helpfor studient
Dependents: STM32_F103-C8T6basecanblink_led
Fork of mbed-dev by
targets/hal/TARGET_ONSEMI/TARGET_NCS36510/rtc.c@144:ef7eb2e8f9f7, 2016-09-02 (annotated)
- Committer:
- <>
- Date:
- Fri Sep 02 15:07:44 2016 +0100
- Revision:
- 144:ef7eb2e8f9f7
- Child:
- 147:30b64687e01f
This updates the lib to the mbed lib v125
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
<> | 144:ef7eb2e8f9f7 | 1 | /** |
<> | 144:ef7eb2e8f9f7 | 2 | ******************************************************************************* |
<> | 144:ef7eb2e8f9f7 | 3 | * @file rtc.c |
<> | 144:ef7eb2e8f9f7 | 4 | * @brief Implementation of a Rtc driver |
<> | 144:ef7eb2e8f9f7 | 5 | * @internal |
<> | 144:ef7eb2e8f9f7 | 6 | * @author ON Semiconductor |
<> | 144:ef7eb2e8f9f7 | 7 | * $Rev: 3525 $ |
<> | 144:ef7eb2e8f9f7 | 8 | * $Date: 2015-07-20 15:24:25 +0530 (Mon, 20 Jul 2015) $ |
<> | 144:ef7eb2e8f9f7 | 9 | ****************************************************************************** |
<> | 144:ef7eb2e8f9f7 | 10 | * @copyright (c) 2012 ON Semiconductor. All rights reserved. |
<> | 144:ef7eb2e8f9f7 | 11 | * ON Semiconductor is supplying this software for use with ON Semiconductor |
<> | 144:ef7eb2e8f9f7 | 12 | * processor based microcontrollers only. |
<> | 144:ef7eb2e8f9f7 | 13 | * |
<> | 144:ef7eb2e8f9f7 | 14 | * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED |
<> | 144:ef7eb2e8f9f7 | 15 | * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF |
<> | 144:ef7eb2e8f9f7 | 16 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. |
<> | 144:ef7eb2e8f9f7 | 17 | * ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, |
<> | 144:ef7eb2e8f9f7 | 18 | * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. |
<> | 144:ef7eb2e8f9f7 | 19 | * @endinternal |
<> | 144:ef7eb2e8f9f7 | 20 | * |
<> | 144:ef7eb2e8f9f7 | 21 | * @ingroup rtc |
<> | 144:ef7eb2e8f9f7 | 22 | * |
<> | 144:ef7eb2e8f9f7 | 23 | * @details |
<> | 144:ef7eb2e8f9f7 | 24 | * A real-time clock (RTC) is a computer clock ,that keeps track of the current time. The heart of the RTC is a series of |
<> | 144:ef7eb2e8f9f7 | 25 | * freely running counters one for each time unit, The series of counters is linked as follows: a roll over event of |
<> | 144:ef7eb2e8f9f7 | 26 | * the seconds counter produces a minutes enable pulse; a roll over event of the minutes counter produces an hours |
<> | 144:ef7eb2e8f9f7 | 27 | * enable pulse, etc.Note that all Counter registers are in an undefined state on power-up. |
<> | 144:ef7eb2e8f9f7 | 28 | * Use the Reset bit in the Control Register to reset the counters to their default values. |
