Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: libxDot-mbed5 ISL29011
Fork of Dot-Examples by
examples/src/dot_util.cpp
- Committer:
- Mike Fiore
- Date:
- 2016-10-07
- Revision:
- 7:724cb82a113e
- Parent:
- 5:97ed5f2f099e
- Child:
- 8:e667f4a507b1
File content as of revision 7:724cb82a113e:
#include "dot_util.h"
#if defined(TARGET_XDOT_L151CC)
#include "xdot_low_power.h"
#endif
#if defined(TARGET_MTS_MDOT_F411RE)
uint32_t portA[6];
uint32_t portB[6];
uint32_t portC[6];
uint32_t portD[6];
uint32_t portH[6];
#endif
void display_config() {
// display configuration and library version information
logInfo("version: %s", dot->getId().c_str());
logInfo("general configuration");
logInfo("---------------------");
logInfo("\tdevice ID/EUI: %s", mts::Text::bin2hexString(dot->getDeviceId()).c_str());
logInfo("\tfrequency band: %s", mDot::FrequencyBandStr(dot->getFrequencyBand()).c_str());
if (dot->getFrequencySubBand() != mDot::FB_EU868) {
logInfo("\tfrequency sub band: %u", dot->getFrequencySubBand());
}
logInfo("\tpublic network: %s", dot->getPublicNetwork() == true ? "on" : "off");
logInfo("credentials configuration");
logInfo("-------------------------");
logInfo("\tnetwork name: %s", dot->getNetworkName().c_str());
logInfo("\tnetwork phrase: %s", dot->getNetworkPassphrase().c_str());
logInfo("\tnetwork EUI: %s", mts::Text::bin2hexString(dot->getNetworkId()).c_str());
logInfo("\tnetwork KEY: %s", mts::Text::bin2hexString(dot->getNetworkKey()).c_str());
logInfo("\tnetwork join mode: %s", mDot::JoinModeStr(dot->getJoinMode()).c_str());
logInfo("communication parameters");
logInfo("------------------------");
logInfo("\tacks: %s, %u attempts", dot->getAck() > 0 ? "on" : "off", dot->getAck());
logInfo("\tTX datarate: %s", mDot::DataRateStr(dot->getTxDataRate()).c_str());
logInfo("\tTX power: %lu dBm", dot->getTxPower());
logInfo("\tatnenna gain: %u dBm", dot->getAntennaGain());
}
void update_ota_config_name_phrase(std::string network_name, std::string network_passphrase, uint8_t frequency_sub_band, bool public_network, uint8_t ack) {
std::string current_network_name = dot->getNetworkName();
std::string current_network_passphrase = dot->getNetworkPassphrase();
uint8_t current_frequency_sub_band = dot->getFrequencySubBand();
bool current_public_network = dot->getPublicNetwork();
uint8_t current_ack = dot->getAck();
if (current_network_name != network_name) {
logInfo("changing network name from \"%s\" to \"%s\"", current_network_name.c_str(), network_name.c_str());
if (dot->setNetworkName(network_name) != mDot::MDOT_OK) {
logError("failed to set network name to \"%s\"", network_name.c_str());
}
}
if (current_network_passphrase != network_passphrase) {
logInfo("changing network passphrase from \"%s\" to \"%s\"", current_network_passphrase.c_str(), network_passphrase.c_str());
if (dot->setNetworkPassphrase(network_passphrase) != mDot::MDOT_OK) {
logError("failed to set network passphrase to \"%s\"", network_passphrase.c_str());
}
}
if (current_frequency_sub_band != frequency_sub_band) {
logInfo("changing frequency sub band from %u to %u", current_frequency_sub_band, frequency_sub_band);
if (dot->setFrequencySubBand(frequency_sub_band) != mDot::MDOT_OK) {
logError("failed to set frequency sub band to %u", frequency_sub_band);
}
}
if (current_public_network != public_network) {
logInfo("changing public network from %s to %s", current_public_network ? "true" : "false", public_network ? "true" : "false");
if (dot->setPublicNetwork(public_network) != mDot::MDOT_OK) {
logError("failed to set public network to %s", public_network ? "true" : "false");
}
}
if (current_ack != ack) {
logInfo("changing acks from %u to %u", current_ack, ack);
if (dot->setAck(ack) != mDot::MDOT_OK) {
logError("failed to set acks to %u", ack);
}
}
}
