Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of MQTT by
MQTTClient.h
- Committer:
- icraggs
- Date:
- 2014-08-01
- Revision:
- 40:9623a2c9c8ac
- Parent:
- 37:e3d64f9b986c
- Parent:
- 34:e18a166198df
- Child:
- 41:b7e86fa6dbb8
File content as of revision 40:9623a2c9c8ac:
/******************************************************************************* * Copyright (c) 2014 IBM Corp. * * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * and Eclipse Distribution License v1.0 which accompany this distribution. * * The Eclipse Public License is available at * http://www.eclipse.org/legal/epl-v10.html * and the Eclipse Distribution License is available at * http://www.eclipse.org/org/documents/edl-v10.php. * * Contributors: * Ian Craggs - initial API and implementation and/or initial documentation *******************************************************************************/ /* TODO: ensure publish packets are retried on reconnect */ #if !defined(MQTTCLIENT_H) #define MQTTCLIENT_H #include "FP.h" #include "MQTTPacket.h" #include "stdio.h" namespace MQTT { enum QoS { QOS0, QOS1, QOS2 }; // all failure return codes must be negative enum returnCode { BUFFER_OVERFLOW = -2, FAILURE = -1, SUCCESS = 0 }; struct Message { enum QoS qos; bool retained; bool dup; unsigned short id; void *payload; size_t payloadlen; }; struct MessageData { MessageData(MQTTString &aTopicName, struct Message &aMessage) : message(aMessage), topicName(aTopicName) { } struct Message &message; MQTTString &topicName; }; class PacketId { public: PacketId() { next = 0; } int getNext() { return next = (next == MAX_PACKET_ID) ? 1 : ++next; } private: static const int MAX_PACKET_ID = 65535; int next; }; class QoS2 { public: private: }; /** * @class Client * @brief blocking, non-threaded MQTT client API * * This version of the API blocks on all method calls, until they are complete. This means that only one * MQTT request can be in process at any one time. * @param Network a network class which supports send, receive * @param Timer a timer class with the methods: */ template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE = 100, int MAX_MESSAGE_HANDLERS = 5> class Client { public: typedef void (*messageHandler)(MessageData&); /** Construct the client * @param network - pointer to an instance of the Network class - must be connected to the endpoint * before calling MQTT connect * @param limits an instance of the Limit class - to alter limits as required */ Client(Network& network, unsigned int command_timeout_ms = 30000); /** Set the default message handling callback - used for any message which does not match a subscription message handler * @param mh - pointer to the callback function */ void setDefaultMessageHandler(messageHandler mh) { defaultMessageHandler.attach(mh); } /** MQTT Connect - send an MQTT connect packet down the network and wait for a Connack * The nework object must be connected to the network endpoint before calling this * @param options - connect options * @return success code - */ int connect(MQTTPacket_connectData* options = 0); /** MQTT Publish - send an MQTT publish packet and wait for all acks to complete for all QoSs * @param topic - the topic to publish to * @param message - the message to send * @return success code - */ int publish(const char* topicName, Message* message); /** MQTT Subscribe - send an MQTT subscribe packet and wait for the suback * @param topicFilter - a topic pattern which can include wildcards * @param qos - the MQTT QoS to subscribe at * @param mh - the callback function to be invoked when a message is received for this subscription * @return success code - */ int subscribe(const char* topicFilter, enum QoS qos, messageHandler mh); /** MQTT Unsubscribe - send an MQTT unsubscribe packet and wait for the unsuback * @param topicFilter - a topic pattern which can include wildcards * @return success code - */ int unsubscribe(const char* topicFilter); /** MQTT Disconnect - send an MQTT disconnect packet, and clean up any state * @return success code - */ int disconnect(); /** A call to this API must be made within the keepAlive interval to keep the MQTT connection alive * yield can be called if no other MQTT operation is needed. This will also allow messages to be * received. * @param