<> | 144:ef7eb2e8f9f7 | 29 | * DIVISOR is the register containing the value to divide the clock frequency to produce 1Hz strobe ; 1Hz strobe is used |
<> | 144:ef7eb2e8f9f7 | 30 | * internally to time the incrementing of the Seconds Counter. |
<> | 144:ef7eb2e8f9f7 | 31 | * There is a set of register to set the values in the counter for each time unit.from where time is start to increment. |
<> | 144:ef7eb2e8f9f7 | 32 | * There is another set of register to set the ALARM ...Each of the Alarm Registers can be programmed with a value that |
<> | 144:ef7eb2e8f9f7 | 33 | * is used to compare to a Counter Register in order to produce an alarm (an interrupt) when the values match. |
<> | 144:ef7eb2e8f9f7 | 34 | * There is a programmable bit in each Alarm Register that determines if the alarm occurs upon a value match, or |
<> | 144:ef7eb2e8f9f7 | 35 | * if the alarm occurs upon a Counter increment condition. |
<> | 144:ef7eb2e8f9f7 | 36 | * |
<> | 144:ef7eb2e8f9f7 | 37 | */ |
<> | 144:ef7eb2e8f9f7 | 38 | #include "rtc.h" |
<> | 144:ef7eb2e8f9f7 | 39 | #include "mbed_assert.h" |
<> | 144:ef7eb2e8f9f7 | 40 | |
<> | 144:ef7eb2e8f9f7 | 41 | static uint16_t SubSecond; |
<> | 144:ef7eb2e8f9f7 | 42 | static uint64_t LastRtcTimeus; |
<> | 144:ef7eb2e8f9f7 | 43 | |
<> | 144:ef7eb2e8f9f7 | 44 | /* See rtc.h for details */ |
<> | 144:ef7eb2e8f9f7 | 45 | void fRtcInit(void) |
<> | 144:ef7eb2e8f9f7 | 46 | { |
<> | 144:ef7eb2e8f9f7 | 47 | CLOCK_ENABLE(CLOCK_RTC); /* enable rtc peripheral */ |
<> | 144:ef7eb2e8f9f7 | 48 | CLOCKREG->CCR.BITS.RTCEN = True; /* Enable RTC clock 32K */ |
<> | 144:ef7eb2e8f9f7 | 49 | |
<> | 144:ef7eb2e8f9f7 | 50 | /* Reset RTC control register */ |
<> | 144:ef7eb2e8f9f7 | 51 | RTCREG->CONTROL.WORD = False; |
<> | 144:ef7eb2e8f9f7 | 52 | |
<> | 144:ef7eb2e8f9f7 | 53 | /* Initialize all counters */ |
<> | 144:ef7eb2e8f9f7 | 54 | RTCREG->SECOND_COUNTER = False; |
<> | 144:ef7eb2e8f9f7 | 55 | RTCREG->SUB_SECOND_COUNTER = False; |
<> | 144:ef7eb2e8f9f7 | 56 | RTCREG->SECOND_ALARM = False; |
<> | 144:ef7eb2e8f9f7 | 57 | RTCREG->SUB_SECOND_ALARM = False; |
<> | 144:ef7eb2e8f9f7 | 58 | LastRtcTimeus = 0; |
<> | 144:ef7eb2e8f9f7 | 59 | |
<> | 144:ef7eb2e8f9f7 | 60 | /* Reset RTC Status register */ |
<> | 144:ef7eb2e8f9f7 | 61 | RTCREG->STATUS.WORD = False; |
<> | 144:ef7eb2e8f9f7 | 62 | |
<> | 144:ef7eb2e8f9f7 | 63 | /* Clear interrupt status */ |
<> | 144:ef7eb2e8f9f7 | 64 | RTCREG->INT_CLEAR.WORD = False; |
<> | 144:ef7eb2e8f9f7 | 65 | |
<> | 144:ef7eb2e8f9f7 | 66 | /* Start sec & sub_sec counter */ |
<> | 144:ef7eb2e8f9f7 | 67 | while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True);/* Wait previous write to complete */ |
