RC522 Read Write Blocks CARD

Dependents:   RC522_Read_Write_CARD_MIFARE_1K_CARDS EscanerRf escaner_RTOS escaner_RTOS

Committer:
shivanandgowdakr
Date:
Tue Sep 11 09:20:18 2018 +0000
Revision:
0:f0aa9cbf7f0e
Read Write Card MIFARE RC522

Who changed what in which revision?

UserRevisionLine numberNew contents of line
shivanandgowdakr 0:f0aa9cbf7f0e 1 /*
shivanandgowdakr 0:f0aa9cbf7f0e 2 * MFRC522.cpp - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT.
shivanandgowdakr 0:f0aa9cbf7f0e 3 * _Please_ see the comments in MFRC522.h - they give useful hints and background.
shivanandgowdakr 0:f0aa9cbf7f0e 4 * Released into the public domain.
shivanandgowdakr 0:f0aa9cbf7f0e 5 */
shivanandgowdakr 0:f0aa9cbf7f0e 6
shivanandgowdakr 0:f0aa9cbf7f0e 7 #include "MFRC522.h"
shivanandgowdakr 0:f0aa9cbf7f0e 8
shivanandgowdakr 0:f0aa9cbf7f0e 9 static const char* const _TypeNamePICC[] =
shivanandgowdakr 0:f0aa9cbf7f0e 10 {
shivanandgowdakr 0:f0aa9cbf7f0e 11 "Unknown type",
shivanandgowdakr 0:f0aa9cbf7f0e 12 "PICC compliant with ISO/IEC 14443-4",
shivanandgowdakr 0:f0aa9cbf7f0e 13 "PICC compliant with ISO/IEC 18092 (NFC)",
shivanandgowdakr 0:f0aa9cbf7f0e 14 "MIFARE Mini, 320 bytes",
shivanandgowdakr 0:f0aa9cbf7f0e 15 "MIFARE 1KB",
shivanandgowdakr 0:f0aa9cbf7f0e 16 "MIFARE 4KB",
shivanandgowdakr 0:f0aa9cbf7f0e 17 "MIFARE Ultralight or Ultralight C",
shivanandgowdakr 0:f0aa9cbf7f0e 18 "MIFARE Plus",
shivanandgowdakr 0:f0aa9cbf7f0e 19 "MIFARE TNP3XXX",
shivanandgowdakr 0:f0aa9cbf7f0e 20
shivanandgowdakr 0:f0aa9cbf7f0e 21 /* not complete UID */
shivanandgowdakr 0:f0aa9cbf7f0e 22 "SAK indicates UID is not complete"
shivanandgowdakr 0:f0aa9cbf7f0e 23 };
shivanandgowdakr 0:f0aa9cbf7f0e 24
shivanandgowdakr 0:f0aa9cbf7f0e 25 static const char* const _ErrorMessage[] =
shivanandgowdakr 0:f0aa9cbf7f0e 26 {
shivanandgowdakr 0:f0aa9cbf7f0e 27 "Unknown error",
shivanandgowdakr 0:f0aa9cbf7f0e 28 "Success",
shivanandgowdakr 0:f0aa9cbf7f0e 29 "Error in communication",
shivanandgowdakr 0:f0aa9cbf7f0e 30 "Collision detected",
shivanandgowdakr 0:f0aa9cbf7f0e 31 "Timeout in communication",
shivanandgowdakr 0:f0aa9cbf7f0e 32 "A buffer is not big enough",
shivanandgowdakr 0:f0aa9cbf7f0e 33 "Internal error in the code, should not happen",
shivanandgowdakr 0:f0aa9cbf7f0e 34 "Invalid argument",
shivanandgowdakr 0:f0aa9cbf7f0e 35 "The CRC_A does not match",
shivanandgowdakr 0:f0aa9cbf7f0e 36 "A MIFARE PICC responded with NAK"
shivanandgowdakr 0:f0aa9cbf7f0e 37 };
shivanandgowdakr 0:f0aa9cbf7f0e 38
shivanandgowdakr 0:f0aa9cbf7f0e 39 #define MFRC522_MaxPICCs (sizeof(_TypeNamePICC)/sizeof(_TypeNamePICC[0]))
shivanandgowdakr 0:f0aa9cbf7f0e 40 #define MFRC522_MaxError (sizeof(_ErrorMessage)/sizeof(_ErrorMessage[0]))
shivanandgowdakr 0:f0aa9cbf7f0e 41
shivanandgowdakr 0:f0aa9cbf7f0e 42 /////////////////////////////////////////////////////////////////////////////////////
shivanandgowdakr 0:f0aa9cbf7f0e 43 // Functions for setting up the driver
shivanandgowdakr 0:f0aa9cbf7f0e 44 /////////////////////////////////////////////////////////////////////////////////////
shivanandgowdakr 0:f0aa9cbf7f0e 45
shivanandgowdakr 0:f0aa9cbf7f0e 46 /**
shivanandgowdakr 0:f0aa9cbf7f0e 47 * Constructor.
shivanandgowdakr 0:f0aa9cbf7f0e 48 * Prepares the output pins.
shivanandgowdakr 0:f0aa9cbf7f0e 49 */
shivanandgowdakr 0:f0aa9cbf7f0e 50 MFRC522::MFRC522(PinName mosi,
shivanandgowdakr 0:f0aa9cbf7f0e 51 PinName miso,
shivanandgowdakr 0:f0aa9cbf7f0e 52 PinName sclk,
shivanandgowdakr 0:f0aa9cbf7f0e 53 PinName cs,
shivanandgowdakr 0:f0aa9cbf7f0e 54 PinName reset) : m_SPI(mosi, miso, sclk), m_CS(cs), m_RESET(reset)
shivanandgowdakr 0:f0aa9cbf7f0e 55 {
shivanandgowdakr 0:f0aa9cbf7f0e 56 /* Configure SPI bus */
shivanandgowdakr 0:f0aa9cbf7f0e 57 m_SPI.format(8, 0);
shivanandgowdakr 0:f0aa9cbf7f0e 58 m_SPI.frequency(8000000);
shivanandgowdakr 0:f0aa9cbf7f0e 59
shivanandgowdakr 0:f0aa9cbf7f0e 60 /* Release SPI-CS pin */
shivanandgowdakr 0:f0aa9cbf7f0e 61 m_CS = 1;
shivanandgowdakr 0:f0aa9cbf7f0e 62
shivanandgowdakr 0:f0aa9cbf7f0e 63 /* Release RESET pin */
shivanandgowdakr 0:f0aa9cbf7f0e 64 m_RESET = 1;
shivanandgowdakr 0:f0aa9cbf7f0e 65 } // End constructor
shivanandgowdakr 0:f0aa9cbf7f0e 66
shivanandgowdakr 0:f0aa9cbf7f0e 67
shivanandgowdakr 0:f0aa9cbf7f0e 68 /**
shivanandgowdakr 0:f0aa9cbf7f0e 69 * Destructor.
shivanandgowdakr 0:f0aa9cbf7f0e 70 */
shivanandgowdakr 0:f0aa9cbf7f0e 71 MFRC522::~MFRC522()
shivanandgowdakr 0:f0aa9cbf7f0e 72 {
shivanandgowdakr 0:f0aa9cbf7f0e 73
shivanandgowdakr 0:f0aa9cbf7f0e 74 }
shivanandgowdakr 0:f0aa9cbf7f0e 75
shivanandgowdakr 0:f0aa9cbf7f0e 76
shivanandgowdakr 0:f0aa9cbf7f0e 77 /////////////////////////////////////////////////////////////////////////////////////
shivanandgowdakr 0:f0aa9cbf7f0e 78 // Basic interface functions for communicating with the MFRC522
shivanandgowdakr 0:f0aa9cbf7f0e 79 /////////////////////////////////////////////////////////////////////////////////////
shivanandgowdakr 0:f0aa9cbf7f0e 80
shivanandgowdakr 0:f0aa9cbf7f0e 81 /**
shivanandgowdakr 0:f0aa9cbf7f0e 82 * Writes a byte to the specified register in the MFRC522 chip.
shivanandgowdakr 0:f0aa9cbf7f0e 83 * The interface is described in the datasheet section 8.1.2.
shivanandgowdakr 0:f0aa9cbf7f0e 84 */
shivanandgowdakr 0:f0aa9cbf7f0e 85 void MFRC522::PCD_WriteRegister(uint8_t reg, uint8_t value)
shivanandgowdakr 0:f0aa9cbf7f0e 86 {
shivanandgowdakr 0:f0aa9cbf7f0e 87 m_CS = 0; /* Select SPI Chip MFRC522 */
shivanandgowdakr 0:f0aa9cbf7f0e 88
shivanandgowdakr 0:f0aa9cbf7f0e 89 // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3.
shivanandgowdakr 0:f0aa9cbf7f0e 90 (void) m_SPI.write(reg & 0x7E);
shivanandgowdakr 0:f0aa9cbf7f0e 91 (void) m_SPI.write(value);
shivanandgowdakr 0:f0aa9cbf7f0e 92
shivanandgowdakr 0:f0aa9cbf7f0e 93 m_CS = 1; /* Release SPI Chip MFRC522 */
shivanandgowdakr 0:f0aa9cbf7f0e 94 } // End PCD_WriteRegister()
shivanandgowdakr 0:f0aa9cbf7f0e 95
shivanandgowdakr 0:f0aa9cbf7f0e 96 /**
shivanandgowdakr 0:f0aa9cbf7f0e 97 * Writes a number of bytes to the specified register in the MFRC522 chip.
shivanandgowdakr 0:f0aa9cbf7f0e 98 * The interface is described in the datasheet section 8.1.2.
shivanandgowdakr 0:f0aa9cbf7f0e 99 */
shivanandgowdakr 0:f0aa9cbf7f0e 100 void MFRC522::PCD_WriteRegister(uint8_t reg, uint8_t count, uint8_t *values)
shivanandgowdakr 0:f0aa9cbf7f0e 101 {
shivanandgowdakr 0:f0aa9cbf7f0e 102 m_CS = 0; /* Select SPI Chip MFRC522 */
shivanandgowdakr 0:f0aa9cbf7f0e 103
shivanandgowdakr 0:f0aa9cbf7f0e 104 // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3.
shivanandgowdakr 0:f0aa9cbf7f0e 105 (void) m_SPI.write(reg & 0x7E);
shivanandgowdakr 0:f0aa9cbf7f0e 106 for (uint8_t index = 0; index < count; index++)
shivanandgowdakr 0:f0aa9cbf7f0e 107 {
shivanandgowdakr 0:f0aa9cbf7f0e 108 (void) m_SPI.write(values[index]);
shivanandgowdakr 0:f0aa9cbf7f0e 109 }
shivanandgowdakr 0:f0aa9cbf7f0e 110
shivanandgowdakr 0:f0aa9cbf7f0e 111 m_CS = 1; /* Release SPI Chip MFRC522 */
shivanandgowdakr 0:f0aa9cbf7f0e 112 } // End PCD_WriteRegister()
shivanandgowdakr 0:f0aa9cbf7f0e 113
shivanandgowdakr 0:f0aa9cbf7f0e 114 /**
shivanandgowdakr 0:f0aa9cbf7f0e 115 * Reads a byte from the specified register in the MFRC522 chip.
shivanandgowdakr 0:f0aa9cbf7f0e 116 * The interface is described in the datasheet section 8.1.2.
shivanandgowdakr 0:f0aa9cbf7f0e 117 */
shivanandgowdakr 0:f0aa9cbf7f0e 118 uint8_t MFRC522::PCD_ReadRegister(uint8_t reg)
shivanandgowdakr 0:f0aa9cbf7f0e 119 {
shivanandgowdakr 0:f0aa9cbf7f0e 120 uint8_t value;
shivanandgowdakr 0:f0aa9cbf7f0e 121 m_CS = 0; /* Select SPI Chip MFRC522 */
shivanandgowdakr 0:f0aa9cbf7f0e 122
shivanandgowdakr 0:f0aa9cbf7f0e 123 // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3.
shivanandgowdakr 0:f0aa9cbf7f0e 124 (void) m_SPI.write(0x80 | reg);
shivanandgowdakr 0:f0aa9cbf7f0e 125
shivanandgowdakr 0:f0aa9cbf7f0e 126 // Read the value back. Send 0 to stop reading.
shivanandgowdakr 0:f0aa9cbf7f0e 127 value = m_SPI.write(0);
shivanandgowdakr 0:f0aa9cbf7f0e 128
shivanandgowdakr 0:f0aa9cbf7f0e 129 m_CS = 1; /* Release SPI Chip MFRC522 */
shivanandgowdakr 0:f0aa9cbf7f0e 130
shivanandgowdakr 0:f0aa9cbf7f0e 131 return value;
shivanandgowdakr 0:f0aa9cbf7f0e 132 } // End PCD_ReadRegister()
shivanandgowdakr 0:f0aa9cbf7f0e 133
shivanandgowdakr 0:f0aa9cbf7f0e 134 /**
shivanandgowdakr 0:f0aa9cbf7f0e 135 * Reads a number of bytes from the specified register in the MFRC522 chip.
shivanandgowdakr 0:f0aa9cbf7f0e 136 * The interface is described in the datasheet section 8.1.2.
shivanandgowdakr 0:f0aa9cbf7f0e 137 */
shivanandgowdakr 0:f0aa9cbf7f0e 138 void MFRC522::PCD_ReadRegister(uint8_t reg, uint8_t count, uint8_t *values, uint8_t rxAlign)
shivanandgowdakr 0:f0aa9cbf7f0e 139 {
shivanandgowdakr 0:f0aa9cbf7f0e 140 if (count == 0) { return; }
shivanandgowdakr 0:f0aa9cbf7f0e 141
shivanandgowdakr 0:f0aa9cbf7f0e 142 uint8_t address = 0x80 | reg; // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3.
shivanandgowdakr 0:f0aa9cbf7f0e 143 uint8_t index = 0; // Index in values array.
