479
svenkugi 0:b6deec3905f4 480 void meas_velocity(){
svenkugi 0:b6deec3905f4 481
svenkugi 0:b6deec3905f4 482 intState = readRotorState();
svenkugi 10:e974ee1ea1f0 483 driveto = (intState-orState+(direction*lead)+6)%6;
svenkugi 0:b6deec3905f4 484 motorOut(driveto);
svenkugi 0:b6deec3905f4 485
svenkugi 0:b6deec3905f4 486 while (1) {
svenkugi 0:b6deec3905f4 487
svenkugi 0:b6deec3905f4 488 pc.printf("Rotations per second: %f \n\r", angular_vel);
svenkugi 0:b6deec3905f4 489
svenkugi 0:b6deec3905f4 490 }
svenkugi 0:b6deec3905f4 491 }
svenkugi 0:b6deec3905f4 492
svenkugi 10:e974ee1ea1f0 493 // Function has no PID
svenkugi 10:e974ee1ea1f0 494 void rotation_control(int8_t num_revs, int8_t sign){
svenkugi 10:e974ee1ea1f0 495
svenkugi 10:e974ee1ea1f0 496 revstates_count = num_revs*num_states;
svenkugi 10:e974ee1ea1f0 497
svenkugi 10:e974ee1ea1f0 498 intState = readRotorState();
svenkugi 10:e974ee1ea1f0 499 driveto = (intState-orState+(sign*lead)+6)%6;
svenkugi 10:e974ee1ea1f0 500 motorOut(driveto);
svenkugi 10:e974ee1ea1f0 501
svenkugi 10:e974ee1ea1f0 502 while(!completed){
svenkugi 10:e974ee1ea1f0 503
svenkugi 10:e974ee1ea1f0 504 //pc.printf("Angular velocity: %f \n", angular_vel);
svenkugi 10:e974ee1ea1f0 505 pc.printf("Partial Angular: %f \n", partial_vel);
svenkugi 10:e974ee1ea1f0 506 //pc.printf("Count: %d \r\n", (count/6));
svenkugi 10:e974ee1ea1f0 507
svenkugi 10:e974ee1ea1f0 508 }
svenkugi 10:e974ee1ea1f0 509 }
svenkugi 10:e974ee1ea1f0 510
svenkugi 0:b6deec3905f4 511 void PID_tuning(){
svenkugi 0:b6deec3905f4 512
svenkugi 0:b6deec3905f4 513 dutyout = 0.5;
svenkugi 0:b6deec3905f4 514
svenkugi 0:b6deec3905f4 515 intState = readRotorState();
svenkugi 0:b6deec3905f4 516 driveto = (intState-orState+lead+6)%6;
svenkugi 0:b6deec3905f4 517 motorOut(driveto);
svenkugi 0:b6deec3905f4 518
svenkugi 0:b6deec3905f4 519 while (1) {
svenkugi 0:b6deec3905f4 520
svenkugi 0:b6deec3905f4 521 // Testing Step Response by increasing D.C. from 0.5 to 0.7
svenkugi 0:b6deec3905f4 522 // Gradient is equal to Kc
svenkugi 0:b6deec3905f4 523
svenkugi 0:b6deec3905f4 524 if(count > 3000){
svenkugi 0:b6deec3905f4 525 dutyout = 0.7;
svenkugi 0:b6deec3905f4 526 }
svenkugi 0:b6deec3905f4 527
svenkugi 0:b6deec3905f4 528 pc.printf("Duty Cycle: %f ", dutyout);
svenkugi 0:b6deec3905f4 529 pc.printf("Rotations per second: %f ", angular_vel);
svenkugi 0:b6deec3905f4 530 pc.printf("Count: %d \n\r", count);
svenkugi 0:b6deec3905f4 531
svenkugi 0:b6deec3905f4 532 }
svenkugi 3:7ee013b0976e 533 }