<> | 144:ef7eb2e8f9f7 | 68 | RTCREG->CONTROL.WORD |= ((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) | |
<> | 144:ef7eb2e8f9f7 | 69 | (True << RTC_CONTROL_SEC_CNT_START_BIT_POS)); |
<> | 144:ef7eb2e8f9f7 | 70 | |
<> | 144:ef7eb2e8f9f7 | 71 | /* enable interruption associated with the rtc at NVIC level */ |
<> | 144:ef7eb2e8f9f7 | 72 | NVIC_SetVector(Rtc_IRQn,(uint32_t)fRtcHandler); /* TODO define lp_ticker_isr */ |
<> | 144:ef7eb2e8f9f7 | 73 | NVIC_ClearPendingIRQ(Rtc_IRQn); |
<> | 144:ef7eb2e8f9f7 | 74 | NVIC_EnableIRQ(Rtc_IRQn); |
<> | 144:ef7eb2e8f9f7 | 75 | |
<> | 144:ef7eb2e8f9f7 | 76 | while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ |
<> | 144:ef7eb2e8f9f7 | 77 | |
<> | 144:ef7eb2e8f9f7 | 78 | return; |
<> | 144:ef7eb2e8f9f7 | 79 | } |
<> | 144:ef7eb2e8f9f7 | 80 | |
<> | 144:ef7eb2e8f9f7 | 81 | /* See rtc.h for details */ |
<> | 144:ef7eb2e8f9f7 | 82 | void fRtcFree(void) |
<> | 144:ef7eb2e8f9f7 | 83 | { |
<> | 144:ef7eb2e8f9f7 | 84 | /* Reset RTC control register */ |
<> | 144:ef7eb2e8f9f7 | 85 | RTCREG->CONTROL.WORD = False; |
<> | 144:ef7eb2e8f9f7 | 86 | |
<> | 144:ef7eb2e8f9f7 | 87 | /* disable interruption associated with the rtc */ |
<> | 144:ef7eb2e8f9f7 | 88 | NVIC_DisableIRQ(Rtc_IRQn); |
<> | 144:ef7eb2e8f9f7 | 89 | |
<> | 144:ef7eb2e8f9f7 | 90 | while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ |
<> | 144:ef7eb2e8f9f7 | 91 | } |
<> | 144:ef7eb2e8f9f7 | 92 | |
<> | 144:ef7eb2e8f9f7 | 93 | /* See rtc.h for details */ |
<> | 144:ef7eb2e8f9f7 | 94 | void fRtcSetInterrupt(uint32_t timestamp) |
<> | 144:ef7eb2e8f9f7 | 95 | { |
<> | 144:ef7eb2e8f9f7 | 96 | SubSecond = False; |
<> | 144:ef7eb2e8f9f7 | 97 | uint32_t Second = False; |
<> | 144:ef7eb2e8f9f7 | 98 | uint8_t DividerAdjust = 1; |
<> | 144:ef7eb2e8f9f7 | 99 | |
<> | 144:ef7eb2e8f9f7 | 100 | if(timestamp) { |
<> | 144:ef7eb2e8f9f7 | 101 | if(timestamp >= RTC_SEC_TO_US) { |
<> | 144:ef7eb2e8f9f7 | 102 | /* TimeStamp is big enough to set second alarm */ |
<> | 144:ef7eb2e8f9f7 | 103 | Second = ((timestamp / RTC_SEC_TO_US) & RTC_SEC_MASK); /* Convert micro second to second */ |
<> | 144:ef7eb2e8f9f7 | 104 | RTCREG->SECOND_ALARM = Second; /* Write to alarm register */ |
<> | 144:ef7eb2e8f9f7 | 105 | |
<> | 144:ef7eb2e8f9f7 | 106 | /* Enable second interrupt */ |
<> | 144:ef7eb2e8f9f7 | 107 | RTCREG->CONTROL.WORD |= (True << RTC_CONTROL_SEC_CNT_INT_BIT_POS); |
<> | 144:ef7eb2e8f9f7 | 108 | } |
<> | 144:ef7eb2e8f9f7 | 109 | timestamp = timestamp - Second * RTC_SEC_TO_US; /* Take out micro second for sub second alarm */ |
<> | 144:ef7eb2e8f9f7 | 110 | if(timestamp > False) { |