shivanandgowdakr 0:f0aa9cbf7f0e 144
shivanandgowdakr 0:f0aa9cbf7f0e 145 m_CS = 0; /* Select SPI Chip MFRC522 */
shivanandgowdakr 0:f0aa9cbf7f0e 146 count--; // One read is performed outside of the loop
shivanandgowdakr 0:f0aa9cbf7f0e 147 (void) m_SPI.write(address); // Tell MFRC522 which address we want to read
shivanandgowdakr 0:f0aa9cbf7f0e 148
shivanandgowdakr 0:f0aa9cbf7f0e 149 while (index < count)
shivanandgowdakr 0:f0aa9cbf7f0e 150 {
shivanandgowdakr 0:f0aa9cbf7f0e 151 if ((index == 0) && rxAlign) // Only update bit positions rxAlign..7 in values[0]
shivanandgowdakr 0:f0aa9cbf7f0e 152 {
shivanandgowdakr 0:f0aa9cbf7f0e 153 // Create bit mask for bit positions rxAlign..7
shivanandgowdakr 0:f0aa9cbf7f0e 154 uint8_t mask = 0;
shivanandgowdakr 0:f0aa9cbf7f0e 155 for (uint8_t i = rxAlign; i <= 7; i++)
shivanandgowdakr 0:f0aa9cbf7f0e 156 {
shivanandgowdakr 0:f0aa9cbf7f0e 157 mask |= (1 << i);
shivanandgowdakr 0:f0aa9cbf7f0e 158 }
shivanandgowdakr 0:f0aa9cbf7f0e 159
shivanandgowdakr 0:f0aa9cbf7f0e 160 // Read value and tell that we want to read the same address again.
shivanandgowdakr 0:f0aa9cbf7f0e 161 uint8_t value = m_SPI.write(address);
shivanandgowdakr 0:f0aa9cbf7f0e 162
shivanandgowdakr 0:f0aa9cbf7f0e 163 // Apply mask to both current value of values[0] and the new data in value.
shivanandgowdakr 0:f0aa9cbf7f0e 164 values[0] = (values[index] & ~mask) | (value & mask);
shivanandgowdakr 0:f0aa9cbf7f0e 165 }
shivanandgowdakr 0:f0aa9cbf7f0e 166 else
shivanandgowdakr 0:f0aa9cbf7f0e 167 {
shivanandgowdakr 0:f0aa9cbf7f0e 168 // Read value and tell that we want to read the same address again.
shivanandgowdakr 0:f0aa9cbf7f0e 169 values[index] = m_SPI.write(address);
shivanandgowdakr 0:f0aa9cbf7f0e 170 }
shivanandgowdakr 0:f0aa9cbf7f0e 171
shivanandgowdakr 0:f0aa9cbf7f0e 172 index++;
shivanandgowdakr 0:f0aa9cbf7f0e 173 }
shivanandgowdakr 0:f0aa9cbf7f0e 174
shivanandgowdakr 0:f0aa9cbf7f0e 175 values[index] = m_SPI.write(0); // Read the final byte. Send 0 to stop reading.
shivanandgowdakr 0:f0aa9cbf7f0e 176
shivanandgowdakr 0:f0aa9cbf7f0e 177 m_CS = 1; /* Release SPI Chip MFRC522 */
shivanandgowdakr 0:f0aa9cbf7f0e 178 } // End PCD_ReadRegister()
shivanandgowdakr 0:f0aa9cbf7f0e 179
shivanandgowdakr 0:f0aa9cbf7f0e 180 /**
shivanandgowdakr 0:f0aa9cbf7f0e 181 * Sets the bits given in mask in register reg.
shivanandgowdakr 0:f0aa9cbf7f0e 182 */
shivanandgowdakr 0:f0aa9cbf7f0e 183 void MFRC522::PCD_SetRegisterBits(uint8_t reg, uint8_t mask)
shivanandgowdakr 0:f0aa9cbf7f0e 184 {
shivanandgowdakr 0:f0aa9cbf7f0e 185 uint8_t tmp = PCD_ReadRegister(reg);
shivanandgowdakr 0:f0aa9cbf7f0e 186 PCD_WriteRegister(reg, tmp | mask); // set bit mask
shivanandgowdakr 0:f0aa9cbf7f0e 187 } // End PCD_SetRegisterBitMask()
shivanandgowdakr 0:f0aa9cbf7f0e 188
shivanandgowdakr 0:f0aa9cbf7f0e 189 /**
shivanandgowdakr 0:f0aa9cbf7f0e 190 * Clears the bits given in mask from register reg.
shivanandgowdakr 0:f0aa9cbf7f0e 191 */
shivanandgowdakr 0:f0aa9cbf7f0e 192 void MFRC522::PCD_ClrRegisterBits(uint8_t reg, uint8_t mask)
shivanandgowdakr 0:f0aa9cbf7f0e 193 {
shivanandgowdakr 0:f0aa9cbf7f0e 194 uint8_t tmp = PCD_ReadRegister(reg);
shivanandgowdakr 0:f0aa9cbf7f0e 195 PCD_WriteRegister(reg, tmp & (~mask)); // clear bit mask
shivanandgowdakr 0:f0aa9cbf7f0e 196 } // End PCD_ClearRegisterBitMask()
shivanandgowdakr 0:f0aa9cbf7f0e 197
shivanandgowdakr 0:f0aa9cbf7f0e 198
shivanandgowdakr 0:f0aa9cbf7f0e 199 /**
shivanandgowdakr 0:f0aa9cbf7f0e 200 * Use the CRC coprocessor in the MFRC522 to calculate a CRC_A.
shivanandgowdakr 0:f0aa9cbf7f0e 201 */
shivanandgowdakr 0:f0aa9cbf7f0e 202 uint8_t MFRC522::PCD_CalculateCRC(uint8_t *data, uint8_t length, uint8_t *result)
shivanandgowdakr 0:f0aa9cbf7f0e 203 {
shivanandgowdakr 0:f0aa9cbf7f0e 204 PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command.
shivanandgowdakr 0:f0aa9cbf7f0e 205 PCD_WriteRegister(DivIrqReg, 0x04); // Clear the CRCIRq interrupt request bit
shivanandgowdakr 0:f0aa9cbf7f0e 206 PCD_SetRegisterBits(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization
shivanandgowdakr 0:f0aa9cbf7f0e 207 PCD_WriteRegister(FIFODataReg, length, data); // Write data to the FIFO
shivanandgowdakr 0:f0aa9cbf7f0e 208 PCD_WriteRegister(CommandReg, PCD_CalcCRC); // Start the calculation
shivanandgowdakr 0:f0aa9cbf7f0e 209
shivanandgowdakr 0:f0aa9cbf7f0e 210 // Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73us.
shivanandgowdakr 0:f0aa9cbf7f0e 211 uint16_t i = 5000;
shivanandgowdakr 0:f0aa9cbf7f0e 212 uint8_t n;
shivanandgowdakr 0:f0aa9cbf7f0e 213 while (1)
shivanandgowdakr 0:f0aa9cbf7f0e 214 {
shivanandgowdakr 0:f0aa9cbf7f0e 215 n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved
shivanandgowdakr 0:f0aa9cbf7f0e 216 if (n & 0x04)
shivanandgowdakr 0:f0aa9cbf7f0e 217 {
shivanandgowdakr 0:f0aa9cbf7f0e 218 // CRCIRq bit set - calculation done
shivanandgowdakr 0:f0aa9cbf7f0e 219 break;
shivanandgowdakr 0:f0aa9cbf7f0e 220 }
shivanandgowdakr 0:f0aa9cbf7f0e 221
shivanandgowdakr 0:f0aa9cbf7f0e 222 if (--i == 0)
shivanandgowdakr 0:f0aa9cbf7f0e 223 {
shivanandgowdakr 0:f0aa9cbf7f0e 224 // The emergency break. We will eventually terminate on this one after 89ms.
shivanandgowdakr 0:f0aa9cbf7f0e 225 // Communication with the MFRC522 might be down.
shivanandgowdakr 0:f0aa9cbf7f0e 226 return STATUS_TIMEOUT;
shivanandgowdakr 0:f0aa9cbf7f0e 227 }
shivanandgowdakr 0:f0aa9cbf7f0e 228 }
shivanandgowdakr 0:f0aa9cbf7f0e 229
shivanandgowdakr 0:f0aa9cbf7f0e 230 // Stop calculating CRC for new content in the FIFO.
shivanandgowdakr 0:f0aa9cbf7f0e 231 PCD_WriteRegister(CommandReg, PCD_Idle);
shivanandgowdakr 0:f0aa9cbf7f0e 232
shivanandgowdakr 0:f0aa9cbf7f0e 233 // Transfer the result from the registers to the result buffer
shivanandgowdakr 0:f0aa9cbf7f0e 234 result[0] = PCD_ReadRegister(CRCResultRegL);
shivanandgowdakr 0:f0aa9cbf7f0e 235 result[1] = PCD_ReadRegister(CRCResultRegH);
shivanandgowdakr 0:f0aa9cbf7f0e 236 return STATUS_OK;
shivanandgowdakr 0:f0aa9cbf7f0e 237 } // End PCD_CalculateCRC()
shivanandgowdakr 0:f0aa9cbf7f0e 238
shivanandgowdakr 0:f0aa9cbf7f0e 239
shivanandgowdakr 0:f0aa9cbf7f0e 240 /////////////////////////////////////////////////////////////////////////////////////
shivanandgowdakr 0:f0aa9cbf7f0e 241 // Functions for manipulating the MFRC522
shivanandgowdakr 0:f0aa9cbf7f0e 242 /////////////////////////////////////////////////////////////////////////////////////
shivanandgowdakr 0:f0aa9cbf7f0e 243
shivanandgowdakr 0:f0aa9cbf7f0e 244 /**
shivanandgowdakr 0:f0aa9cbf7f0e 245 * Initializes the MFRC522 chip.
shivanandgowdakr 0:f0aa9cbf7f0e 246 */
shivanandgowdakr 0:f0aa9cbf7f0e 247 void MFRC522::PCD_Init()
shivanandgowdakr 0:f0aa9cbf7f0e 248 {
shivanandgowdakr 0:f0aa9cbf7f0e 249 /* Reset MFRC522 */
shivanandgowdakr 0:f0aa9cbf7f0e 250 m_RESET = 0;
shivanandgowdakr 0:f0aa9cbf7f0e 251 wait_ms(10);
shivanandgowdakr 0:f0aa9cbf7f0e 252 m_RESET = 1;
shivanandgowdakr 0:f0aa9cbf7f0e 253
shivanandgowdakr 0:f0aa9cbf7f0e 254 // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74us. Let us be generous: 50ms.
shivanandgowdakr 0:f0aa9cbf7f0e 255 wait_ms(50);
shivanandgowdakr 0:f0aa9cbf7f0e 256
shivanandgowdakr 0:f0aa9cbf7f0e 257 // When communicating with a PICC we need a timeout if something goes wrong.
shivanandgowdakr 0:f0aa9cbf7f0e 258 // f_timer = 13.56 MHz / (2*TPreScaler+1) where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo].
shivanandgowdakr 0:f0aa9cbf7f0e 259 // TPrescaler_Hi are the four low bits in TModeReg. TPrescaler_Lo is TPrescalerReg.
shivanandgowdakr 0:f0aa9cbf7f0e 260 PCD_WriteRegister(TModeReg, 0x80); // TAuto=1; timer starts automatically at the end of the transmission in all communication modes at all speeds
shivanandgowdakr 0:f0aa9cbf7f0e 261 PCD_WriteRegister(TPrescalerReg, 0xA9); // TPreScaler = TModeReg[3..0]:TPrescalerReg, ie 0x0A9 = 169 => f_timer=40kHz, ie a timer period of 25us.
shivanandgowdakr 0:f0aa9cbf7f0e 262 PCD_WriteRegister(TReloadRegH, 0x03); // Reload timer with 0x3E8 = 1000, ie 25ms before timeout.
shivanandgowdakr 0:f0aa9cbf7f0e 263 PCD_WriteRegister(TReloadRegL, 0xE8);
shivanandgowdakr 0:f0aa9cbf7f0e 264
shivanandgowdakr 0:f0aa9cbf7f0e 265 PCD_WriteRegister(TxASKReg, 0x40); // Default 0x00. Force a 100 % ASK modulation independent of the ModGsPReg register setting
shivanandgowdakr 0:f0aa9cbf7f0e 266 PCD_WriteRegister(ModeReg, 0x3D); // Default 0x3F. Set the preset value for the CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4)
shivanandgowdakr 0:f0aa9cbf7f0e 267
shivanandgowdakr 0:f0aa9cbf7f0e 268 PCD_WriteRegister(RFCfgReg, (0x07<<4)); // Set Rx Gain to max
shivanandgowdakr 0:f0aa9cbf7f0e 269
shivanandgowdakr 0:f0aa9cbf7f0e 270 PCD_AntennaOn(); // Enable the antenna driver pins TX1 and TX2 (they were disabled by the reset)
shivanandgowdakr 0:f0aa9cbf7f0e 271 } // End PCD_Init()
shivanandgowdakr 0:f0aa9cbf7f0e 272
shivanandgowdakr 0:f0aa9cbf7f0e 273 /**
shivanandgowdakr 0:f0aa9cbf7f0e 274 * Performs a soft reset on the MFRC522 chip and waits for it to be ready again.
shivanandgowdakr 0:f0aa9cbf7f0e 275 */
shivanandgowdakr 0:f0aa9cbf7f0e 276 void MFRC522::PCD_Reset()
shivanandgowdakr 0:f0aa9cbf7f0e 277 {
shivanandgowdakr 0:f0aa9cbf7f0e 278 PCD_WriteRegister(CommandReg, PCD_SoftReset); // Issue the SoftReset command.
shivanandgowdakr 0:f0aa9cbf7f0e 279 // The datasheet does not mention how long the SoftRest command takes to complete.
shivanandgowdakr 0:f0aa9cbf7f0e 280 // But the MFRC522 might have been in soft power-down mode (triggered by bit 4 of CommandReg)
shivanandgowdakr 0:f0aa9cbf7f0e 281 // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74us. Let us be generous: 50ms.
shivanandgowdakr 0:f0aa9cbf7f0e 282 wait_ms(50);
shivanandgowdakr 0:f0aa9cbf7f0e 283
shivanandgowdakr 0:f0aa9cbf7f0e 284 // Wait for the PowerDown bit in CommandReg to be cleared
shivanandgowdakr 0:f0aa9cbf7f0e 285 while (PCD_ReadRegister(CommandReg) & (1<<4))
shivanandgowdakr 0:f0aa9cbf7f0e 286 {
shivanandgowdakr 0:f0aa9cbf7f0e 287 // PCD still restarting - unlikely after waiting 50ms, but better safe than sorry.
