Serial Peripheral Interface (SPI) Serial Single IO NOR Flash Memory Interfacing 1Gb
Fork of S25FL256S by
S25FL256S.cpp
- Committer:
- shivanandgowdakr
- Date:
- 2018-05-19
- Revision:
- 4:8c463abb67d5
File content as of revision 4:8c463abb67d5:
// S25FL256S.cpp #include"S25FL256S.h" // CONSTRUCTOR S25FL256S::S25FL256S(PinName mosi, PinName miso, PinName sclk, PinName cs) : SPI(mosi, miso, sclk), _cs(cs) { this->format(SPI_NBIT, SPI_MODE); this->frequency(SPI_FREQ); chipDisable(); } // READING int S25FL256S::readByte(int addr) { chipEnable(); this->write(FOUR_READ); this->write((addr & ADDR_BMASK3) >> ADDR_BSHIFT3); this->write((addr & ADDR_BMASK2) >> ADDR_BSHIFT2); this->write((addr & ADDR_BMASK1) >> ADDR_BSHIFT1); this->write((addr & ADDR_BMASK0) >> ADDR_BSHIFT0); int response = this->write(DUMMY_ADDR); chipDisable(); return response; } void S25FL256S::readStream(int addr, char* buf, int count) { if (count < 1) return; chipEnable(); this->write(FOUR_READ); this->write((addr & ADDR_BMASK3) >> ADDR_BSHIFT3); this->write((addr & ADDR_BMASK2) >> ADDR_BSHIFT2); this->write((addr & ADDR_BMASK1) >> ADDR_BSHIFT1); this->write((addr & ADDR_BMASK0) >> ADDR_BSHIFT0); for (int i = 0; i < count; i++) { buf[i] = this->write(DUMMY_ADDR); printf("i= %d :%c \r\n",i,buf[i]); } chipDisable(); } // WRITING void S25FL256S::writeByte(int addr, int data) { writeEnable(); chipEnable(); this->write(FOUR_PP); this->write((addr & ADDR_BMASK3) >> ADDR_BSHIFT3); this->write((addr & ADDR_BMASK2) >> ADDR_BSHIFT2); this->write((addr & ADDR_BMASK1) >> ADDR_BSHIFT1); this->write((addr & ADDR_BMASK0) >> ADDR_BSHIFT0); this->write(data); chipDisable(); writeDisable(); // wait(WAIT_TIME);//instead of wait poll for WIP flag of status reg or use checkIfBusy() function...see main for more dtails } void S25FL256S::writeStream(int addr, char* buf, int count) { if (count < 1) return; writeEnable(); wait(0.1); chipEnable(); this->write(FOUR_PP); this->write((addr & ADDR_BMASK3) >> ADDR_BSHIFT3); this->write((addr & ADDR_BMASK2) >> ADDR_BSHIFT2); this->write((addr & ADDR_BMASK1) >> ADDR_BSHIFT1); this->write((addr & ADDR_BMASK0) >> ADDR_BSHIFT0); for (int i = 0; i < count; i++) { this->write(buf[i]); } wait(0.1); chipDisable(); writeDisable(); wait(WAIT_TIME); } void S25FL256S::writeString(int addr, string str) { if (str.length() < 1) return; writeEnable(); chipEnable(); this->write(FOUR_PP); this->write((addr & ADDR_BMASK3) >> ADDR_BSHIFT3); this->write((addr & ADDR_BMASK2) >> ADDR_BSHIFT2); this->write((addr & ADDR_BMASK1) >> ADDR_BSHIFT1); this->write((addr & ADDR_BMASK0) >> ADDR_BSHIFT0); for (int i = 0; i < str.length(); i++) this->write(str.at(i)); chipDisable(); writeDisable(); wait(WAIT_TIME);//instead of wait poll for WIP flag of status reg or use checkIfBusy() function...see main for more dtails } uint8_t S25FL256S::readRegister() { chipEnable(); this->write(RDSR1); uint8_t val=this->write(DUMMY_ADDR); chipDisable(); //wait(WAIT_TIME);//instead of wait poll for WIP flag of status reg or use checkIfBusy() function...see main for more dtails //printf("value of reg is %X \r\n",val); return(val); } //ERASING void S25FL256S::chipErase() { writeEnable(); chipEnable(); this->write(BE); chipDisable(); writeDisable(); wait(WAIT_TIME);//instead