<> | 144:ef7eb2e8f9f7 | 111 | /* We have some thing for sub second */ |
<> | 144:ef7eb2e8f9f7 | 112 | |
<> | 144:ef7eb2e8f9f7 | 113 | /* Convert micro second to sub_seconds(each count = 30.5 us) */ |
<> | 144:ef7eb2e8f9f7 | 114 | if(timestamp > 131000) { |
<> | 144:ef7eb2e8f9f7 | 115 | DividerAdjust = 100; |
<> | 144:ef7eb2e8f9f7 | 116 | } |
<> | 144:ef7eb2e8f9f7 | 117 | |
<> | 144:ef7eb2e8f9f7 | 118 | volatile uint64_t Temp = (timestamp / DividerAdjust * RTC_CLOCK_HZ); |
<> | 144:ef7eb2e8f9f7 | 119 | timestamp = (uint64_t)(Temp / RTC_SEC_TO_US * DividerAdjust); |
<> | 144:ef7eb2e8f9f7 | 120 | SubSecond = Temp & RTC_SUB_SEC_MASK; |
<> | 144:ef7eb2e8f9f7 | 121 | |
<> | 144:ef7eb2e8f9f7 | 122 | if(SubSecond <= 5) { |
<> | 144:ef7eb2e8f9f7 | 123 | SubSecond = 0; |
<> | 144:ef7eb2e8f9f7 | 124 | } |
<> | 144:ef7eb2e8f9f7 | 125 | |
<> | 144:ef7eb2e8f9f7 | 126 | |
<> | 144:ef7eb2e8f9f7 | 127 | if(SubSecond > False) { |
<> | 144:ef7eb2e8f9f7 | 128 | /* Second interrupt not enabled */ |
<> | 144:ef7eb2e8f9f7 | 129 | |
<> | 144:ef7eb2e8f9f7 | 130 | /* Set SUB SEC_ALARM */ |
<> | 144:ef7eb2e8f9f7 | 131 | RTCREG->SUB_SECOND_ALARM = SubSecond; /* Write to sub second alarm */ |
<> | 144:ef7eb2e8f9f7 | 132 | |
<> | 144:ef7eb2e8f9f7 | 133 | /* Enable sub second interrupt */ |
<> | 144:ef7eb2e8f9f7 | 134 | RTCREG->CONTROL.WORD |= (True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); |
<> | 144:ef7eb2e8f9f7 | 135 | } |
<> | 144:ef7eb2e8f9f7 | 136 | } |
<> | 144:ef7eb2e8f9f7 | 137 | |
<> | 144:ef7eb2e8f9f7 | 138 | while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ |
<> | 144:ef7eb2e8f9f7 | 139 | } |
<> | 144:ef7eb2e8f9f7 | 140 | return; |
<> | 144:ef7eb2e8f9f7 | 141 | } |
<> | 144:ef7eb2e8f9f7 | 142 | |
<> | 144:ef7eb2e8f9f7 | 143 | /* See rtc.h for details */ |
<> | 144:ef7eb2e8f9f7 | 144 | void fRtcDisableInterrupt(void) |
<> | 144:ef7eb2e8f9f7 | 145 | { |
<> | 144:ef7eb2e8f9f7 | 146 | /* Disable subsec/sec interrupt */ |
<> | 144:ef7eb2e8f9f7 | 147 | RTCREG->CONTROL.WORD &= ~((RTC_ALL_INTERRUPT_BIT_VAL) << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); |
<> | 144:ef7eb2e8f9f7 | 148 | while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ |
<> | 144:ef7eb2e8f9f7 | 149 | } |
<> | 144:ef7eb2e8f9f7 | 150 | |
<> | 144:ef7eb2e8f9f7 | 151 | /* See rtc.h for details */ |
<> | 144:ef7eb2e8f9f7 | 152 | void fRtcEnableInterrupt(void) |
<> | 144:ef7eb2e8f9f7 | 153 | { |
<> | 144:ef7eb2e8f9f7 | 154 | /* Disable subsec/sec interrupt */ |
<> | 144:ef7eb2e8f9f7 | 155 | RTCREG->CONTROL.WORD |= ((RTC_ALL_INTERRUPT_BIT_VAL) << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); |