shivanandgowdakr 0:f0aa9cbf7f0e 288 }
shivanandgowdakr 0:f0aa9cbf7f0e 289 } // End PCD_Reset()
shivanandgowdakr 0:f0aa9cbf7f0e 290
shivanandgowdakr 0:f0aa9cbf7f0e 291 /**
shivanandgowdakr 0:f0aa9cbf7f0e 292 * Turns the antenna on by enabling pins TX1 and TX2.
shivanandgowdakr 0:f0aa9cbf7f0e 293 * After a reset these pins disabled.
shivanandgowdakr 0:f0aa9cbf7f0e 294 */
shivanandgowdakr 0:f0aa9cbf7f0e 295 void MFRC522::PCD_AntennaOn()
shivanandgowdakr 0:f0aa9cbf7f0e 296 {
shivanandgowdakr 0:f0aa9cbf7f0e 297 uint8_t value = PCD_ReadRegister(TxControlReg);
shivanandgowdakr 0:f0aa9cbf7f0e 298 if ((value & 0x03) != 0x03)
shivanandgowdakr 0:f0aa9cbf7f0e 299 {
shivanandgowdakr 0:f0aa9cbf7f0e 300 PCD_WriteRegister(TxControlReg, value | 0x03);
shivanandgowdakr 0:f0aa9cbf7f0e 301 }
shivanandgowdakr 0:f0aa9cbf7f0e 302 } // End PCD_AntennaOn()
shivanandgowdakr 0:f0aa9cbf7f0e 303
shivanandgowdakr 0:f0aa9cbf7f0e 304 /////////////////////////////////////////////////////////////////////////////////////
shivanandgowdakr 0:f0aa9cbf7f0e 305 // Functions for communicating with PICCs
shivanandgowdakr 0:f0aa9cbf7f0e 306 /////////////////////////////////////////////////////////////////////////////////////
shivanandgowdakr 0:f0aa9cbf7f0e 307
shivanandgowdakr 0:f0aa9cbf7f0e 308 /**
shivanandgowdakr 0:f0aa9cbf7f0e 309 * Executes the Transceive command.
shivanandgowdakr 0:f0aa9cbf7f0e 310 * CRC validation can only be done if backData and backLen are specified.
shivanandgowdakr 0:f0aa9cbf7f0e 311 */
shivanandgowdakr 0:f0aa9cbf7f0e 312 uint8_t MFRC522::PCD_TransceiveData(uint8_t *sendData,
shivanandgowdakr 0:f0aa9cbf7f0e 313 uint8_t sendLen,
shivanandgowdakr 0:f0aa9cbf7f0e 314 uint8_t *backData,
shivanandgowdakr 0:f0aa9cbf7f0e 315 uint8_t *backLen,
shivanandgowdakr 0:f0aa9cbf7f0e 316 uint8_t *validBits,
shivanandgowdakr 0:f0aa9cbf7f0e 317 uint8_t rxAlign,
shivanandgowdakr 0:f0aa9cbf7f0e 318 bool checkCRC)
shivanandgowdakr 0:f0aa9cbf7f0e 319 {
shivanandgowdakr 0:f0aa9cbf7f0e 320 uint8_t waitIRq = 0x30; // RxIRq and IdleIRq
shivanandgowdakr 0:f0aa9cbf7f0e 321 return PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, sendData, sendLen, backData, backLen, validBits, rxAlign, checkCRC);
shivanandgowdakr 0:f0aa9cbf7f0e 322 } // End PCD_TransceiveData()
shivanandgowdakr 0:f0aa9cbf7f0e 323
shivanandgowdakr 0:f0aa9cbf7f0e 324 /**
shivanandgowdakr 0:f0aa9cbf7f0e 325 * Transfers data to the MFRC522 FIFO, executes a commend, waits for completion and transfers data back from the FIFO.
shivanandgowdakr 0:f0aa9cbf7f0e 326 * CRC validation can only be done if backData and backLen are specified.
shivanandgowdakr 0:f0aa9cbf7f0e 327 */
shivanandgowdakr 0:f0aa9cbf7f0e 328 uint8_t MFRC522::PCD_CommunicateWithPICC(uint8_t command,
shivanandgowdakr 0:f0aa9cbf7f0e 329 uint8_t waitIRq,
shivanandgowdakr 0:f0aa9cbf7f0e 330 uint8_t *sendData,
shivanandgowdakr 0:f0aa9cbf7f0e 331 uint8_t sendLen,
shivanandgowdakr 0:f0aa9cbf7f0e 332 uint8_t *backData,
shivanandgowdakr 0:f0aa9cbf7f0e 333 uint8_t *backLen,
shivanandgowdakr 0:f0aa9cbf7f0e 334 uint8_t *validBits,
shivanandgowdakr 0:f0aa9cbf7f0e 335 uint8_t rxAlign,
shivanandgowdakr 0:f0aa9cbf7f0e 336 bool checkCRC)
shivanandgowdakr 0:f0aa9cbf7f0e 337 {
shivanandgowdakr 0:f0aa9cbf7f0e 338 uint8_t n, _validBits = 0;
shivanandgowdakr 0:f0aa9cbf7f0e 339 uint32_t i;
shivanandgowdakr 0:f0aa9cbf7f0e 340
shivanandgowdakr 0:f0aa9cbf7f0e 341 // Prepare values for BitFramingReg
shivanandgowdakr 0:f0aa9cbf7f0e 342 uint8_t txLastBits = validBits ? *validBits : 0;
shivanandgowdakr 0:f0aa9cbf7f0e 343 uint8_t bitFraming = (rxAlign << 4) + txLastBits; // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]
shivanandgowdakr 0:f0aa9cbf7f0e 344
shivanandgowdakr 0:f0aa9cbf7f0e 345 PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command.
shivanandgowdakr 0:f0aa9cbf7f0e 346 PCD_WriteRegister(ComIrqReg, 0x7F); // Clear all seven interrupt request bits
shivanandgowdakr 0:f0aa9cbf7f0e 347 PCD_SetRegisterBits(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization
shivanandgowdakr 0:f0aa9cbf7f0e 348 PCD_WriteRegister(FIFODataReg, sendLen, sendData); // Write sendData to the FIFO
shivanandgowdakr 0:f0aa9cbf7f0e 349 PCD_WriteRegister(BitFramingReg, bitFraming); // Bit adjustments
shivanandgowdakr 0:f0aa9cbf7f0e 350 PCD_WriteRegister(CommandReg, command); // Execute the command
shivanandgowdakr 0:f0aa9cbf7f0e 351 if (command == PCD_Transceive)
shivanandgowdakr 0:f0aa9cbf7f0e 352 {
shivanandgowdakr 0:f0aa9cbf7f0e 353 PCD_SetRegisterBits(BitFramingReg, 0x80); // StartSend=1, transmission of data starts
shivanandgowdakr 0:f0aa9cbf7f0e 354 }
shivanandgowdakr 0:f0aa9cbf7f0e 355
shivanandgowdakr 0:f0aa9cbf7f0e 356 // Wait for the command to complete.
shivanandgowdakr 0:f0aa9cbf7f0e 357 // In PCD_Init() we set the TAuto flag in TModeReg. This means the timer automatically starts when the PCD stops transmitting.
shivanandgowdakr 0:f0aa9cbf7f0e 358 // Each iteration of the do-while-loop takes 17.86us.
shivanandgowdakr 0:f0aa9cbf7f0e 359 i = 2000;
shivanandgowdakr 0:f0aa9cbf7f0e 360 while (1)
shivanandgowdakr 0:f0aa9cbf7f0e 361 {
shivanandgowdakr 0:f0aa9cbf7f0e 362 n = PCD_ReadRegister(ComIrqReg); // ComIrqReg[7..0] bits are: Set1 TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq
shivanandgowdakr 0:f0aa9cbf7f0e 363 if (n & waitIRq)
shivanandgowdakr 0:f0aa9cbf7f0e 364 { // One of the interrupts that signal success has been set.
shivanandgowdakr 0:f0aa9cbf7f0e 365 break;
shivanandgowdakr 0:f0aa9cbf7f0e 366 }
shivanandgowdakr 0:f0aa9cbf7f0e 367
shivanandgowdakr 0:f0aa9cbf7f0e 368 if (n & 0x01)
shivanandgowdakr 0:f0aa9cbf7f0e 369 { // Timer interrupt - nothing received in 25ms
shivanandgowdakr 0:f0aa9cbf7f0e 370 return STATUS_TIMEOUT;
shivanandgowdakr 0:f0aa9cbf7f0e 371 }
shivanandgowdakr 0:f0aa9cbf7f0e 372
shivanandgowdakr 0:f0aa9cbf7f0e 373 if (--i == 0)
shivanandgowdakr 0:f0aa9cbf7f0e 374 { // The emergency break. If all other condions fail we will eventually terminate on this one after 35.7ms. Communication with the MFRC522 might be down.
shivanandgowdakr 0:f0aa9cbf7f0e 375 return STATUS_TIMEOUT;
shivanandgowdakr 0:f0aa9cbf7f0e 376 }
shivanandgowdakr 0:f0aa9cbf7f0e 377 }
shivanandgowdakr 0:f0aa9cbf7f0e 378
shivanandgowdakr 0:f0aa9cbf7f0e 379 // Stop now if any errors except collisions were detected.
shivanandgowdakr 0:f0aa9cbf7f0e 380 uint8_t errorRegValue = PCD_ReadRegister(ErrorReg); // ErrorReg[7..0] bits are: WrErr TempErr reserved BufferOvfl CollErr CRCErr ParityErr ProtocolErr
shivanandgowdakr 0:f0aa9cbf7f0e 381 if (errorRegValue & 0x13)
shivanandgowdakr 0:f0aa9cbf7f0e 382 { // BufferOvfl ParityErr ProtocolErr
shivanandgowdakr 0:f0aa9cbf7f0e 383 return STATUS_ERROR;
shivanandgowdakr 0:f0aa9cbf7f0e 384 }
shivanandgowdakr 0:f0aa9cbf7f0e 385
shivanandgowdakr 0:f0aa9cbf7f0e 386 // If the caller wants data back, get it from the MFRC522.
shivanandgowdakr 0:f0aa9cbf7f0e 387 if (backData && backLen)
shivanandgowdakr 0:f0aa9cbf7f0e 388 {
shivanandgowdakr 0:f0aa9cbf7f0e 389 n = PCD_ReadRegister(FIFOLevelReg); // Number of bytes in the FIFO
shivanandgowdakr 0:f0aa9cbf7f0e 390 if (n > *backLen)
shivanandgowdakr 0:f0aa9cbf7f0e 391 {
shivanandgowdakr 0:f0aa9cbf7f0e 392 return STATUS_NO_ROOM;
shivanandgowdakr 0:f0aa9cbf7f0e 393 }
shivanandgowdakr 0:f0aa9cbf7f0e 394
shivanandgowdakr 0:f0aa9cbf7f0e 395 *backLen = n; // Number of bytes returned
shivanandgowdakr 0:f0aa9cbf7f0e 396 PCD_ReadRegister(FIFODataReg, n, backData, rxAlign); // Get received data from FIFO
shivanandgowdakr 0:f0aa9cbf7f0e 397 _validBits = PCD_ReadRegister(ControlReg) & 0x07; // RxLastBits[2:0] indicates the number of valid bits in the last received byte. If this value is 000b, the whole byte is valid.
shivanandgowdakr 0:f0aa9cbf7f0e 398 if (validBits)
shivanandgowdakr 0:f0aa9cbf7f0e 399 {
shivanandgowdakr 0:f0aa9cbf7f0e 400 *validBits = _validBits;
shivanandgowdakr 0:f0aa9cbf7f0e 401 }
shivanandgowdakr 0:f0aa9cbf7f0e 402 }
shivanandgowdakr 0:f0aa9cbf7f0e 403
shivanandgowdakr 0:f0aa9cbf7f0e 404 // Tell about collisions
shivanandgowdakr 0:f0aa9cbf7f0e 405 if (errorRegValue & 0x08)
shivanandgowdakr 0:f0aa9cbf7f0e 406 { // CollErr
shivanandgowdakr 0:f0aa9cbf7f0e 407 return STATUS_COLLISION;
shivanandgowdakr 0:f0aa9cbf7f0e 408 }
shivanandgowdakr 0:f0aa9cbf7f0e 409
shivanandgowdakr 0:f0aa9cbf7f0e 410 // Perform CRC_A validation if requested.
shivanandgowdakr 0:f0aa9cbf7f0e 411 if (backData && backLen && checkCRC)
shivanandgowdakr 0:f0aa9cbf7f0e 412 {
shivanandgowdakr 0:f0aa9cbf7f0e 413 // In this case a MIFARE Classic NAK is not OK.
shivanandgowdakr 0:f0aa9cbf7f0e 414 if ((*backLen == 1) && (_validBits == 4))
shivanandgowdakr 0:f0aa9cbf7f0e 415 {
shivanandgowdakr 0:f0aa9cbf7f0e 416 return STATUS_MIFARE_NACK;
shivanandgowdakr 0:f0aa9cbf7f0e 417 }
shivanandgowdakr 0:f0aa9cbf7f0e 418
shivanandgowdakr 0:f0aa9cbf7f0e 419 // We need at least the CRC_A value and all 8 bits of the last byte must be received.
shivanandgowdakr 0:f0aa9cbf7f0e 420 if ((*backLen < 2) || (_validBits != 0))
shivanandgowdakr 0:f0aa9cbf7f0e 421 {
shivanandgowdakr 0:f0aa9cbf7f0e 422 return STATUS_CRC_WRONG;
shivanandgowdakr 0:f0aa9cbf7f0e 423 }
shivanandgowdakr 0:f0aa9cbf7f0e 424
shivanandgowdakr 0:f0aa9cbf7f0e 425 // Verify CRC_A - do our own calculation and store the control in controlBuffer.