void update_ota_config_id_key(uint8_t *network_id, uint8_t *network_key, uint8_t frequency_sub_band, bool public_network, uint8_t ack) {
std::vector<uint8_t> current_network_id = dot->getNetworkId();
std::vector<uint8_t> current_network_key = dot->getNetworkKey();
uint8_t current_frequency_sub_band = dot->getFrequencySubBand();
bool current_public_network = dot->getPublicNetwork();
uint8_t current_ack = dot->getAck();
std::vector<uint8_t> network_id_vector(network_id, network_id + 8);
std::vector<uint8_t> network_key_vector(network_key, network_key + 16);
if (current_network_id != network_id_vector) {
logInfo("changing network ID from \"%s\" to \"%s\"", mts::Text::bin2hexString(current_network_id).c_str(), mts::Text::bin2hexString(network_id_vector).c_str());
if (dot->setNetworkId(network_id_vector) != mDot::MDOT_OK) {
logError("failed to set network ID to \"%s\"", mts::Text::bin2hexString(network_id_vector).c_str());
}
}
if (current_network_key != network_key_vector) {
logInfo("changing network KEY from \"%s\" to \"%s\"", mts::Text::bin2hexString(current_network_key).c_str(), mts::Text::bin2hexString(network_key_vector).c_str());
if (dot->setNetworkKey(network_key_vector) != mDot::MDOT_OK) {
logError("failed to set network KEY to \"%s\"", mts::Text::bin2hexString(network_key_vector).c_str());
}
}
if (current_frequency_sub_band != frequency_sub_band) {
logInfo("changing frequency sub band from %u to %u", current_frequency_sub_band, frequency_sub_band);
if (dot->setFrequencySubBand(frequency_sub_band) != mDot::MDOT_OK) {
logError("failed to set frequency sub band to %u", frequency_sub_band);
}
}
if (current_public_network != public_network) {
logInfo("changing public network from %s to %s", current_public_network ? "true" : "false", public_network ? "true" : "false");
if (dot->setPublicNetwork(public_network) != mDot::MDOT_OK) {
logError("failed to set public network to %s", public_network ? "true" : "false");
}
}
if (current_ack != ack) {
logInfo("changing acks from %u to %u", current_ack, ack);
if (dot->setAck(ack) != mDot::MDOT_OK) {
logError("failed to set acks to %u", ack);
}
}
}
void join_network() {
int32_t j_attempts = 0;
int32_t ret = mDot::MDOT_ERROR;
// attempt to join the network
while (ret != mDot::MDOT_OK) {
logInfo("attempt %d to join network", ++j_attempts);
ret = dot->joinNetwork();
if (ret != mDot::MDOT_OK) {
logError("failed to join network %d:%s", ret, mDot::getReturnCodeString(ret).c_str());
// in some frequency bands we need to wait until another channel is available before transmitting again
uint32_t delay_s = (dot->getNextTxMs() / 1000) + 1;
if (delay_s < 2) {
logInfo("waiting %lu s until next free channel", delay_s);
wait(delay_s);
} else {
logInfo("sleeping %lu s until next free channel", delay_s);
dot->sleep(delay_s, mDot::RTC_ALARM, false);
}
}
}
}
void sleep_wake_rtc_only(bool deepsleep) {
// in some frequency bands we need to wait until another channel is available before transmitting again
// wait at least 10s between transmissions
uint32_t delay_s = dot->getNextTxMs() / 1000;
if (delay_s < 10) {
delay_s = 10;
}
logInfo("%ssleeping %lus", deepsleep ? "deep" : "", delay_s);
logInfo("application will %s after waking up", deepsleep ? "execute from beginning" : "resume");
// lowest current consumption in sleep mode can only be achieved by configuring IOs as analog inputs with no pull resistors
// the library handles all internal IOs automatically, but the external IOs are the application's responsibility
// certain IOs may require internal pullup or pulldown resistors because leaving them floating would cause extra current consumption
// for xDot: UART_*, I2C_*, SPI_*, GPIO*, WAKE
// for mDot: XBEE_*, USBTX, USBRX, PB_0, PB_1
// steps are:
// * save IO configuration
// * configure IOs to reduce current consumption
// * sleep
// * restore IO configuration
if (! deepsleep) {
// save the GPIO state.