<> | 144:ef7eb2e8f9f7 | 156 | while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ |
<> | 144:ef7eb2e8f9f7 | 157 | } |
<> | 144:ef7eb2e8f9f7 | 158 | |
<> | 144:ef7eb2e8f9f7 | 159 | /* See rtc.h for details */ |
<> | 144:ef7eb2e8f9f7 | 160 | void fRtcClearInterrupt(void) |
<> | 144:ef7eb2e8f9f7 | 161 | { |
<> | 144:ef7eb2e8f9f7 | 162 | /* Disable subsec/sec interrupt */ |
<> | 144:ef7eb2e8f9f7 | 163 | /* Clear sec & sub_sec interrupts */ |
<> | 144:ef7eb2e8f9f7 | 164 | RTCREG->INT_CLEAR.WORD = ((True << RTC_INT_CLR_SUB_SEC_BIT_POS) | |
<> | 144:ef7eb2e8f9f7 | 165 | (True << RTC_INT_CLR_SEC_BIT_POS)); |
<> | 144:ef7eb2e8f9f7 | 166 | while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ |
<> | 144:ef7eb2e8f9f7 | 167 | } |
<> | 144:ef7eb2e8f9f7 | 168 | |
<> | 144:ef7eb2e8f9f7 | 169 | /* See rtc.h for details */ |
<> | 144:ef7eb2e8f9f7 | 170 | uint64_t fRtcRead(void) |
<> | 144:ef7eb2e8f9f7 | 171 | { |
<> | 144:ef7eb2e8f9f7 | 172 | uint32_t Second; |
<> | 144:ef7eb2e8f9f7 | 173 | uint16_t SubSecond; |
<> | 144:ef7eb2e8f9f7 | 174 | |
<> | 144:ef7eb2e8f9f7 | 175 | /* Hardware Bug fix: The rollover of the sub-second counter initiates the increment of the second counter. |
<> | 144:ef7eb2e8f9f7 | 176 | * That means there is one cycle where the sub-second has rolled back to zero and the second counter has not incremented |
<> | 144:ef7eb2e8f9f7 | 177 | * and a read during that cycle will be incorrect. That will occur for one RTC cycle and that is about 31us of exposure. |
<> | 144:ef7eb2e8f9f7 | 178 | * If you read a zero in the sub-second counter then increment the second counter by 1. |
<> | 144:ef7eb2e8f9f7 | 179 | * Alternatively, subtract 1 from the Sub-seconds counter to align the Second and Sub-Second rollover. |
<> | 144:ef7eb2e8f9f7 | 180 | */ |
<> | 144:ef7eb2e8f9f7 | 181 | |
<> | 144:ef7eb2e8f9f7 | 182 | /* Read the Second and Sub-second counters, then read the Second counter again. |
<> | 144:ef7eb2e8f9f7 | 183 | * If it changed, then the Second rolled over while reading Sub-seconds, so go back and read them both again. |
<> | 144:ef7eb2e8f9f7 | 184 | */ |
<> | 144:ef7eb2e8f9f7 | 185 | |
<> | 144:ef7eb2e8f9f7 | 186 | do { |
<> | 144:ef7eb2e8f9f7 | 187 | Second = RTCREG->SECOND_COUNTER; /* Get SEC_COUNTER reg value */ |
<> | 144:ef7eb2e8f9f7 | 188 | SubSecond = (RTCREG->SUB_SECOND_COUNTER - 1) & 0x7FFF; /* Get SUB_SEC_COUNTER reg value */ |
<> | 144:ef7eb2e8f9f7 | 189 | } while (Second != RTCREG->SECOND_COUNTER); /* Repeat if the second has changed */ |
<> | 144:ef7eb2e8f9f7 | 190 | |
<> | 144:ef7eb2e8f9f7 | 191 | //note: casting to float removed to avoid reduction in resolution |