shivanandgowdakr 0:f0aa9cbf7f0e 426 uint8_t controlBuffer[2];
shivanandgowdakr 0:f0aa9cbf7f0e 427 n = PCD_CalculateCRC(&backData[0], *backLen - 2, &controlBuffer[0]);
shivanandgowdakr 0:f0aa9cbf7f0e 428 if (n != STATUS_OK)
shivanandgowdakr 0:f0aa9cbf7f0e 429 {
shivanandgowdakr 0:f0aa9cbf7f0e 430 return n;
shivanandgowdakr 0:f0aa9cbf7f0e 431 }
shivanandgowdakr 0:f0aa9cbf7f0e 432
shivanandgowdakr 0:f0aa9cbf7f0e 433 if ((backData[*backLen - 2] != controlBuffer[0]) || (backData[*backLen - 1] != controlBuffer[1]))
shivanandgowdakr 0:f0aa9cbf7f0e 434 {
shivanandgowdakr 0:f0aa9cbf7f0e 435 return STATUS_CRC_WRONG;
shivanandgowdakr 0:f0aa9cbf7f0e 436 }
shivanandgowdakr 0:f0aa9cbf7f0e 437 }
shivanandgowdakr 0:f0aa9cbf7f0e 438
shivanandgowdakr 0:f0aa9cbf7f0e 439 return STATUS_OK;
shivanandgowdakr 0:f0aa9cbf7f0e 440 } // End PCD_CommunicateWithPICC()
shivanandgowdakr 0:f0aa9cbf7f0e 441
shivanandgowdakr 0:f0aa9cbf7f0e 442 /*
shivanandgowdakr 0:f0aa9cbf7f0e 443 * Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame.
shivanandgowdakr 0:f0aa9cbf7f0e 444 * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
shivanandgowdakr 0:f0aa9cbf7f0e 445 */
shivanandgowdakr 0:f0aa9cbf7f0e 446 uint8_t MFRC522::PICC_RequestA(uint8_t *bufferATQA, uint8_t *bufferSize)
shivanandgowdakr 0:f0aa9cbf7f0e 447 {
shivanandgowdakr 0:f0aa9cbf7f0e 448 return PICC_REQA_or_WUPA(PICC_CMD_REQA, bufferATQA, bufferSize);
shivanandgowdakr 0:f0aa9cbf7f0e 449 } // End PICC_RequestA()
shivanandgowdakr 0:f0aa9cbf7f0e 450
shivanandgowdakr 0:f0aa9cbf7f0e 451 /**
shivanandgowdakr 0:f0aa9cbf7f0e 452 * Transmits a Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame.
shivanandgowdakr 0:f0aa9cbf7f0e 453 * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
shivanandgowdakr 0:f0aa9cbf7f0e 454 */
shivanandgowdakr 0:f0aa9cbf7f0e 455 uint8_t MFRC522::PICC_WakeupA(uint8_t *bufferATQA, uint8_t *bufferSize)
shivanandgowdakr 0:f0aa9cbf7f0e 456 {
shivanandgowdakr 0:f0aa9cbf7f0e 457 return PICC_REQA_or_WUPA(PICC_CMD_WUPA, bufferATQA, bufferSize);
shivanandgowdakr 0:f0aa9cbf7f0e 458 } // End PICC_WakeupA()
shivanandgowdakr 0:f0aa9cbf7f0e 459
shivanandgowdakr 0:f0aa9cbf7f0e 460 /*
shivanandgowdakr 0:f0aa9cbf7f0e 461 * Transmits REQA or WUPA commands.
shivanandgowdakr 0:f0aa9cbf7f0e 462 * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
shivanandgowdakr 0:f0aa9cbf7f0e 463 */
shivanandgowdakr 0:f0aa9cbf7f0e 464 uint8_t MFRC522::PICC_REQA_or_WUPA(uint8_t command, uint8_t *bufferATQA, uint8_t *bufferSize)
shivanandgowdakr 0:f0aa9cbf7f0e 465 {
shivanandgowdakr 0:f0aa9cbf7f0e 466 uint8_t validBits;
shivanandgowdakr 0:f0aa9cbf7f0e 467 uint8_t status;
shivanandgowdakr 0:f0aa9cbf7f0e 468
shivanandgowdakr 0:f0aa9cbf7f0e 469 if (bufferATQA == NULL || *bufferSize < 2)
shivanandgowdakr 0:f0aa9cbf7f0e 470 { // The ATQA response is 2 bytes long.
shivanandgowdakr 0:f0aa9cbf7f0e 471 return STATUS_NO_ROOM;
shivanandgowdakr 0:f0aa9cbf7f0e 472 }
shivanandgowdakr 0:f0aa9cbf7f0e 473
shivanandgowdakr 0:f0aa9cbf7f0e 474 // ValuesAfterColl=1 => Bits received after collision are cleared.
shivanandgowdakr 0:f0aa9cbf7f0e 475 PCD_ClrRegisterBits(CollReg, 0x80);
shivanandgowdakr 0:f0aa9cbf7f0e 476
shivanandgowdakr 0:f0aa9cbf7f0e 477 // For REQA and WUPA we need the short frame format
shivanandgowdakr 0:f0aa9cbf7f0e 478 // - transmit only 7 bits of the last (and only) byte. TxLastBits = BitFramingReg[2..0]
shivanandgowdakr 0:f0aa9cbf7f0e 479 validBits = 7;
shivanandgowdakr 0:f0aa9cbf7f0e 480
shivanandgowdakr 0:f0aa9cbf7f0e 481 status = PCD_TransceiveData(&command, 1, bufferATQA, bufferSize, &validBits);
shivanandgowdakr 0:f0aa9cbf7f0e 482 if (status != STATUS_OK)
shivanandgowdakr 0:f0aa9cbf7f0e 483 {
shivanandgowdakr 0:f0aa9cbf7f0e 484 return status;
shivanandgowdakr 0:f0aa9cbf7f0e 485 }
shivanandgowdakr 0:f0aa9cbf7f0e 486
shivanandgowdakr 0:f0aa9cbf7f0e 487 if ((*bufferSize != 2) || (validBits != 0))
shivanandgowdakr 0:f0aa9cbf7f0e 488 { // ATQA must be exactly 16 bits.
shivanandgowdakr 0:f0aa9cbf7f0e 489 return STATUS_ERROR;
shivanandgowdakr 0:f0aa9cbf7f0e 490 }
shivanandgowdakr 0:f0aa9cbf7f0e 491
shivanandgowdakr 0:f0aa9cbf7f0e 492 return STATUS_OK;
shivanandgowdakr 0:f0aa9cbf7f0e 493 } // End PICC_REQA_or_WUPA()
shivanandgowdakr 0:f0aa9cbf7f0e 494
shivanandgowdakr 0:f0aa9cbf7f0e 495 /*
shivanandgowdakr 0:f0aa9cbf7f0e 496 * Transmits SELECT/ANTICOLLISION commands to select a single PICC.
shivanandgowdakr 0:f0aa9cbf7f0e 497 */
shivanandgowdakr 0:f0aa9cbf7f0e 498 uint8_t MFRC522::PICC_Select(Uid *uid, uint8_t validBits)
shivanandgowdakr 0:f0aa9cbf7f0e 499 {
shivanandgowdakr 0:f0aa9cbf7f0e 500 bool uidComplete;
shivanandgowdakr 0:f0aa9cbf7f0e 501 bool selectDone;
shivanandgowdakr 0:f0aa9cbf7f0e 502 bool useCascadeTag;
shivanandgowdakr 0:f0aa9cbf7f0e 503 uint8_t cascadeLevel = 1;
shivanandgowdakr 0:f0aa9cbf7f0e 504 uint8_t result;
shivanandgowdakr 0:f0aa9cbf7f0e 505 uint8_t count;
shivanandgowdakr 0:f0aa9cbf7f0e 506 uint8_t index;
shivanandgowdakr 0:f0aa9cbf7f0e 507 uint8_t uidIndex; // The first index in uid->uidByte[] that is used in the current Cascade Level.
shivanandgowdakr 0:f0aa9cbf7f0e 508 uint8_t currentLevelKnownBits; // The number of known UID bits in the current Cascade Level.
shivanandgowdakr 0:f0aa9cbf7f0e 509 uint8_t buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 byte standard frame + 2 bytes CRC_A
shivanandgowdakr 0:f0aa9cbf7f0e 510 uint8_t bufferUsed; // The number of bytes used in the buffer, ie the number of bytes to transfer to the FIFO.
shivanandgowdakr 0:f0aa9cbf7f0e 511 uint8_t rxAlign; // Used in BitFramingReg. Defines the bit position for the first bit received.
shivanandgowdakr 0:f0aa9cbf7f0e 512 uint8_t txLastBits; // Used in BitFramingReg. The number of valid bits in the last transmitted byte.
shivanandgowdakr 0:f0aa9cbf7f0e 513 uint8_t *responseBuffer;
shivanandgowdakr 0:f0aa9cbf7f0e 514 uint8_t responseLength;
shivanandgowdakr 0:f0aa9cbf7f0e 515
shivanandgowdakr 0:f0aa9cbf7f0e 516 // Description of buffer structure:
shivanandgowdakr 0:f0aa9cbf7f0e 517 // Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3
shivanandgowdakr 0:f0aa9cbf7f0e 518 // Byte 1: NVB Number of Valid Bits (in complete command, not just the UID): High nibble: complete bytes, Low nibble: Extra bits.
shivanandgowdakr 0:f0aa9cbf7f0e 519 // Byte 2: UID-data or CT See explanation below. CT means Cascade Tag.
shivanandgowdakr 0:f0aa9cbf7f0e 520 // Byte 3: UID-data
shivanandgowdakr 0:f0aa9cbf7f0e 521 // Byte 4: UID-data
shivanandgowdakr 0:f0aa9cbf7f0e 522 // Byte 5: UID-data
shivanandgowdakr 0:f0aa9cbf7f0e 523 // Byte 6: BCC Block Check Character - XOR of bytes 2-5
shivanandgowdakr 0:f0aa9cbf7f0e 524 // Byte 7: CRC_A
shivanandgowdakr 0:f0aa9cbf7f0e 525 // Byte 8: CRC_A
shivanandgowdakr 0:f0aa9cbf7f0e 526 // The BCC and CRC_A is only transmitted if we know all the UID bits of the current Cascade Level.
shivanandgowdakr 0:f0aa9cbf7f0e 527 //
shivanandgowdakr 0:f0aa9cbf7f0e 528 // Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID contents and cascade levels)
shivanandgowdakr 0:f0aa9cbf7f0e 529 // UID size Cascade level Byte2 Byte3 Byte4 Byte5
shivanandgowdakr 0:f0aa9cbf7f0e 530 // ======== ============= ===== ===== ===== =====
shivanandgowdakr 0:f0aa9cbf7f0e 531 // 4 bytes 1 uid0 uid1 uid2 uid3
shivanandgowdakr 0:f0aa9cbf7f0e 532 // 7 bytes 1 CT uid0 uid1 uid2
shivanandgowdakr 0:f0aa9cbf7f0e 533 // 2 uid3 uid4 uid5 uid6
shivanandgowdakr 0:f0aa9cbf7f0e 534 // 10 bytes 1 CT uid0 uid1 uid2
shivanandgowdakr 0:f0aa9cbf7f0e 535 // 2 CT uid3 uid4 uid5
shivanandgowdakr 0:f0aa9cbf7f0e 536 // 3 uid6 uid7 uid8 uid9
shivanandgowdakr 0:f0aa9cbf7f0e 537
shivanandgowdakr 0:f0aa9cbf7f0e 538 // Sanity checks
shivanandgowdakr 0:f0aa9cbf7f0e 539 if (validBits > 80)
shivanandgowdakr 0:f0aa9cbf7f0e 540 {
shivanandgowdakr 0:f0aa9cbf7f0e 541 return STATUS_INVALID;
shivanandgowdakr 0:f0aa9cbf7f0e 542 }
shivanandgowdakr 0:f0aa9cbf7f0e 543
shivanandgowdakr 0:f0aa9cbf7f0e 544 // Prepare MFRC522
shivanandgowdakr 0:f0aa9cbf7f0e 545 // ValuesAfterColl=1 => Bits received after collision are cleared.
shivanandgowdakr 0:f0aa9cbf7f0e 546 PCD_ClrRegisterBits(CollReg, 0x80);
shivanandgowdakr 0:f0aa9cbf7f0e 547
shivanandgowdakr 0:f0aa9cbf7f0e 548 // Repeat Cascade Level loop until we have a complete UID.
shivanandgowdakr 0:f0aa9cbf7f0e 549 uidComplete = false;
shivanandgowdakr 0:f0aa9cbf7f0e 550 while ( ! uidComplete)
shivanandgowdakr 0:f0aa9cbf7f0e 551 {
shivanandgowdakr 0:f0aa9cbf7f0e 552 // Set the Cascade Level in the SEL byte, find out if we need to use the Cascade Tag in byte 2.
shivanandgowdakr 0:f0aa9cbf7f0e 553 switch (cascadeLevel)
shivanandgowdakr 0:f0aa9cbf7f0e 554 {
shivanandgowdakr 0:f0aa9cbf7f0e 555 case 1:
shivanandgowdakr 0:f0aa9cbf7f0e 556 buffer[0] = PICC_CMD_SEL_CL1;
shivanandgowdakr 0:f0aa9cbf7f0e 557 uidIndex = 0;
shivanandgowdakr 0:f0aa9cbf7f0e 558 useCascadeTag = validBits && (uid->size > 4); // When we know that the UID has more than 4 bytes
shivanandgowdakr 0:f0aa9cbf7f0e 559 break;
shivanandgowdakr 0:f0aa9cbf7f0e 560
shivanandgowdakr 0:f0aa9cbf7f0e 561 case 2:
shivanandgowdakr 0:f0aa9cbf7f0e 562 buffer[0] = PICC_CMD_SEL_CL2;
shivanandgowdakr 0:f0aa9cbf7f0e 563 uidIndex = 3;
shivanandgowdakr 0:f0aa9cbf7f0e 564 useCascadeTag = validBits && (uid->size > 7); // When we know that the UID has more than 7 bytes
shivanandgowdakr 0:f0aa9cbf7f0e 565 break;
shivanandgowdakr 0:f0aa9cbf7f0e 566
shivanandgowdakr 0:f0aa9cbf7f0e 567 case 3:
shivanandgowdakr 0:f0aa9cbf7f0e 568 buffer[0] = PICC_CMD_SEL_CL3;
shivanandgowdakr 0:f0aa9cbf7f0e 569 uidIndex = 6;
shivanandgowdakr 0:f0aa9cbf7f0e 570 useCascadeTag = false; // Never used in CL3.