of wait poll for WIP flag of status reg or use checkIfBusy() function...see main for more dtails } void S25FL256S::Read_Identification(uint8_t *buf) { chipEnable(); this->write(RDID); for(int i=0; i<80; i++) buf[i]=this->write(DUMMY_ADDR); chipDisable(); wait(WAIT_TIME);//instead of wait poll for WIP flag of status reg or use checkIfBusy() function...see main for more dtails } void S25FL256S::sectorErase(int addr) { writeEnable(); chipEnable(); this->write(FOUR_SE); this->write((addr & ADDR_BMASK3) >> ADDR_BSHIFT3); this->write((addr & ADDR_BMASK2) >> ADDR_BSHIFT2); this->write((addr & ADDR_BMASK1) >> ADDR_BSHIFT1); this->write((addr & ADDR_BMASK0) >> ADDR_BSHIFT0); chipDisable(); writeDisable(); wait(WAIT_TIME);//instead of wait poll for WIP flag of status reg or use checkIfBusy() function...see main for more dtails } void S25FL256S::reset() { writeEnable(); chipEnable(); this->write(RESET); chipDisable(); writeDisable(); } uint8_t S25FL256S::checkIfBusy() { uint8_t value=readRegister(); printf("Value of Status Reg=%X\r\n\r\n",value); if((value&0x01)==0x01) return 1; else return 0; } void S25FL256S::writeRegister(uint8_t regValue) { writeEnable(); chipEnable(); this->write(WRR); this->write(regValue); chipDisable(); writeDisable(); wait(WAIT_TIME);//instead of wait poll for WIP flag of status reg or use checkIfBusy() function...see main for more dtails } void S25FL256S::clearRegister(void) { writeEnable(); chipEnable(); this->write(CLSR); chipDisable(); writeDisable(); wait(WAIT_TIME);//instead of wait poll for WIP flag of status reg or use checkIfBusy() function...see main for more dtails } void S25FL256S::writeLong(int addr, long value) { //Decomposition from a long to 4 bytes by using bitshift. //One = Most significant -> Four = Least significant byte uint8_t four = (value & 0xFF); uint8_t three = ((value >> 8) & 0xFF); uint8_t two = ((value >> 16) & 0xFF); uint8_t one = ((value >> 24) & 0xFF); writeEnable(); chipEnable(); this->write(FOUR_PP); this->write((addr & ADDR_BMASK3) >> ADDR_BSHIFT3); this->write((addr & ADDR_BMASK2) >> ADDR_BSHIFT2); this->write((addr & ADDR_BMASK1) >> ADDR_BSHIFT1); this->write((addr & ADDR_BMASK0) >> ADDR_BSHIFT0); this->write(four); this->write(three); this->write(two); this->write(one); chipDisable(); writeDisable(); wait(0.1); } long S25FL256S::raedLong(int addr) { //Read the 4 bytes from the eeprom memory. writeEnable(); chipEnable(); this->write(FOUR_READ); this->write((addr & ADDR_BMASK3) >> ADDR_BSHIFT3); this->write((addr & ADDR_BMASK2) >> ADDR_BSHIFT2); this->write((addr & ADDR_BMASK1) >> ADDR_BSHIFT1); this->write((addr & ADDR_BMASK0) >> ADDR_BSHIFT0); long four = this->write(DUMMY_ADDR); long three = this->write(DUMMY_ADDR); long two = this->write(DUMMY_ADDR); long one = this->write(DUMMY_ADDR); //Return the recomposed long by using bitshift. return ((four << 0) & 0xFF) + ((three << 8) & 0xFFFF) + ((two << 16) & 0xFFFFFF) + ((one << 24) & 0xFFFFFFFF); } //ENABLE/DISABLE (private functions) void S25FL256S::writeEnable() { chipEnable(); this->write(WREN); chipDisable(); } void S25FL256S::writeDisable() { chipEnable(); this->write(WRDI); chipDisable(); } void S25FL256S::chipEnable() { _cs = 0; } void S25FL256S::chipDisable() { _cs = 1; }