<> | 144:ef7eb2e8f9f7 | 192 | uint64_t RtcTimeus = ((uint64_t)SubSecond * RTC_SEC_TO_US / RTC_CLOCK_HZ) + ((uint64_t)Second * RTC_SEC_TO_US); |
<> | 144:ef7eb2e8f9f7 | 193 | |
<> | 144:ef7eb2e8f9f7 | 194 | /*check that the time did not go backwards */ |
<> | 144:ef7eb2e8f9f7 | 195 | MBED_ASSERT(RtcTimeus >= LastRtcTimeus); |
<> | 144:ef7eb2e8f9f7 | 196 | LastRtcTimeus = RtcTimeus; |
<> | 144:ef7eb2e8f9f7 | 197 | |
<> | 144:ef7eb2e8f9f7 | 198 | return RtcTimeus; |
<> | 144:ef7eb2e8f9f7 | 199 | } |
<> | 144:ef7eb2e8f9f7 | 200 | |
<> | 144:ef7eb2e8f9f7 | 201 | /* See rtc.h for details */ |
<> | 144:ef7eb2e8f9f7 | 202 | void fRtcWrite(uint64_t RtcTimeus) |
<> | 144:ef7eb2e8f9f7 | 203 | { |
<> | 144:ef7eb2e8f9f7 | 204 | uint32_t Second = 0; |
<> | 144:ef7eb2e8f9f7 | 205 | uint16_t SubSecond = 0; |
<> | 144:ef7eb2e8f9f7 | 206 | /* Stop RTC */ |
<> | 144:ef7eb2e8f9f7 | 207 | RTCREG->CONTROL.WORD &= ~((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) | |
<> | 144:ef7eb2e8f9f7 | 208 | (True << RTC_CONTROL_SEC_CNT_START_BIT_POS)); |
<> | 144:ef7eb2e8f9f7 | 209 | |
<> | 144:ef7eb2e8f9f7 | 210 | if(RtcTimeus > RTC_SEC_TO_US) { |
<> | 144:ef7eb2e8f9f7 | 211 | /* TimeStamp is big enough to set second counter */ |
<> | 144:ef7eb2e8f9f7 | 212 | Second = ((RtcTimeus / RTC_SEC_TO_US) & RTC_SEC_MASK); |
<> | 144:ef7eb2e8f9f7 | 213 | } |
<> | 144:ef7eb2e8f9f7 | 214 | RTCREG->SECOND_COUNTER = Second; |
<> | 144:ef7eb2e8f9f7 | 215 | RtcTimeus = RtcTimeus - (Second * RTC_SEC_TO_US); |
<> | 144:ef7eb2e8f9f7 | 216 | if(RtcTimeus > False) { |
<> | 144:ef7eb2e8f9f7 | 217 | /* Convert TimeStamp to sub_seconds */ |
<> | 144:ef7eb2e8f9f7 | 218 | SubSecond = (uint16_t)((float)(RtcTimeus * RTC_CLOCK_HZ / RTC_SEC_TO_US)) & RTC_SUB_SEC_MASK; |
<> | 144:ef7eb2e8f9f7 | 219 | } |
<> | 144:ef7eb2e8f9f7 | 220 | /* Set SUB_SEC_ALARM */ |
<> | 144:ef7eb2e8f9f7 | 221 | RTCREG->SUB_SECOND_COUNTER = SubSecond; |
<> | 144:ef7eb2e8f9f7 | 222 | |
<> | 144:ef7eb2e8f9f7 | 223 | while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ |
<> | 144:ef7eb2e8f9f7 | 224 | /* Start RTC */ |
<> | 144:ef7eb2e8f9f7 | 225 | RTCREG->CONTROL.WORD |= ((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) | |
<> | 144:ef7eb2e8f9f7 | 226 | (True << RTC_CONTROL_SEC_CNT_START_BIT_POS)); |
<> | 144:ef7eb2e8f9f7 | 227 | |
<> | 144:ef7eb2e8f9f7 | 228 | while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ |
<> | 144:ef7eb2e8f9f7 | 229 | } |
<> | 144:ef7eb2e8f9f7 | 230 | |
<> | 144:ef7eb2e8f9f7 | 231 | /* See rtc.h for details */ |
<> | 144:ef7eb2e8f9f7 | 232 | void fRtcHandler(void) |