shivanandgowdakr 0:f0aa9cbf7f0e 571 break;
shivanandgowdakr 0:f0aa9cbf7f0e 572
shivanandgowdakr 0:f0aa9cbf7f0e 573 default:
shivanandgowdakr 0:f0aa9cbf7f0e 574 return STATUS_INTERNAL_ERROR;
shivanandgowdakr 0:f0aa9cbf7f0e 575 //break;
shivanandgowdakr 0:f0aa9cbf7f0e 576 }
shivanandgowdakr 0:f0aa9cbf7f0e 577
shivanandgowdakr 0:f0aa9cbf7f0e 578 // How many UID bits are known in this Cascade Level?
shivanandgowdakr 0:f0aa9cbf7f0e 579 if(validBits > (8 * uidIndex))
shivanandgowdakr 0:f0aa9cbf7f0e 580 {
shivanandgowdakr 0:f0aa9cbf7f0e 581 currentLevelKnownBits = validBits - (8 * uidIndex);
shivanandgowdakr 0:f0aa9cbf7f0e 582 }
shivanandgowdakr 0:f0aa9cbf7f0e 583 else
shivanandgowdakr 0:f0aa9cbf7f0e 584 {
shivanandgowdakr 0:f0aa9cbf7f0e 585 currentLevelKnownBits = 0;
shivanandgowdakr 0:f0aa9cbf7f0e 586 }
shivanandgowdakr 0:f0aa9cbf7f0e 587
shivanandgowdakr 0:f0aa9cbf7f0e 588 // Copy the known bits from uid->uidByte[] to buffer[]
shivanandgowdakr 0:f0aa9cbf7f0e 589 index = 2; // destination index in buffer[]
shivanandgowdakr 0:f0aa9cbf7f0e 590 if (useCascadeTag)
shivanandgowdakr 0:f0aa9cbf7f0e 591 {
shivanandgowdakr 0:f0aa9cbf7f0e 592 buffer[index++] = PICC_CMD_CT;
shivanandgowdakr 0:f0aa9cbf7f0e 593 }
shivanandgowdakr 0:f0aa9cbf7f0e 594
shivanandgowdakr 0:f0aa9cbf7f0e 595 uint8_t bytesToCopy = currentLevelKnownBits / 8 + (currentLevelKnownBits % 8 ? 1 : 0); // The number of bytes needed to represent the known bits for this level.
shivanandgowdakr 0:f0aa9cbf7f0e 596 if (bytesToCopy)
shivanandgowdakr 0:f0aa9cbf7f0e 597 {
shivanandgowdakr 0:f0aa9cbf7f0e 598 // Max 4 bytes in each Cascade Level. Only 3 left if we use the Cascade Tag
shivanandgowdakr 0:f0aa9cbf7f0e 599 uint8_t maxBytes = useCascadeTag ? 3 : 4;
shivanandgowdakr 0:f0aa9cbf7f0e 600 if (bytesToCopy > maxBytes)
shivanandgowdakr 0:f0aa9cbf7f0e 601 {
shivanandgowdakr 0:f0aa9cbf7f0e 602 bytesToCopy = maxBytes;
shivanandgowdakr 0:f0aa9cbf7f0e 603 }
shivanandgowdakr 0:f0aa9cbf7f0e 604
shivanandgowdakr 0:f0aa9cbf7f0e 605 for (count = 0; count < bytesToCopy; count++)
shivanandgowdakr 0:f0aa9cbf7f0e 606 {
shivanandgowdakr 0:f0aa9cbf7f0e 607 buffer[index++] = uid->uidByte[uidIndex + count];
shivanandgowdakr 0:f0aa9cbf7f0e 608 }
shivanandgowdakr 0:f0aa9cbf7f0e 609 }
shivanandgowdakr 0:f0aa9cbf7f0e 610
shivanandgowdakr 0:f0aa9cbf7f0e 611 // Now that the data has been copied we need to include the 8 bits in CT in currentLevelKnownBits
shivanandgowdakr 0:f0aa9cbf7f0e 612 if (useCascadeTag)
shivanandgowdakr 0:f0aa9cbf7f0e 613 {
shivanandgowdakr 0:f0aa9cbf7f0e 614 currentLevelKnownBits += 8;
shivanandgowdakr 0:f0aa9cbf7f0e 615 }
shivanandgowdakr 0:f0aa9cbf7f0e 616
shivanandgowdakr 0:f0aa9cbf7f0e 617 // Repeat anti collision loop until we can transmit all UID bits + BCC and receive a SAK - max 32 iterations.
shivanandgowdakr 0:f0aa9cbf7f0e 618 selectDone = false;
shivanandgowdakr 0:f0aa9cbf7f0e 619 while ( ! selectDone)
shivanandgowdakr 0:f0aa9cbf7f0e 620 {
shivanandgowdakr 0:f0aa9cbf7f0e 621 // Find out how many bits and bytes to send and receive.
shivanandgowdakr 0:f0aa9cbf7f0e 622 if (currentLevelKnownBits >= 32)
shivanandgowdakr 0:f0aa9cbf7f0e 623 { // All UID bits in this Cascade Level are known. This is a SELECT.
shivanandgowdakr 0:f0aa9cbf7f0e 624 //Serial.print("SELECT: currentLevelKnownBits="); Serial.println(currentLevelKnownBits, DEC);
shivanandgowdakr 0:f0aa9cbf7f0e 625 buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes
shivanandgowdakr 0:f0aa9cbf7f0e 626
shivanandgowdakr 0:f0aa9cbf7f0e 627 // Calulate BCC - Block Check Character
shivanandgowdakr 0:f0aa9cbf7f0e 628 buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5];
shivanandgowdakr 0:f0aa9cbf7f0e 629
shivanandgowdakr 0:f0aa9cbf7f0e 630 // Calculate CRC_A
shivanandgowdakr 0:f0aa9cbf7f0e 631 result = PCD_CalculateCRC(buffer, 7, &buffer[7]);
shivanandgowdakr 0:f0aa9cbf7f0e 632 if (result != STATUS_OK)
shivanandgowdakr 0:f0aa9cbf7f0e 633 {
shivanandgowdakr 0:f0aa9cbf7f0e 634 return result;
shivanandgowdakr 0:f0aa9cbf7f0e 635 }
shivanandgowdakr 0:f0aa9cbf7f0e 636
shivanandgowdakr 0:f0aa9cbf7f0e 637 txLastBits = 0; // 0 => All 8 bits are valid.
shivanandgowdakr 0:f0aa9cbf7f0e 638 bufferUsed = 9;
shivanandgowdakr 0:f0aa9cbf7f0e 639
shivanandgowdakr 0:f0aa9cbf7f0e 640 // Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx)
shivanandgowdakr 0:f0aa9cbf7f0e 641 responseBuffer = &buffer[6];
shivanandgowdakr 0:f0aa9cbf7f0e 642 responseLength = 3;
shivanandgowdakr 0:f0aa9cbf7f0e 643 }
shivanandgowdakr 0:f0aa9cbf7f0e 644 else
shivanandgowdakr 0:f0aa9cbf7f0e 645 { // This is an ANTICOLLISION.
shivanandgowdakr 0:f0aa9cbf7f0e 646 //Serial.print("ANTICOLLISION: currentLevelKnownBits="); Serial.println(currentLevelKnownBits, DEC);
shivanandgowdakr 0:f0aa9cbf7f0e 647 txLastBits = currentLevelKnownBits % 8;
shivanandgowdakr 0:f0aa9cbf7f0e 648 count = currentLevelKnownBits / 8; // Number of whole bytes in the UID part.
shivanandgowdakr 0:f0aa9cbf7f0e 649 index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs
shivanandgowdakr 0:f0aa9cbf7f0e 650 buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits
shivanandgowdakr 0:f0aa9cbf7f0e 651 bufferUsed = index + (txLastBits ? 1 : 0);
shivanandgowdakr 0:f0aa9cbf7f0e 652
shivanandgowdakr 0:f0aa9cbf7f0e 653 // Store response in the unused part of buffer
shivanandgowdakr 0:f0aa9cbf7f0e 654 responseBuffer = &buffer[index];
shivanandgowdakr 0:f0aa9cbf7f0e 655 responseLength = sizeof(buffer) - index;
shivanandgowdakr 0:f0aa9cbf7f0e 656 }
shivanandgowdakr 0:f0aa9cbf7f0e 657
shivanandgowdakr 0:f0aa9cbf7f0e 658 // Set bit adjustments
shivanandgowdakr 0:f0aa9cbf7f0e 659 rxAlign = txLastBits; // Having a seperate variable is overkill. But it makes the next line easier to read.
shivanandgowdakr 0:f0aa9cbf7f0e 660 PCD_WriteRegister(BitFramingReg, (rxAlign << 4) + txLastBits); // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]
shivanandgowdakr 0:f0aa9cbf7f0e 661
shivanandgowdakr 0:f0aa9cbf7f0e 662 // Transmit the buffer and receive the response.
shivanandgowdakr 0:f0aa9cbf7f0e 663 result = PCD_TransceiveData(buffer, bufferUsed, responseBuffer, &responseLength, &txLastBits, rxAlign);
shivanandgowdakr 0:f0aa9cbf7f0e 664 if (result == STATUS_COLLISION)
shivanandgowdakr 0:f0aa9cbf7f0e 665 { // More than one PICC in the field => collision.
shivanandgowdakr 0:f0aa9cbf7f0e 666 result = PCD_ReadRegister(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0]
shivanandgowdakr 0:f0aa9cbf7f0e 667 if (result & 0x20)
shivanandgowdakr 0:f0aa9cbf7f0e 668 { // CollPosNotValid
shivanandgowdakr 0:f0aa9cbf7f0e 669 return STATUS_COLLISION; // Without a valid collision position we cannot continue
shivanandgowdakr 0:f0aa9cbf7f0e 670 }
shivanandgowdakr 0:f0aa9cbf7f0e 671
shivanandgowdakr 0:f0aa9cbf7f0e 672 uint8_t collisionPos = result & 0x1F; // Values 0-31, 0 means bit 32.
shivanandgowdakr 0:f0aa9cbf7f0e 673 if (collisionPos == 0)
shivanandgowdakr 0:f0aa9cbf7f0e 674 {
shivanandgowdakr 0:f0aa9cbf7f0e 675 collisionPos = 32;
shivanandgowdakr 0:f0aa9cbf7f0e 676 }
shivanandgowdakr 0:f0aa9cbf7f0e 677
shivanandgowdakr 0:f0aa9cbf7f0e 678 if (collisionPos <= currentLevelKnownBits)
shivanandgowdakr 0:f0aa9cbf7f0e 679 { // No progress - should not happen
shivanandgowdakr 0:f0aa9cbf7f0e 680 return STATUS_INTERNAL_ERROR;
shivanandgowdakr 0:f0aa9cbf7f0e 681 }
shivanandgowdakr 0:f0aa9cbf7f0e 682
shivanandgowdakr 0:f0aa9cbf7f0e 683 // Choose the PICC with the bit set.
shivanandgowdakr 0:f0aa9cbf7f0e 684 currentLevelKnownBits = collisionPos;
shivanandgowdakr 0:f0aa9cbf7f0e 685 count = (currentLevelKnownBits - 1) % 8; // The bit to modify
shivanandgowdakr 0:f0aa9cbf7f0e 686 index = 1 + (currentLevelKnownBits / 8) + (count ? 1 : 0); // First byte is index 0.
shivanandgowdakr 0:f0aa9cbf7f0e 687 buffer[index] |= (1 << count);
shivanandgowdakr 0:f0aa9cbf7f0e 688 }
shivanandgowdakr 0:f0aa9cbf7f0e 689 else if (result != STATUS_OK)
shivanandgowdakr 0:f0aa9cbf7f0e 690 {
shivanandgowdakr 0:f0aa9cbf7f0e 691 return result;
shivanandgowdakr 0:f0aa9cbf7f0e 692 }
shivanandgowdakr 0:f0aa9cbf7f0e 693 else
shivanandgowdakr 0:f0aa9cbf7f0e 694 { // STATUS_OK
shivanandgowdakr 0:f0aa9cbf7f0e 695 if (currentLevelKnownBits >= 32)
shivanandgowdakr 0:f0aa9cbf7f0e 696 { // This was a SELECT.
shivanandgowdakr 0:f0aa9cbf7f0e 697 selectDone = true; // No more anticollision
shivanandgowdakr 0:f0aa9cbf7f0e 698 // We continue below outside the while.
shivanandgowdakr 0:f0aa9cbf7f0e 699 }
shivanandgowdakr 0:f0aa9cbf7f0e 700 else
shivanandgowdakr 0:f0aa9cbf7f0e 701 { // This was an ANTICOLLISION.
shivanandgowdakr 0:f0aa9cbf7f0e 702 // We now have all 32 bits of the UID in this Cascade Level
shivanandgowdakr 0:f0aa9cbf7f0e 703 currentLevelKnownBits = 32;
shivanandgowdakr 0:f0aa9cbf7f0e 704 // Run loop again to do the SELECT.
shivanandgowdakr 0:f0aa9cbf7f0e 705 }
shivanandgowdakr 0:f0aa9cbf7f0e 706 }
shivanandgowdakr 0:f0aa9cbf7f0e 707 } // End of while ( ! selectDone)
shivanandgowdakr 0:f0aa9cbf7f0e 708
shivanandgowdakr 0:f0aa9cbf7f0e 709 // We do not check the CBB - it was constructed by us above.
shivanandgowdakr 0:f0aa9cbf7f0e 710
shivanandgowdakr 0:f0aa9cbf7f0e 711 // Copy the found UID bytes from buffer[] to uid->uidByte[]
shivanandgowdakr 0:f0aa9cbf7f0e 712 index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[]
shivanandgowdakr 0:f0aa9cbf7f0e 713 bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4;
shivanandgowdakr 0:f0aa9cbf7f0e 714 for (count = 0; count < bytesToCopy; count++)
shivanandgowdakr 0:f0aa9cbf7f0e 715 {
shivanandgowdakr 0:f0aa9cbf7f0e 716 uid->uidByte[uidIndex + count] = buffer[index++];
shivanandgowdakr 0:f0aa9cbf7f0e 717 }
shivanandgowdakr 0:f0aa9cbf7f0e 718
shivanandgowdakr 0:f0aa9cbf7f0e 719 // Check response SAK (Select Acknowledge)
shivanandgowdakr 0:f0aa9cbf7f0e 720 if (responseLength != 3 || txLastBits != 0)
shivanandgowdakr 0:f0aa9cbf7f0e 721 { // SAK must be exactly 24 bits (1 byte + CRC_A).