sleep_save_io();
// configure GPIOs for lowest current
sleep_configure_io();
}
// go to sleep/deepsleep for delay_s seconds and wake using the RTC alarm
dot->sleep(delay_s, mDot::RTC_ALARM, deepsleep);
if (! deepsleep) {
// restore the GPIO state.
sleep_restore_io();
}
}
void sleep_wake_interrupt_only(bool deepsleep) {
#if defined (TARGET_XDOT_L151CC)
if (deepsleep) {
// for xDot, WAKE pin (connected to S2 on xDot-DK) is the only pin that can wake the processor from deepsleep
// it is automatically configured when INTERRUPT or RTC_ALARM_OR_INTERRUPT is the wakeup source and deepsleep is true in the mDot::sleep call
} else {
// configure WAKE pin (connected to S2 on xDot-DK) as the pin that will wake the xDot from low power modes
// other pins can be confgured instead: GPIO0-3 or UART_RX
dot->setWakePin(WAKE);
}
logInfo("%ssleeping until interrupt on %s pin", deepsleep ? "deep" : "", deepsleep ? "WAKE" : mDot::pinName2Str(dot->getWakePin()).c_str());
#else
if (deepsleep) {
// for mDot, XBEE_DIO7 pin is the only pin that can wake the processor from deepsleep
// it is automatically configured when INTERRUPT or RTC_ALARM_OR_INTERRUPT is the wakeup source and deepsleep is true in the mDot::sleep call
} else {
// configure XBEE_DIO7 pin as the pin that will wake the mDot from low power modes
// other pins can be confgured instead: XBEE_DIO2-6, XBEE_DI8, XBEE_DIN
dot->setWakePin(XBEE_DIO7);
}
logInfo("%ssleeping until interrupt on %s pin", deepsleep ? "deep" : "", deepsleep ? "DIO7" : mDot::pinName2Str(dot->getWakePin()).c_str());
#endif
logInfo("application will %s after waking up", deepsleep ? "execute from beginning" : "resume");
// lowest current consumption in sleep mode can only be achieved by configuring IOs as analog inputs with no pull resistors
// the library handles all internal IOs automatically, but the external IOs are the application's responsibility
// certain IOs may require internal pullup or pulldown resistors because leaving them floating would cause extra current consumption
// for xDot: UART_*, I2C_*, SPI_*, GPIO*, WAKE
// for mDot: XBEE_*, USBTX, USBRX, PB_0, PB_1
// steps are:
// * save IO configuration
// * configure IOs to reduce current consumption
// * sleep
// * restore IO configuration
if (! deepsleep) {
// save the GPIO state.
sleep_save_io();
// configure GPIOs for lowest current
sleep_configure_io();
}
// go to sleep/deepsleep and wake on rising edge of configured wake pin (only the WAKE pin in deepsleep)
// since we're not waking on the RTC alarm, the interval is ignored
dot->sleep(0, mDot::INTERRUPT, deepsleep);
if (! deepsleep) {
// restore the GPIO state.