timeout_ms the time to wait, in milliseconds * @return success code - on failure, this means the client has disconnected */ int yield(int timeout_ms = 1000); private: int cycle(Timer& timer); int waitfor(int packet_type, Timer& timer); int keepalive(); int decodePacket(int* value, int timeout); int readPacket(Timer& timer); int sendPacket(int length, Timer& timer); int deliverMessage(MQTTString& topicName, Message& message); bool isTopicMatched(char* topicFilter, MQTTString& topicName); Network& ipstack; unsigned int command_timeout_ms; unsigned char buf[MAX_MQTT_PACKET_SIZE]; unsigned char readbuf[MAX_MQTT_PACKET_SIZE]; Timer ping_timer; unsigned int keepAliveInterval; bool ping_outstanding; PacketId packetid; struct MessageHandlers { const char* topicFilter; FP<void, MessageData&> fp; } messageHandlers[MAX_MESSAGE_HANDLERS]; // Message handlers are indexed by subscription topic FP<void, MessageData&> defaultMessageHandler; bool isconnected; #if 0 struct { bool used; int id; } QoS2messages[MAX_QOS2_MESSAGES]; #endif }; } template<class Network, class Timer, int a, int MAX_MESSAGE_HANDLERS> MQTT::Client<Network, Timer, a, MAX_MESSAGE_HANDLERS>::Client(Network& network, unsigned int command_timeout_ms) : ipstack(network), packetid() { ping_timer = Timer(); ping_outstanding = 0; for (int i = 0; i < MAX_MESSAGE_HANDLERS; ++i) messageHandlers[i].topicFilter = 0; this->command_timeout_ms = command_timeout_ms; isconnected = false; } template<class Network, class Timer, int a, int b> int MQTT::Client<Network, Timer, a, b>::sendPacket(int length, Timer& timer) { int rc = FAILURE, sent = 0; while (sent < length && !timer.expired()) { rc = ipstack.write(&buf[sent], length, timer.left_ms()); if (rc < 0) // there was an error writing the data break; sent += rc; } if (sent == length) { ping_timer.countdown(this->keepAliveInterval); // record the fact that we have successfully sent the packet rc = SUCCESS; } else rc = FAILURE; return rc; } template<class Network, class Timer, int a, int b> int MQTT::Client<Network, Timer, a, b>::decodePacket(int* value, int timeout) { unsigned char c; int multiplier = 1; int len = 0; const int MAX_NO_OF_REMAINING_LENGTH_BYTES = 4; *value = 0; do { int rc = MQTTPACKET_READ_ERROR; if (++len > MAX_NO_OF_REMAINING_LENGTH_BYTES) { rc = MQTTPACKET_READ_ERROR; /* bad data */ goto exit; } rc = ipstack.read(&c, 1, timeout); if (rc != 1) goto exit; *value += (c & 127) * multiplier; multiplier *= 128; } while ((c & 128) != 0); exit: return len; } /** * If any read fails in this method, then we should disconnect from the network, as on reconnect * the packets can be retried. * @param timeout the max time to wait for the packet read to complete, in milliseconds * @return the MQTT packet type, or -1 if none */ template<class Network, class Timer, int a, int b> int MQTT::Client<Network, Timer, a, b>::readPacket(Timer& timer) { int rc = FAILURE; MQTTHeader header = {0}; int len = 0; int rem_len = 0; /* 1. read the header byte. This has the packet type in it */ if (ipstack.read(readbuf, 1, timer.left_ms()) != 1) goto exit; len = 1; /* 2. read the remaining length. This is variable in itself */ decodePacket(&rem_len, timer.left_ms()); len += MQTTPacket_encode(readbuf + 1, rem_len); /* put the original remaining length back into the buffer */ /* 3. read the rest of the buffer using a callback to supply the rest of the data */ if (ipstack.read(readbuf + len, rem_len, timer.left_ms()) != rem_len) goto exit; header.byte = readbuf[0]; rc = header.bits.type; exit: return rc; } // assume topic filter and name is in correct format // # can only be at end // + and # can only be next to separator template<class Network, class Timer, int a, int b> bool MQTT::Client<Network, Timer, a, b>::isTopicMatched(char* topicFilter, MQTTString& topicName) { char* curf = topicFilter; char* curn = topicName.lenstring.data; char* curn_end = curn + topicName.lenstring.len; while (*curf && curn < curn_end) { if (*curn == '/' && *curf != '/') break; if (*curf != '+' && *curf != '#' && *curf != *curn) break; if (*curf == '+') { // skip until we meet the next separator, or end of string char* nextpos = curn + 1; while (nextpos < curn_end && *nextpos != '/') nextpos = ++curn + 1; } else if (*curf == '#') curn = curn_end - 1; // skip until end of string curf++; curn++; }; return (curn == curn_end) && (*curf == '\0'); } template<class Network, class Timer, int a, int MAX_MESSAGE_HANDLERS> int MQTT::Client<Network, Timer, a, MAX_MESSAGE_HANDLERS>::deliverMessage(MQTTString& topicName, Message& message) { int rc = FAILURE; // we have to find the right message handler - indexed by topic for (int i = 0; i < MAX_MESSAGE_HANDLERS; ++i) { if (messageHandlers[i].topicFilter != 0 && (MQTTPacket_equals(&topicName, (char*)messageHandlers[i].topicFilter) || isTopicMatched((char*)messageHandlers[i].topicFilter, topicName))) { if (messageHandlers[i].fp.attached()) { MessageData md(topicName, message); messageHandlers[i].fp(md); rc = SUCCESS; } } } if (rc == FAILURE && defaultMessageHandler.attached()) { MessageData md(topicName, message); defaultMessageHandler(md); rc = SUCCESS; } return rc; } template<class Network, class Timer, int a, int b> int MQTT::Client<Network, Timer, a, b>::yield(int timeout_ms) { int rc = SUCCESS; Timer timer = Timer(); timer.countdown_ms(timeout_ms); while (!timer.expired()) { if (cycle(timer) == FAILURE) { rc = FAILURE; break; } } return rc; } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int b> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, b>::cycle(Timer& timer) { /* get one piece of work off the wire and one pass through */ // read the socket, see what work is due unsigned short packet_type = readPacket(timer); int len = 0, rc = SUCCESS; switch (packet_type) { case CONNACK: case PUBACK: case SUBACK: break; case PUBLISH: MQTTString topicName; Message msg; if (MQTTDeserialize_publish((unsigned char*)&msg.dup, (int*)&msg.qos, (unsigned char*)&msg.retained, (unsigned short*)&msg.id, &topicName, (unsigned char**)&msg.payload, (int*)&msg.payloadlen, readbuf, MAX_MQTT_PACKET_SIZE) != 1) goto exit; // if (msg.qos != QOS2) deliverMessage(topicName, msg); #if 0 else if (isQoS2msgidFree(msg.id)) { UseQoS2msgid(msg.id); deliverMessage(topicName, msg); } #endif if (msg.qos != QOS0) { if (msg.qos == QOS1) len = MQTTSerialize_ack(buf, MAX_MQTT_PACKET_SIZE, PUBACK, 0, msg.id); else if (msg.qos == QOS2) len = MQTTSerialize_ack(buf, MAX_MQTT_PACKET_SIZE, PUBREC, 0, msg.id); if (len <= 0) rc = FAILURE; else rc = sendPacket(len, timer); if (rc == FAILURE) goto exit; // there was a problem } break; case PUBREC: unsigned short mypacketid; unsigned char dup, type; if (MQTTDeserialize_ack(&type, &dup, &mypacketid, readbuf, MAX_MQTT_PACKET_SIZE) != 1) rc = FAILURE; else if ((len = MQTTSerialize_ack(buf, MAX_MQTT_PACKET_SIZE, PUBREL, 0, mypacketid)) <= 0) rc = FAILURE; else if ((rc = sendPacket(len, timer)) != SUCCESS) // send the PUBREL packet rc = FAILURE; // there was a problem if (rc == FAILURE) goto exit; // there was a problem break; case PUBCOMP: break; case PINGRESP: ping_outstanding = false; break; } keepalive(); exit: if (rc == SUCCESS) rc = packet_type; return rc; } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int b> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, b>::keepalive() { int rc = FAILURE; if (keepAliveInterval == 0) { rc = SUCCESS; goto exit; } if (ping_timer.expired()) { if (!ping_outstanding) { Timer timer = Timer(1000); int len = MQTTSerialize_pingreq(buf, MAX_MQTT_PACKET_SIZE); if (len > 0 && (rc = sendPacket(len, timer)) == SUCCESS) // send the ping packet ping_outstanding = true; } } exit: return rc; } // only used in single-threaded mode where one command at a time is in process template<class Network, class Timer, int a, int b> int MQTT::Client<Network, Timer, a, b>::waitfor(int packet_type, Timer& timer) { int rc = FAILURE; do { if (timer.expired()) break; // we timed out } while ((rc = cycle(timer)) != packet_type); return rc; } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int b> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, b>::connect(MQTTPacket_connectData* options) { Timer connect_timer = Timer(command_timeout_ms); int rc = FAILURE; MQTTPacket_connectData default_options = MQTTPacket_connectData_initializer; int len = 0; if (isconnected) // don't send connect packet again if we are already connected goto exit; if (options == 0) options = &default_options; // set default options if none were supplied this->keepAliveInterval = options->keepAliveInterval; ping_timer.countdown(this->keepAliveInterval); if ((len = MQTTSerialize_connect(buf, MAX_MQTT_PACKET_SIZE, options)) <= 0) goto exit; if ((rc = sendPacket(len, connect_timer)) != SUCCESS) // send the connect packet goto exit; // there was a problem // this will be a blocking call, wait for the connack if (waitfor(CONNACK, connect_timer) == CONNACK) { unsigned char connack_rc = 255; bool sessionPresent = false; if (MQTTDeserialize_connack((unsigned char*)&sessionPresent, &connack_rc, readbuf, MAX_MQTT_PACKET_SIZE) == 1) rc = connack_rc; else rc = FAILURE; } else rc = FAILURE; exit: if (rc == SUCCESS) isconnected = true; return rc; } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int MAX_MESSAGE_HANDLERS> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, MAX_MESSAGE_HANDLERS>::subscribe(const char* topicFilter, enum QoS qos, messageHandler messageHandler) { int rc = FAILURE; Timer timer = Timer(command_timeout_ms); int len = 0; MQTTString topic = {(char*)topicFilter, 0, 0}; if (!isconnected) goto exit; len = MQTTSerialize_subscribe(buf, MAX_MQTT_PACKET_SIZE, 0, packetid.getNext(), 1, &topic, (int*)&qos); if (len <= 0) goto exit; if ((rc = sendPacket(len, timer)) != SUCCESS) // send the subscribe packet goto exit; // there was a problem if (waitfor(SUBACK, timer) == SUBACK) // wait for suback { int count = 0, grantedQoS = -1; unsigned short mypacketid; if (MQTTDeserialize_suback(&mypacketid, 1, &count, &grantedQoS, readbuf, MAX_MQTT_PACKET_SIZE) == 1) rc = grantedQoS; // 0, 1, 2 or 0x80 if (rc != 0x80) { for (int i = 0; i < MAX_MESSAGE_HANDLERS; ++i) { if (messageHandlers[i].topicFilter == 0) { messageHandlers[i].topicFilter = topicFilter; messageHandlers[i].fp.attach(messageHandler); rc = 0; break; } } } } else rc = FAILURE; exit: return rc; } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int MAX_MESSAGE_HANDLERS> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, MAX_MESSAGE_HANDLERS>::unsubscribe(const char* topicFilter) { int rc = FAILURE; Timer timer = Timer(command_timeout_ms); MQTTString topic = {(char*)topicFilter, 0, 0}; int len = 0; if (!isconnected) goto exit; if ((len = MQTTSerialize_unsubscribe(buf, MAX_MQTT_PACKET_SIZE, 0, packetid.getNext(), 1, &topic)) <= 0) goto exit; if ((rc = sendPacket(len, timer)) != SUCCESS) // send the subscribe packet goto exit; // there was a problem if (waitfor(UNSUBACK, timer) == UNSUBACK) { unsigned short mypacketid; // should be the same as the packetid above if (MQTTDeserialize_unsuback(&mypacketid, readbuf, MAX_MQTT_PACKET_SIZE) == 1) rc = 0; } else rc = FAILURE; exit: return rc; } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int b> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, b>::publish(const char* topicName, Message* message) { int rc = FAILURE; Timer timer = Timer(command_timeout_ms); MQTTString topicString = {(char*)topicName, 0, 0}; int len = 0; if (!isconnected) goto exit; if (message->qos == QOS1 || message->qos == QOS2) message->id = packetid.getNext(); len = MQTTSerialize_publish(buf, MAX_MQTT_PACKET_SIZE, 0, message->qos, message->retained, message->id, topicString, (unsigned char*)message->payload, message->payloadlen); if (len <= 0) goto exit; if ((rc = sendPacket(len, timer)) != SUCCESS) // send the subscribe packet goto exit; // there was a problem if (message->qos == QOS1) { if (waitfor(PUBACK, timer) == PUBACK) { unsigned short mypacketid; unsigned char dup, type; if (MQTTDeserialize_ack(&type, &dup, &mypacketid, readbuf, MAX_MQTT_PACKET_SIZE) != 1) rc = FAILURE; } else rc = FAILURE; } else if (message->qos == QOS2) { if (waitfor(PUBCOMP, timer) == PUBCOMP) { unsigned short mypacketid; unsigned char dup, type; if (MQTTDeserialize_ack(&type, &dup, &mypacketid, readbuf, MAX_MQTT_PACKET_SIZE) != 1) rc = FAILURE; } else rc = FAILURE; } exit: return rc; } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int b> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, b>::disconnect() { int rc = FAILURE; Timer timer = Timer(command_timeout_ms); // we might wait for incomplete incoming publishes to complete int len = MQTTSerialize_disconnect(buf, MAX_MQTT_PACKET_SIZE); if (len > 0) rc = sendPacket(len, timer); // send the disconnect packet isconnected = false; return rc; } #endif