shivanandgowdakr 0:f0aa9cbf7f0e 722 return STATUS_ERROR;
shivanandgowdakr 0:f0aa9cbf7f0e 723 }
shivanandgowdakr 0:f0aa9cbf7f0e 724
shivanandgowdakr 0:f0aa9cbf7f0e 725 // Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore.
shivanandgowdakr 0:f0aa9cbf7f0e 726 result = PCD_CalculateCRC(responseBuffer, 1, &buffer[2]);
shivanandgowdakr 0:f0aa9cbf7f0e 727 if (result != STATUS_OK)
shivanandgowdakr 0:f0aa9cbf7f0e 728 {
shivanandgowdakr 0:f0aa9cbf7f0e 729 return result;
shivanandgowdakr 0:f0aa9cbf7f0e 730 }
shivanandgowdakr 0:f0aa9cbf7f0e 731
shivanandgowdakr 0:f0aa9cbf7f0e 732 if ((buffer[2] != responseBuffer[1]) || (buffer[3] != responseBuffer[2]))
shivanandgowdakr 0:f0aa9cbf7f0e 733 {
shivanandgowdakr 0:f0aa9cbf7f0e 734 return STATUS_CRC_WRONG;
shivanandgowdakr 0:f0aa9cbf7f0e 735 }
shivanandgowdakr 0:f0aa9cbf7f0e 736
shivanandgowdakr 0:f0aa9cbf7f0e 737 if (responseBuffer[0] & 0x04)
shivanandgowdakr 0:f0aa9cbf7f0e 738 { // Cascade bit set - UID not complete yes
shivanandgowdakr 0:f0aa9cbf7f0e 739 cascadeLevel++;
shivanandgowdakr 0:f0aa9cbf7f0e 740 }
shivanandgowdakr 0:f0aa9cbf7f0e 741 else
shivanandgowdakr 0:f0aa9cbf7f0e 742 {
shivanandgowdakr 0:f0aa9cbf7f0e 743 uidComplete = true;
shivanandgowdakr 0:f0aa9cbf7f0e 744 uid->sak = responseBuffer[0];
shivanandgowdakr 0:f0aa9cbf7f0e 745 }
shivanandgowdakr 0:f0aa9cbf7f0e 746 } // End of while ( ! uidComplete)
shivanandgowdakr 0:f0aa9cbf7f0e 747
shivanandgowdakr 0:f0aa9cbf7f0e 748 // Set correct uid->size
shivanandgowdakr 0:f0aa9cbf7f0e 749 uid->size = 3 * cascadeLevel + 1;
shivanandgowdakr 0:f0aa9cbf7f0e 750
shivanandgowdakr 0:f0aa9cbf7f0e 751 return STATUS_OK;
shivanandgowdakr 0:f0aa9cbf7f0e 752 } // End PICC_Select()
shivanandgowdakr 0:f0aa9cbf7f0e 753
shivanandgowdakr 0:f0aa9cbf7f0e 754 /*
shivanandgowdakr 0:f0aa9cbf7f0e 755 * Instructs a PICC in state ACTIVE(*) to go to state HALT.
shivanandgowdakr 0:f0aa9cbf7f0e 756 */
shivanandgowdakr 0:f0aa9cbf7f0e 757 uint8_t MFRC522::PICC_HaltA()
shivanandgowdakr 0:f0aa9cbf7f0e 758 {
shivanandgowdakr 0:f0aa9cbf7f0e 759 uint8_t result;
shivanandgowdakr 0:f0aa9cbf7f0e 760 uint8_t buffer[4];
shivanandgowdakr 0:f0aa9cbf7f0e 761
shivanandgowdakr 0:f0aa9cbf7f0e 762 // Build command buffer
shivanandgowdakr 0:f0aa9cbf7f0e 763 buffer[0] = PICC_CMD_HLTA;
shivanandgowdakr 0:f0aa9cbf7f0e 764 buffer[1] = 0;
shivanandgowdakr 0:f0aa9cbf7f0e 765
shivanandgowdakr 0:f0aa9cbf7f0e 766 // Calculate CRC_A
shivanandgowdakr 0:f0aa9cbf7f0e 767 result = PCD_CalculateCRC(buffer, 2, &buffer[2]);
shivanandgowdakr 0:f0aa9cbf7f0e 768 if (result == STATUS_OK)
shivanandgowdakr 0:f0aa9cbf7f0e 769 {
shivanandgowdakr 0:f0aa9cbf7f0e 770 // Send the command.
shivanandgowdakr 0:f0aa9cbf7f0e 771 // The standard says:
shivanandgowdakr 0:f0aa9cbf7f0e 772 // If the PICC responds with any modulation during a period of 1 ms after the end of the frame containing the
shivanandgowdakr 0:f0aa9cbf7f0e 773 // HLTA command, this response shall be interpreted as 'not acknowledge'.
shivanandgowdakr 0:f0aa9cbf7f0e 774 // We interpret that this way: Only STATUS_TIMEOUT is an success.
shivanandgowdakr 0:f0aa9cbf7f0e 775 result = PCD_TransceiveData(buffer, sizeof(buffer), NULL, 0);
shivanandgowdakr 0:f0aa9cbf7f0e 776 if (result == STATUS_TIMEOUT)
shivanandgowdakr 0:f0aa9cbf7f0e 777 {
shivanandgowdakr 0:f0aa9cbf7f0e 778 result = STATUS_OK;
shivanandgowdakr 0:f0aa9cbf7f0e 779 }
shivanandgowdakr 0:f0aa9cbf7f0e 780 else if (result == STATUS_OK)
shivanandgowdakr 0:f0aa9cbf7f0e 781 { // That is ironically NOT ok in this case ;-)
shivanandgowdakr 0:f0aa9cbf7f0e 782 result = STATUS_ERROR;
shivanandgowdakr 0:f0aa9cbf7f0e 783 }
shivanandgowdakr 0:f0aa9cbf7f0e 784 }
shivanandgowdakr 0:f0aa9cbf7f0e 785
shivanandgowdakr 0:f0aa9cbf7f0e 786 return result;
shivanandgowdakr 0:f0aa9cbf7f0e 787 } // End PICC_HaltA()
shivanandgowdakr 0:f0aa9cbf7f0e 788
shivanandgowdakr 0:f0aa9cbf7f0e 789
shivanandgowdakr 0:f0aa9cbf7f0e 790 /////////////////////////////////////////////////////////////////////////////////////
shivanandgowdakr 0:f0aa9cbf7f0e 791 // Functions for communicating with MIFARE PICCs
shivanandgowdakr 0:f0aa9cbf7f0e 792 /////////////////////////////////////////////////////////////////////////////////////
shivanandgowdakr 0:f0aa9cbf7f0e 793
shivanandgowdakr 0:f0aa9cbf7f0e 794 /*
shivanandgowdakr 0:f0aa9cbf7f0e 795 * Executes the MFRC522 MFAuthent command.
shivanandgowdakr 0:f0aa9cbf7f0e 796 */
shivanandgowdakr 0:f0aa9cbf7f0e 797 uint8_t MFRC522::PCD_Authenticate(uint8_t command, uint8_t blockAddr, MIFARE_Key *key, Uid *uid)
shivanandgowdakr 0:f0aa9cbf7f0e 798 {
shivanandgowdakr 0:f0aa9cbf7f0e 799 uint8_t i, waitIRq = 0x10; // IdleIRq
shivanandgowdakr 0:f0aa9cbf7f0e 800
shivanandgowdakr 0:f0aa9cbf7f0e 801 // Build command buffer
shivanandgowdakr 0:f0aa9cbf7f0e 802 uint8_t sendData[12];
shivanandgowdakr 0:f0aa9cbf7f0e 803 sendData[0] = command;
shivanandgowdakr 0:f0aa9cbf7f0e 804 sendData[1] = blockAddr;
shivanandgowdakr 0:f0aa9cbf7f0e 805
shivanandgowdakr 0:f0aa9cbf7f0e 806 for (i = 0; i < MF_KEY_SIZE; i++)
shivanandgowdakr 0:f0aa9cbf7f0e 807 { // 6 key bytes
shivanandgowdakr 0:f0aa9cbf7f0e 808 sendData[2+i] = key->keyByte[i];
shivanandgowdakr 0:f0aa9cbf7f0e 809 }
shivanandgowdakr 0:f0aa9cbf7f0e 810
shivanandgowdakr 0:f0aa9cbf7f0e 811 for (i = 0; i < 4; i++)
shivanandgowdakr 0:f0aa9cbf7f0e 812 { // The first 4 bytes of the UID
shivanandgowdakr 0:f0aa9cbf7f0e 813 sendData[8+i] = uid->uidByte[i];
shivanandgowdakr 0:f0aa9cbf7f0e 814 }
shivanandgowdakr 0:f0aa9cbf7f0e 815
shivanandgowdakr 0:f0aa9cbf7f0e 816 // Start the authentication.
shivanandgowdakr 0:f0aa9cbf7f0e 817 return PCD_CommunicateWithPICC(PCD_MFAuthent, waitIRq, &sendData[0], sizeof(sendData));
shivanandgowdakr 0:f0aa9cbf7f0e 818 } // End PCD_Authenticate()
shivanandgowdakr 0:f0aa9cbf7f0e 819
shivanandgowdakr 0:f0aa9cbf7f0e 820 /*
shivanandgowdakr 0:f0aa9cbf7f0e 821 * Used to exit the PCD from its authenticated state.
shivanandgowdakr 0:f0aa9cbf7f0e 822 * Remember to call this function after communicating with an authenticated PICC - otherwise no new communications can start.
shivanandgowdakr 0:f0aa9cbf7f0e 823 */
shivanandgowdakr 0:f0aa9cbf7f0e 824 void MFRC522::PCD_StopCrypto1()
shivanandgowdakr 0:f0aa9cbf7f0e 825 {
shivanandgowdakr 0:f0aa9cbf7f0e 826 // Clear MFCrypto1On bit
shivanandgowdakr 0:f0aa9cbf7f0e 827 PCD_ClrRegisterBits(Status2Reg, 0x08); // Status2Reg[7..0] bits are: TempSensClear I2CForceHS reserved reserved MFCrypto1On ModemState[2:0]
shivanandgowdakr 0:f0aa9cbf7f0e 828 } // End PCD_StopCrypto1()
shivanandgowdakr 0:f0aa9cbf7f0e 829
shivanandgowdakr 0:f0aa9cbf7f0e 830 /*
shivanandgowdakr 0:f0aa9cbf7f0e 831 * Reads 16 bytes (+ 2 bytes CRC_A) from the active PICC.
shivanandgowdakr 0:f0aa9cbf7f0e 832 */
shivanandgowdakr 0:f0aa9cbf7f0e 833 uint8_t MFRC522::MIFARE_Read(uint8_t blockAddr, uint8_t *buffer, uint8_t *bufferSize)
shivanandgowdakr 0:f0aa9cbf7f0e 834 {
shivanandgowdakr 0:f0aa9cbf7f0e 835 uint8_t result = STATUS_NO_ROOM;
shivanandgowdakr 0:f0aa9cbf7f0e 836
shivanandgowdakr 0:f0aa9cbf7f0e 837 // Sanity check
shivanandgowdakr 0:f0aa9cbf7f0e 838 if ((buffer == NULL) || (*bufferSize < 18))
shivanandgowdakr 0:f0aa9cbf7f0e 839 {
shivanandgowdakr 0:f0aa9cbf7f0e 840 return result;
shivanandgowdakr 0:f0aa9cbf7f0e 841 }
shivanandgowdakr 0:f0aa9cbf7f0e 842
shivanandgowdakr 0:f0aa9cbf7f0e 843 // Build command buffer
shivanandgowdakr 0:f0aa9cbf7f0e 844 buffer[0] = PICC_CMD_MF_READ;
shivanandgowdakr 0:f0aa9cbf7f0e 845 buffer[1] = blockAddr;
shivanandgowdakr 0:f0aa9cbf7f0e 846
shivanandgowdakr 0:f0aa9cbf7f0e 847 // Calculate CRC_A
shivanandgowdakr 0:f0aa9cbf7f0e 848 result = PCD_CalculateCRC(buffer, 2, &buffer[2]);
shivanandgowdakr 0:f0aa9cbf7f0e 849 if (result != STATUS_OK)
shivanandgowdakr 0:f0aa9cbf7f0e 850 {
shivanandgowdakr 0:f0aa9cbf7f0e 851 return result;
shivanandgowdakr 0:f0aa9cbf7f0e 852 }
shivanandgowdakr 0:f0aa9cbf7f0e 853
shivanandgowdakr 0:f0aa9cbf7f0e 854 // Transmit the buffer and receive the response, validate CRC_A.
shivanandgowdakr 0:f0aa9cbf7f0e 855 return PCD_TransceiveData(buffer, 4, buffer, bufferSize, NULL, 0, true);
shivanandgowdakr 0:f0aa9cbf7f0e 856 } // End MIFARE_Read()
shivanandgowdakr 0:f0aa9cbf7f0e 857
shivanandgowdakr 0:f0aa9cbf7f0e 858 /*
shivanandgowdakr 0:f0aa9cbf7f0e 859 * Writes 16 bytes to the active PICC.
shivanandgowdakr 0:f0aa9cbf7f0e 860 */
shivanandgowdakr 0:f0aa9cbf7f0e 861 uint8_t MFRC522::MIFARE_Write(uint8_t blockAddr, uint8_t *buffer, uint8_t bufferSize)
shivanandgowdakr 0:f0aa9cbf7f0e 862 {
shivanandgowdakr 0:f0aa9cbf7f0e 863 uint8_t result;
shivanandgowdakr 0:f0aa9cbf7f0e 864
shivanandgowdakr 0:f0aa9cbf7f0e 865 // Sanity check
shivanandgowdakr 0:f0aa9cbf7f0e 866 if (buffer == NULL || bufferSize < 16)
shivanandgowdakr 0:f0aa9cbf7f0e 867 {
shivanandgowdakr 0:f0aa9cbf7f0e 868 return STATUS_INVALID;
shivanandgowdakr 0:f0aa9cbf7f0e 869 }
shivanandgowdakr 0:f0aa9cbf7f0e 870
shivanandgowdakr 0:f0aa9cbf7f0e 871 // Mifare Classic protocol requires two communications to perform a write.