sleep_restore_io();
}
}
void sleep_wake_rtc_or_interrupt(bool deepsleep) {
// in some frequency bands we need to wait until another channel is available before transmitting again
// wait at least 10s between transmissions
uint32_t delay_s = dot->getNextTxMs() / 1000;
if (delay_s < 10) {
delay_s = 10;
}
#if defined (TARGET_XDOT_L151CC)
if (deepsleep) {
// for xDot, WAKE pin (connected to S2 on xDot-DK) is the only pin that can wake the processor from deepsleep
// it is automatically configured when INTERRUPT or RTC_ALARM_OR_INTERRUPT is the wakeup source and deepsleep is true in the mDot::sleep call
} else {
// configure WAKE pin (connected to S2 on xDot-DK) as the pin that will wake the xDot from low power modes
// other pins can be confgured instead: GPIO0-3 or UART_RX
dot->setWakePin(WAKE);
}
logInfo("%ssleeping %lus or until interrupt on %s pin", deepsleep ? "deep" : "", delay_s, deepsleep ? "WAKE" : mDot::pinName2Str(dot->getWakePin()).c_str());
#else
if (deepsleep) {
// for mDot, XBEE_DIO7 pin is the only pin that can wake the processor from deepsleep
// it is automatically configured when INTERRUPT or RTC_ALARM_OR_INTERRUPT is the wakeup source and deepsleep is true in the mDot::sleep call
} else {
// configure XBEE_DIO7 pin as the pin that will wake the mDot from low power modes
// other pins can be confgured instead: XBEE_DIO2-6, XBEE_DI8, XBEE_DIN
dot->setWakePin(XBEE_DIO7);
}
logInfo("%ssleeping %lus or until interrupt on %s pin", deepsleep ? "deep" : "", delay_s, deepsleep ? "DIO7" : mDot::pinName2Str(dot->getWakePin()).c_str());
#endif
logInfo("application will %s after waking up", deepsleep ? "execute from beginning" : "resume");
// lowest current consumption in sleep mode can only be achieved by configuring IOs as analog inputs with no pull resistors
// the library handles all internal IOs automatically, but the external IOs are the application's responsibility
// certain IOs may require internal pullup or pulldown resistors because leaving them floating would cause extra current consumption
// for xDot: UART_*, I2C_*, SPI_*, GPIO*, WAKE
// for mDot: XBEE_*, USBTX, USBRX, PB_0, PB_1
// steps are:
// * save IO configuration
// * configure IOs to reduce current consumption
// * sleep
// * restore IO configuration
if (! deepsleep) {
// save the GPIO state.
sleep_save_io();
// configure GPIOs for lowest current
sleep_configure_io();
}
// go to sleep/deepsleep and wake using the RTC alarm after delay_s seconds or rising edge of configured wake pin (only the WAKE pin in deepsleep)
// whichever comes first will wake the xDot
dot->sleep(delay_s, mDot::RTC_ALARM_OR_INTERRUPT, deepsleep);
if (! deepsleep) {
// restore the GPIO state.
sleep_restore_io();
}
}
void sleep_save_io() {
#if defined(TARGET_XDOT_L151CC)
xdot_save_gpio_state();
#else
portA[0] = GPIOA->MODER;
portA[1] = GPIOA->OTYPER;
portA[2] = GPIOA->OSPEEDR;
portA[3] = GPIOA->PUPDR;
portA[4] = GPIOA->AFR[0];
portA[5] = GPIOA->AFR[1];
portB[0] = GPIOB->MODER;
portB[1] = GPIOB->OTYPER;
portB[2] = GPIOB->OSPEEDR;
portB[3] = GPIOB->PUPDR;
portB[4] = GPIOB->AFR[0];
portB[5] = GPIOB->AFR[1];
portC[0] = GPIOC->MODER;
portC[1] = GPIOC->OTYPER;
portC[2] = GPIOC->OSPEEDR;
portC[3] = GPIOC->PUPDR;
portC[4] = GPIOC->AFR[0];
portC[5] = GPIOC->AFR[1];
portD[0] = GPIOD->MODER;
portD[1] = GPIOD->OTYPER;
portD[2] = GPIOD->OSPEEDR;
portD[3] = GPIOD->PUPDR;
portD[4] = GPIOD->AFR[0];
portD[5] = GPIOD->AFR[1];
portH[0] = GPIOH->MODER;
portH[1] = GPIOH->OTYPER;
portH[2] = GPIOH->OSPEEDR;
portH[3] = GPIOH->PUPDR;
portH[4] = GPIOH->AFR[0];
portH[5] = GPIOH->AFR[1];
#endif
}
void sleep_configure_io() {
#if defined(TARGET_XDOT_L151CC)
// GPIO Ports Clock Enable
__GPIOA_CLK_ENABLE();
__GPIOB_CLK_ENABLE();
__GPIOC_CLK_ENABLE();
__GPIOH_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct;
// UART1_TX, UART1_RTS & UART1_CTS to analog nopull - RX could be a wakeup source
GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_11 | GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
// I2C_SDA & I2C_SCL to analog nopull
GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
// SPI_MOSI, SPI_MISO, SPI_SCK, & SPI_NSS to analog nopull
GPIO_InitStruct.Pin = GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
// iterate through potential wake pins - leave the configured wake pin alone if one is needed
if (dot->getWakePin() != WAKE || dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (dot->getWakePin() != GPIO0 || dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (dot->getWakePin() != GPIO1 || dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (dot->getWakePin() != GPIO2 || dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
if (dot->getWakePin() != GPIO3 || dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
if (dot->getWakePin() != UART1_RX || dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
#else
/* GPIO Ports Clock Enable */
__GPIOA_CLK_ENABLE();
__GPIOB_CLK_ENABLE();
__GPIOC_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct;
// XBEE_DOUT, XBEE_DIN, XBEE_DO8, XBEE_RSSI, USBTX, USBRX, PA_12, PA_13, PA_14 & PA_15 to analog nopull
GPIO_InitStruct.Pin = GPIO_PIN_2 | GPIO_PIN_6 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10
| GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
// PB_0, PB_1, PB_3 & PB_4 to analog nopull
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_3 | GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
// PC_9 & PC_13 to analog nopull
GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
// iterate through potential wake pins - leave the configured wake pin alone if one is needed
// XBEE_DIN - PA3
// XBEE_DIO2 - PA5
// XBEE_DIO3 - PA4
// XBEE_DIO4 - PA7
// XBEE_DIO5 - PC1
// XBEE_DIO6 - PA1
// XBEE_DIO7 - PA0
// XBEE_SLEEPRQ - PA11
if (dot->getWakePin() != XBEE_DIN || dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (dot->getWakePin() != XBEE_DIO2 || dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (dot->getWakePin() != XBEE_DIO3 || dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (dot->getWakePin() != XBEE_DIO4 || dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (dot->getWakePin() != XBEE_DIO5 || dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
}
if (dot->getWakePin() != XBEE_DIO6 || dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (dot->getWakePin() != XBEE_DIO7 || dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (dot->getWakePin() != XBEE_SLEEPRQ|| dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_11;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
#endif
}
void sleep_restore_io() {
#if defined(TARGET_XDOT_L151CC)
xdot_restore_gpio_state();
#else
GPIOA->MODER = portA[0];
GPIOA->OTYPER = portA[1];
GPIOA->OSPEEDR = portA[2];
GPIOA->PUPDR = portA[3];
GPIOA->AFR[0] = portA[4];
GPIOA->AFR[1] = portA[5];
GPIOB->MODER = portB[0];
GPIOB->OTYPER = portB[1];
GPIOB->OSPEEDR = portB[2];
GPIOB->PUPDR = portB[3];
GPIOB->AFR[0] = portB[4];
GPIOB->AFR[1] = portB[5];
GPIOC->MODER = portC[0];
GPIOC->OTYPER = portC[1];
GPIOC->OSPEEDR = portC[2];
GPIOC->PUPDR = portC[3];
GPIOC->AFR[0] = portC[4];
GPIOC->AFR[1] = portC[5];
GPIOD->MODER = portD[0];
GPIOD->OTYPER = portD[1];
GPIOD->OSPEEDR = portD[2];
GPIOD->PUPDR = portD[3];
GPIOD->AFR[0] = portD[4];
GPIOD->AFR[1] = portD[5];
GPIOH->MODER = portH[0];
GPIOH->OTYPER = portH[1];
GPIOH->OSPEEDR = portH[2];
GPIOH->PUPDR = portH[3];
GPIOH->AFR[0] = portH[4];
GPIOH->AFR[1] = portH[5];
#endif
}
void send_data(std::vector<uint8_t> data) {
uint32_t ret;
ret = dot->send(data);
if (ret != mDot::MDOT_OK) {
logError("failed to send data to gateway [%d][%s]", ret, mDot::getReturnCodeString(ret).c_str());
} else {
logInfo("successfully sent data to gateway");
}
}