shivanandgowdakr 0:f0aa9cbf7f0e 872 // Step 1: Tell the PICC we want to write to block blockAddr.
shivanandgowdakr 0:f0aa9cbf7f0e 873 uint8_t cmdBuffer[2];
shivanandgowdakr 0:f0aa9cbf7f0e 874 cmdBuffer[0] = PICC_CMD_MF_WRITE;
shivanandgowdakr 0:f0aa9cbf7f0e 875 cmdBuffer[1] = blockAddr;
shivanandgowdakr 0:f0aa9cbf7f0e 876 // Adds CRC_A and checks that the response is MF_ACK.
shivanandgowdakr 0:f0aa9cbf7f0e 877 result = PCD_MIFARE_Transceive(cmdBuffer, 2);
shivanandgowdakr 0:f0aa9cbf7f0e 878 if (result != STATUS_OK)
shivanandgowdakr 0:f0aa9cbf7f0e 879 {
shivanandgowdakr 0:f0aa9cbf7f0e 880 return result;
shivanandgowdakr 0:f0aa9cbf7f0e 881 }
shivanandgowdakr 0:f0aa9cbf7f0e 882
shivanandgowdakr 0:f0aa9cbf7f0e 883 // Step 2: Transfer the data
shivanandgowdakr 0:f0aa9cbf7f0e 884 // Adds CRC_A and checks that the response is MF_ACK.
shivanandgowdakr 0:f0aa9cbf7f0e 885 result = PCD_MIFARE_Transceive(buffer, bufferSize);
shivanandgowdakr 0:f0aa9cbf7f0e 886 if (result != STATUS_OK)
shivanandgowdakr 0:f0aa9cbf7f0e 887 {
shivanandgowdakr 0:f0aa9cbf7f0e 888 return result;
shivanandgowdakr 0:f0aa9cbf7f0e 889 }
shivanandgowdakr 0:f0aa9cbf7f0e 890
shivanandgowdakr 0:f0aa9cbf7f0e 891 return STATUS_OK;
shivanandgowdakr 0:f0aa9cbf7f0e 892 } // End MIFARE_Write()
shivanandgowdakr 0:f0aa9cbf7f0e 893
shivanandgowdakr 0:f0aa9cbf7f0e 894 /*
shivanandgowdakr 0:f0aa9cbf7f0e 895 * Writes a 4 byte page to the active MIFARE Ultralight PICC.
shivanandgowdakr 0:f0aa9cbf7f0e 896 */
shivanandgowdakr 0:f0aa9cbf7f0e 897 uint8_t MFRC522::MIFARE_UltralightWrite(uint8_t page, uint8_t *buffer, uint8_t bufferSize)
shivanandgowdakr 0:f0aa9cbf7f0e 898 {
shivanandgowdakr 0:f0aa9cbf7f0e 899 uint8_t result;
shivanandgowdakr 0:f0aa9cbf7f0e 900
shivanandgowdakr 0:f0aa9cbf7f0e 901 // Sanity check
shivanandgowdakr 0:f0aa9cbf7f0e 902 if (buffer == NULL || bufferSize < 4)
shivanandgowdakr 0:f0aa9cbf7f0e 903 {
shivanandgowdakr 0:f0aa9cbf7f0e 904 return STATUS_INVALID;
shivanandgowdakr 0:f0aa9cbf7f0e 905 }
shivanandgowdakr 0:f0aa9cbf7f0e 906
shivanandgowdakr 0:f0aa9cbf7f0e 907 // Build commmand buffer
shivanandgowdakr 0:f0aa9cbf7f0e 908 uint8_t cmdBuffer[6];
shivanandgowdakr 0:f0aa9cbf7f0e 909 cmdBuffer[0] = PICC_CMD_UL_WRITE;
shivanandgowdakr 0:f0aa9cbf7f0e 910 cmdBuffer[1] = page;
shivanandgowdakr 0:f0aa9cbf7f0e 911 memcpy(&cmdBuffer[2], buffer, 4);
shivanandgowdakr 0:f0aa9cbf7f0e 912
shivanandgowdakr 0:f0aa9cbf7f0e 913 // Perform the write
shivanandgowdakr 0:f0aa9cbf7f0e 914 result = PCD_MIFARE_Transceive(cmdBuffer, 6); // Adds CRC_A and checks that the response is MF_ACK.
shivanandgowdakr 0:f0aa9cbf7f0e 915 if (result != STATUS_OK)
shivanandgowdakr 0:f0aa9cbf7f0e 916 {
shivanandgowdakr 0:f0aa9cbf7f0e 917 return result;
shivanandgowdakr 0:f0aa9cbf7f0e 918 }
shivanandgowdakr 0:f0aa9cbf7f0e 919
shivanandgowdakr 0:f0aa9cbf7f0e 920 return STATUS_OK;
shivanandgowdakr 0:f0aa9cbf7f0e 921 } // End MIFARE_Ultralight_Write()
shivanandgowdakr 0:f0aa9cbf7f0e 922
shivanandgowdakr 0:f0aa9cbf7f0e 923 /*
shivanandgowdakr 0:f0aa9cbf7f0e 924 * MIFARE Decrement subtracts the delta from the value of the addressed block, and stores the result in a volatile memory.
shivanandgowdakr 0:f0aa9cbf7f0e 925 */
shivanandgowdakr 0:f0aa9cbf7f0e 926 uint8_t MFRC522::MIFARE_Decrement(uint8_t blockAddr, uint32_t delta)
shivanandgowdakr 0:f0aa9cbf7f0e 927 {
shivanandgowdakr 0:f0aa9cbf7f0e 928 return MIFARE_TwoStepHelper(PICC_CMD_MF_DECREMENT, blockAddr, delta);
shivanandgowdakr 0:f0aa9cbf7f0e 929 } // End MIFARE_Decrement()
shivanandgowdakr 0:f0aa9cbf7f0e 930
shivanandgowdakr 0:f0aa9cbf7f0e 931 /*
shivanandgowdakr 0:f0aa9cbf7f0e 932 * MIFARE Increment adds the delta to the value of the addressed block, and stores the result in a volatile memory.
shivanandgowdakr 0:f0aa9cbf7f0e 933 */
shivanandgowdakr 0:f0aa9cbf7f0e 934 uint8_t MFRC522::MIFARE_Increment(uint8_t blockAddr, uint32_t delta)
shivanandgowdakr 0:f0aa9cbf7f0e 935 {
shivanandgowdakr 0:f0aa9cbf7f0e 936 return MIFARE_TwoStepHelper(PICC_CMD_MF_INCREMENT, blockAddr, delta);
shivanandgowdakr 0:f0aa9cbf7f0e 937 } // End MIFARE_Increment()
shivanandgowdakr 0:f0aa9cbf7f0e 938
shivanandgowdakr 0:f0aa9cbf7f0e 939 /**
shivanandgowdakr 0:f0aa9cbf7f0e 940 * MIFARE Restore copies the value of the addressed block into a volatile memory.
shivanandgowdakr 0:f0aa9cbf7f0e 941 */
shivanandgowdakr 0:f0aa9cbf7f0e 942 uint8_t MFRC522::MIFARE_Restore(uint8_t blockAddr)
shivanandgowdakr 0:f0aa9cbf7f0e 943 {
shivanandgowdakr 0:f0aa9cbf7f0e 944 // The datasheet describes Restore as a two step operation, but does not explain what data to transfer in step 2.
shivanandgowdakr 0:f0aa9cbf7f0e 945 // Doing only a single step does not work, so I chose to transfer 0L in step two.
shivanandgowdakr 0:f0aa9cbf7f0e 946 return MIFARE_TwoStepHelper(PICC_CMD_MF_RESTORE, blockAddr, 0L);
shivanandgowdakr 0:f0aa9cbf7f0e 947 } // End MIFARE_Restore()
shivanandgowdakr 0:f0aa9cbf7f0e 948
shivanandgowdakr 0:f0aa9cbf7f0e 949 /*
shivanandgowdakr 0:f0aa9cbf7f0e 950 * Helper function for the two-step MIFARE Classic protocol operations Decrement, Increment and Restore.
shivanandgowdakr 0:f0aa9cbf7f0e 951 */
shivanandgowdakr 0:f0aa9cbf7f0e 952 uint8_t MFRC522::MIFARE_TwoStepHelper(uint8_t command, uint8_t blockAddr, uint32_t data)
shivanandgowdakr 0:f0aa9cbf7f0e 953 {
shivanandgowdakr 0:f0aa9cbf7f0e 954 uint8_t result;
shivanandgowdakr 0:f0aa9cbf7f0e 955 uint8_t cmdBuffer[2]; // We only need room for 2 bytes.
shivanandgowdakr 0:f0aa9cbf7f0e 956
shivanandgowdakr 0:f0aa9cbf7f0e 957 // Step 1: Tell the PICC the command and block address
shivanandgowdakr 0:f0aa9cbf7f0e 958 cmdBuffer[0] = command;
shivanandgowdakr 0:f0aa9cbf7f0e 959 cmdBuffer[1] = blockAddr;
shivanandgowdakr 0:f0aa9cbf7f0e 960
shivanandgowdakr 0:f0aa9cbf7f0e 961 // Adds CRC_A and checks that the response is MF_ACK.
shivanandgowdakr 0:f0aa9cbf7f0e 962 result = PCD_MIFARE_Transceive(cmdBuffer, 2);
shivanandgowdakr 0:f0aa9cbf7f0e 963 if (result != STATUS_OK)
shivanandgowdakr 0:f0aa9cbf7f0e 964 {
shivanandgowdakr 0:f0aa9cbf7f0e 965 return result;
shivanandgowdakr 0:f0aa9cbf7f0e 966 }
shivanandgowdakr 0:f0aa9cbf7f0e 967
shivanandgowdakr 0:f0aa9cbf7f0e 968 // Step 2: Transfer the data
shivanandgowdakr 0:f0aa9cbf7f0e 969 // Adds CRC_A and accept timeout as success.
shivanandgowdakr 0:f0aa9cbf7f0e 970 result = PCD_MIFARE_Transceive((uint8_t *) &data, 4, true);
shivanandgowdakr 0:f0aa9cbf7f0e 971 if (result != STATUS_OK)
shivanandgowdakr 0:f0aa9cbf7f0e 972 {
shivanandgowdakr 0:f0aa9cbf7f0e 973 return result;
shivanandgowdakr 0:f0aa9cbf7f0e 974 }
shivanandgowdakr 0:f0aa9cbf7f0e 975
shivanandgowdakr 0:f0aa9cbf7f0e 976 return STATUS_OK;
shivanandgowdakr 0:f0aa9cbf7f0e 977 } // End MIFARE_TwoStepHelper()
shivanandgowdakr 0:f0aa9cbf7f0e 978
shivanandgowdakr 0:f0aa9cbf7f0e 979 /*
shivanandgowdakr 0:f0aa9cbf7f0e 980 * MIFARE Transfer writes the value stored in the volatile memory into one MIFARE Classic block.
shivanandgowdakr 0:f0aa9cbf7f0e 981 */
shivanandgowdakr 0:f0aa9cbf7f0e 982 uint8_t MFRC522::MIFARE_Transfer(uint8_t blockAddr)
shivanandgowdakr 0:f0aa9cbf7f0e 983 {
shivanandgowdakr 0:f0aa9cbf7f0e 984 uint8_t cmdBuffer[2]; // We only need room for 2 bytes.
shivanandgowdakr 0:f0aa9cbf7f0e 985
shivanandgowdakr 0:f0aa9cbf7f0e 986 // Tell the PICC we want to transfer the result into block blockAddr.
shivanandgowdakr 0:f0aa9cbf7f0e 987 cmdBuffer[0] = PICC_CMD_MF_TRANSFER;
shivanandgowdakr 0:f0aa9cbf7f0e 988 cmdBuffer[1] = blockAddr;
shivanandgowdakr 0:f0aa9cbf7f0e 989
shivanandgowdakr 0:f0aa9cbf7f0e 990 // Adds CRC_A and checks that the response is MF_ACK.
shivanandgowdakr 0:f0aa9cbf7f0e 991 return PCD_MIFARE_Transceive(cmdBuffer, 2);
shivanandgowdakr 0:f0aa9cbf7f0e 992 } // End MIFARE_Transfer()
shivanandgowdakr 0:f0aa9cbf7f0e 993
shivanandgowdakr 0:f0aa9cbf7f0e 994
shivanandgowdakr 0:f0aa9cbf7f0e 995 /////////////////////////////////////////////////////////////////////////////////////
shivanandgowdakr 0:f0aa9cbf7f0e 996 // Support functions
shivanandgowdakr 0:f0aa9cbf7f0e 997 /////////////////////////////////////////////////////////////////////////////////////
shivanandgowdakr 0:f0aa9cbf7f0e 998
shivanandgowdakr 0:f0aa9cbf7f0e 999 /*
shivanandgowdakr 0:f0aa9cbf7f0e 1000 * Wrapper for MIFARE protocol communication.
shivanandgowdakr 0:f0aa9cbf7f0e 1001 * Adds CRC_A, executes the Transceive command and checks that the response is MF_ACK or a timeout.
shivanandgowdakr 0:f0aa9cbf7f0e 1002 */
shivanandgowdakr 0:f0aa9cbf7f0e 1003 uint8_t MFRC522::PCD_MIFARE_Transceive(uint8_t *sendData, uint8_t sendLen, bool acceptTimeout)
shivanandgowdakr 0:f0aa9cbf7f0e 1004 {
shivanandgowdakr 0:f0aa9cbf7f0e 1005 uint8_t result;
shivanandgowdakr 0:f0aa9cbf7f0e 1006 uint8_t cmdBuffer[18]; // We need room for 16 bytes data and 2 bytes CRC_A.
shivanandgowdakr 0:f0aa9cbf7f0e 1007
shivanandgowdakr 0:f0aa9cbf7f0e 1008 // Sanity check
shivanandgowdakr 0:f0aa9cbf7f0e 1009 if (sendData == NULL || sendLen > 16)
shivanandgowdakr 0:f0aa9cbf7f0e 1010 {
shivanandgowdakr 0:f0aa9cbf7f0e 1011 return STATUS_INVALID;
shivanandgowdakr 0:f0aa9cbf7f0e 1012 }
shivanandgowdakr 0:f0aa9cbf7f0e 1013
shivanandgowdakr 0:f0aa9cbf7f0e 1014 // Copy sendData[] to cmdBuffer[] and add CRC_A
shivanandgowdakr 0:f0aa9cbf7f0e 1015 memcpy(cmdBuffer, sendData, sendLen);
shivanandgowdakr 0:f0aa9cbf7f0e 1016 result = PCD_CalculateCRC(cmdBuffer, sendLen, &cmdBuffer[sendLen]);
shivanandgowdakr 0:f0aa9cbf7f0e 1017 if (result != STATUS_OK)
shivanandgowdakr 0:f0aa9cbf7f0e 1018 {
shivanandgowdakr 0:f0aa9cbf7f0e 1019 return result;
shivanandgowdakr 0:f0aa9cbf7f0e 1020 }
shivanandgowdakr 0:f0aa9cbf7f0e 1021
shivanandgowdakr 0:f0aa9cbf7f0e 1022 sendLen += 2;
shivanandgowdakr 0:f0aa9cbf7f0e 1023
shivanandgowdakr 0:f0aa9cbf7f0e 1024 // Transceive the data, store the reply in cmdBuffer[]
shivanandgowdakr 0:f0aa9cbf7f0e 1025 uint8_t waitIRq = 0x30; // RxIRq and IdleIRq
shivanandgowdakr 0:f0aa9cbf7f0e 1026 uint8_t cmdBufferSize = sizeof(cmdBuffer);
shivanandgowdakr 0:f0aa9cbf7f0e 1027 uint8_t validBits = 0;
shivanandgowdakr 0:f0aa9cbf7f0e 1028 result = PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, cmdBuffer, sendLen, cmdBuffer, &cmdBufferSize, &validBits);
shivanandgowdakr 0:f0aa9cbf7f0e 1029 if (acceptTimeout && result == STATUS_TIMEOUT)
shivanandgowdakr 0:f0aa9cbf7f0e 1030 {
shivanandgowdakr 0:f0aa9cbf7f0e 1031 return STATUS_OK;
shivanandgowdakr 0:f0aa9cbf7f0e 1032 }
shivanandgowdakr 0:f0aa9cbf7f0e 1033
shivanandgowdakr 0:f0aa9cbf7f0e 1034 if (result != STATUS_OK)
shivanandgowdakr 0:f0aa9cbf7f0e 1035 {
shivanandgowdakr 0:f0aa9cbf7f0e 1036 return result;
shivanandgowdakr 0:f0aa9cbf7f0e 1037 }
shivanandgowdakr 0:f0aa9cbf7f0e 1038
shivanandgowdakr 0:f0aa9cbf7f0e 1039 // The PICC must reply with a 4 bit ACK
shivanandgowdakr 0:f0aa9cbf7f0e 1040 if (cmdBufferSize != 1 || validBits != 4)
shivanandgowdakr 0:f0aa9cbf7f0e 1041 {
shivanandgowdakr 0:f0aa9cbf7f0e 1042 return STATUS_ERROR;
shivanandgowdakr 0:f0aa9cbf7f0e 1043 }
shivanandgowdakr 0:f0aa9cbf7f0e 1044
shivanandgowdakr 0:f0aa9cbf7f0e 1045 if (cmdBuffer[0] != MF_ACK)
shivanandgowdakr 0:f0aa9cbf7f0e 1046 {
shivanandgowdakr 0:f0aa9cbf7f0e 1047 return STATUS_MIFARE_NACK;
shivanandgowdakr 0:f0aa9cbf7f0e 1048 }
shivanandgowdakr 0:f0aa9cbf7f0e 1049
shivanandgowdakr 0:f0aa9cbf7f0e 1050 return STATUS_OK;
shivanandgowdakr 0:f0aa9cbf7f0e 1051 } // End PCD_MIFARE_Transceive()
shivanandgowdakr 0:f0aa9cbf7f0e 1052
shivanandgowdakr 0:f0aa9cbf7f0e 1053
shivanandgowdakr 0:f0aa9cbf7f0e 1054 /*
shivanandgowdakr 0:f0aa9cbf7f0e 1055 * Translates the SAK (Select Acknowledge) to a PICC type.
shivanandgowdakr 0:f0aa9cbf7f0e 1056 */
shivanandgowdakr 0:f0aa9cbf7f0e 1057 uint8_t MFRC522::PICC_GetType(uint8_t sak)
shivanandgowdakr 0:f0aa9cbf7f0e 1058 {
shivanandgowdakr 0:f0aa9cbf7f0e 1059 uint8_t retType = PICC_TYPE_UNKNOWN;
shivanandgowdakr 0:f0aa9cbf7f0e 1060
shivanandgowdakr 0:f0aa9cbf7f0e 1061 if (sak & 0x04)
shivanandgowdakr 0:f0aa9cbf7f0e 1062 { // UID not complete
shivanandgowdakr 0:f0aa9cbf7f0e 1063 retType = PICC_TYPE_NOT_COMPLETE;
shivanandgowdakr 0:f0aa9cbf7f0e 1064 }
shivanandgowdakr 0:f0aa9cbf7f0e 1065 else
shivanandgowdakr 0:f0aa9cbf7f0e 1066 {
shivanandgowdakr 0:f0aa9cbf7f0e 1067 switch (sak)
shivanandgowdakr 0:f0aa9cbf7f0e 1068 {
shivanandgowdakr 0:f0aa9cbf7f0e 1069 case 0x09: retType = PICC_TYPE_MIFARE_MINI; break;
shivanandgowdakr 0:f0aa9cbf7f0e 1070 case 0x08: retType = PICC_TYPE_MIFARE_1K; break;
shivanandgowdakr 0:f0aa9cbf7f0e 1071 case 0x18: retType = PICC_TYPE_MIFARE_4K; break;
shivanandgowdakr 0:f0aa9cbf7f0e 1072 case 0x00: retType = PICC_TYPE_MIFARE_UL; break;
shivanandgowdakr 0:f0aa9cbf7f0e 1073 case 0x10:
shivanandgowdakr 0:f0aa9cbf7f0e 1074 case 0x11: retType = PICC_TYPE_MIFARE_PLUS; break;
shivanandgowdakr 0:f0aa9cbf7f0e 1075 case 0x01: retType = PICC_TYPE_TNP3XXX; break;
shivanandgowdakr 0:f0aa9cbf7f0e 1076 default:
shivanandgowdakr 0:f0aa9cbf7f0e 1077 if (sak & 0x20)
shivanandgowdakr 0:f0aa9cbf7f0e 1078 {
shivanandgowdakr 0:f0aa9cbf7f0e 1079 retType = PICC_TYPE_ISO_14443_4;
shivanandgowdakr 0:f0aa9cbf7f0e 1080 }
shivanandgowdakr 0:f0aa9cbf7f0e 1081 else if (sak & 0x40)
shivanandgowdakr 0:f0aa9cbf7f0e 1082 {
shivanandgowdakr 0:f0aa9cbf7f0e 1083 retType = PICC_TYPE_ISO_18092;
shivanandgowdakr 0:f0aa9cbf7f0e 1084 }
shivanandgowdakr 0:f0aa9cbf7f0e 1085 break;
shivanandgowdakr 0:f0aa9cbf7f0e 1086 }
shivanandgowdakr 0:f0aa9cbf7f0e 1087 }
shivanandgowdakr 0:f0aa9cbf7f0e 1088
shivanandgowdakr 0:f0aa9cbf7f0e 1089 return (retType);
shivanandgowdakr 0:f0aa9cbf7f0e 1090 } // End PICC_GetType()
shivanandgowdakr 0:f0aa9cbf7f0e 1091
shivanandgowdakr 0:f0aa9cbf7f0e 1092 /*
shivanandgowdakr 0:f0aa9cbf7f0e 1093 * Returns a string pointer to the PICC type name.
shivanandgowdakr 0:f0aa9cbf7f0e 1094 */
shivanandgowdakr 0:f0aa9cbf7f0e 1095 char* MFRC522::PICC_GetTypeName(uint8_t piccType)
shivanandgowdakr 0:f0aa9cbf7f0e 1096 {
shivanandgowdakr 0:f0aa9cbf7f0e 1097 if(piccType == PICC_TYPE_NOT_COMPLETE)
shivanandgowdakr 0:f0aa9cbf7f0e 1098 {
shivanandgowdakr 0:f0aa9cbf7f0e 1099 piccType = MFRC522_MaxPICCs - 1;
shivanandgowdakr 0:f0aa9cbf7f0e 1100 }
shivanandgowdakr 0:f0aa9cbf7f0e 1101
shivanandgowdakr 0:f0aa9cbf7f0e 1102 return((char *) _TypeNamePICC[piccType]);
shivanandgowdakr 0:f0aa9cbf7f0e 1103 } // End PICC_GetTypeName()
shivanandgowdakr 0:f0aa9cbf7f0e 1104
shivanandgowdakr 0:f0aa9cbf7f0e 1105 /*
shivanandgowdakr 0:f0aa9cbf7f0e 1106 * Returns a string pointer to a status code name.
shivanandgowdakr 0:f0aa9cbf7f0e 1107 */
shivanandgowdakr 0:f0aa9cbf7f0e 1108 char* MFRC522::GetStatusCodeName(uint8_t code)
shivanandgowdakr 0:f0aa9cbf7f0e 1109 {
shivanandgowdakr 0:f0aa9cbf7f0e 1110 return((char *) _ErrorMessage[code]);
shivanandgowdakr 0:f0aa9cbf7f0e 1111 } // End GetStatusCodeName()
shivanandgowdakr 0:f0aa9cbf7f0e 1112
shivanandgowdakr 0:f0aa9cbf7f0e 1113 /*
shivanandgowdakr 0:f0aa9cbf7f0e 1114 * Calculates the bit pattern needed for the specified access bits. In the [C1 C2 C3] tupples C1 is MSB (=4) and C3 is LSB (=1).
shivanandgowdakr 0:f0aa9cbf7f0e 1115 */
shivanandgowdakr 0:f0aa9cbf7f0e 1116 void MFRC522::MIFARE_SetAccessBits(uint8_t *accessBitBuffer,
shivanandgowdakr 0:f0aa9cbf7f0e 1117 uint8_t g0,
shivanandgowdakr 0:f0aa9cbf7f0e 1118 uint8_t g1,
shivanandgowdakr 0:f0aa9cbf7f0e 1119 uint8_t g2,
shivanandgowdakr 0:f0aa9cbf7f0e 1120 uint8_t g3)
shivanandgowdakr 0:f0aa9cbf7f0e 1121 {
shivanandgowdakr 0:f0aa9cbf7f0e 1122 uint8_t c1 = ((g3 & 4) << 1) | ((g2 & 4) << 0) | ((g1 & 4) >> 1) | ((g0 & 4) >> 2);
shivanandgowdakr 0:f0aa9cbf7f0e 1123 uint8_t c2 = ((g3 & 2) << 2) | ((g2 & 2) << 1) | ((g1 & 2) << 0) | ((g0 & 2) >> 1);
shivanandgowdakr 0:f0aa9cbf7f0e 1124 uint8_t c3 = ((g3 & 1) << 3) | ((g2 & 1) << 2) | ((g1 & 1) << 1) | ((g0 & 1) << 0);
shivanandgowdakr 0:f0aa9cbf7f0e 1125
shivanandgowdakr 0:f0aa9cbf7f0e 1126 accessBitBuffer[0] = (~c2 & 0xF) << 4 | (~c1 & 0xF);
shivanandgowdakr 0:f0aa9cbf7f0e 1127 accessBitBuffer[1] = c1 << 4 | (~c3 & 0xF);
shivanandgowdakr 0:f0aa9cbf7f0e 1128 accessBitBuffer[2] = c3 << 4 | c2;
shivanandgowdakr 0:f0aa9cbf7f0e 1129 } // End MIFARE_SetAccessBits()
shivanandgowdakr 0:f0aa9cbf7f0e 1130
shivanandgowdakr 0:f0aa9cbf7f0e 1131 /////////////////////////////////////////////////////////////////////////////////////
shivanandgowdakr 0:f0aa9cbf7f0e 1132 // Convenience functions - does not add extra functionality
shivanandgowdakr 0:f0aa9cbf7f0e 1133 /////////////////////////////////////////////////////////////////////////////////////
shivanandgowdakr 0:f0aa9cbf7f0e 1134
shivanandgowdakr 0:f0aa9cbf7f0e 1135 /*
shivanandgowdakr 0:f0aa9cbf7f0e 1136 * Returns true if a PICC responds to PICC_CMD_REQA.
shivanandgowdakr 0:f0aa9cbf7f0e 1137 * Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored.
shivanandgowdakr 0:f0aa9cbf7f0e 1138 */
shivanandgowdakr 0:f0aa9cbf7f0e 1139 bool MFRC522::PICC_IsNewCardPresent(void)
shivanandgowdakr 0:f0aa9cbf7f0e 1140 {
shivanandgowdakr 0:f0aa9cbf7f0e 1141 uint8_t bufferATQA[2];
shivanandgowdakr 0:f0aa9cbf7f0e 1142 uint8_t bufferSize = sizeof(bufferATQA);
shivanandgowdakr 0:f0aa9cbf7f0e 1143 uint8_t result = PICC_RequestA(bufferATQA, &bufferSize);
shivanandgowdakr 0:f0aa9cbf7f0e 1144 return ((result == STATUS_OK) || (result == STATUS_COLLISION));
shivanandgowdakr 0:f0aa9cbf7f0e 1145 } // End PICC_IsNewCardPresent()
shivanandgowdakr 0:f0aa9cbf7f0e 1146
shivanandgowdakr 0:f0aa9cbf7f0e 1147 /*
shivanandgowdakr 0:f0aa9cbf7f0e 1148 * Simple wrapper around PICC_Select.
shivanandgowdakr 0:f0aa9cbf7f0e 1149 */
shivanandgowdakr 0:f0aa9cbf7f0e 1150 bool MFRC522::PICC_ReadCardSerial(void)
shivanandgowdakr 0:f0aa9cbf7f0e 1151 {
shivanandgowdakr 0:f0aa9cbf7f0e 1152 uint8_t result = PICC_Select(&uid);
shivanandgowdakr 0:f0aa9cbf7f0e 1153 return (result == STATUS_OK);
shivanandgowdakr 0:f0aa9cbf7f0e 1154 } // End PICC_ReadCardSerial()