<> | 144:ef7eb2e8f9f7 | 233 | { |
<> | 144:ef7eb2e8f9f7 | 234 | /* SUB_SECOND/SECOND interrupt occured */ |
<> | 144:ef7eb2e8f9f7 | 235 | volatile uint32_t TempStatus = RTCREG->STATUS.WORD; |
<> | 144:ef7eb2e8f9f7 | 236 | |
<> | 144:ef7eb2e8f9f7 | 237 | /* disable all interrupts */ |
<> | 144:ef7eb2e8f9f7 | 238 | RTCREG->CONTROL.WORD &= ~((RTC_ALL_INTERRUPT_BIT_VAL) << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); |
<> | 144:ef7eb2e8f9f7 | 239 | |
<> | 144:ef7eb2e8f9f7 | 240 | /* Clear sec & sub_sec interrupts */ |
<> | 144:ef7eb2e8f9f7 | 241 | RTCREG->INT_CLEAR.WORD = ((True << RTC_INT_CLR_SUB_SEC_BIT_POS) | |
<> | 144:ef7eb2e8f9f7 | 242 | (True << RTC_INT_CLR_SEC_BIT_POS)); |
<> | 144:ef7eb2e8f9f7 | 243 | |
<> | 144:ef7eb2e8f9f7 | 244 | /* TODO ANDing SUB_SEC & SEC interrupt - work around for RTC issue - will be solved in REV G */ |
<> | 144:ef7eb2e8f9f7 | 245 | if(TempStatus & RTC_SEC_INT_STATUS_MASK) { |
<> | 144:ef7eb2e8f9f7 | 246 | /* Second interrupt occured */ |
<> | 144:ef7eb2e8f9f7 | 247 | if(SubSecond > False) { |
<> | 144:ef7eb2e8f9f7 | 248 | /* Set SUB SEC_ALARM */ |
<> | 144:ef7eb2e8f9f7 | 249 | RTCREG->SUB_SECOND_ALARM = SubSecond + RTCREG->SUB_SECOND_COUNTER; |
<> | 144:ef7eb2e8f9f7 | 250 | /* Enable sub second interrupt */ |
<> | 144:ef7eb2e8f9f7 | 251 | while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); |
<> | 144:ef7eb2e8f9f7 | 252 | RTCREG->CONTROL.WORD |= (True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); |
<> | 144:ef7eb2e8f9f7 | 253 | } else { |
<> | 144:ef7eb2e8f9f7 | 254 | /* We reach here after second interrupt is occured */ |
<> | 144:ef7eb2e8f9f7 | 255 | while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); |
<> | 144:ef7eb2e8f9f7 | 256 | RTCREG->CONTROL.WORD &= ~(True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) | |
<> | 144:ef7eb2e8f9f7 | 257 | (True << RTC_CONTROL_SEC_CNT_INT_BIT_POS); |
<> | 144:ef7eb2e8f9f7 | 258 | } |
<> | 144:ef7eb2e8f9f7 | 259 | } else { |
<> | 144:ef7eb2e8f9f7 | 260 | /* We reach here after sub_second or (Sub second + second) interrupt occured */ |
<> | 144:ef7eb2e8f9f7 | 261 | while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); |
<> | 144:ef7eb2e8f9f7 | 262 | RTCREG->CONTROL.WORD &= ~(True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) | |
<> | 144:ef7eb2e8f9f7 | 263 | (True << RTC_CONTROL_SEC_CNT_INT_BIT_POS); |
<> | 144:ef7eb2e8f9f7 | 264 | } |
<> | 144:ef7eb2e8f9f7 | 265 | |
<> | 144:ef7eb2e8f9f7 | 266 | while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ |
<> | 144:ef7eb2e8f9f7 | 267 | } |
<> | 144:ef7eb2e8f9f7 | 268 | |
<> | 144:ef7eb2e8f9f7 | 269 | boolean fIsRtcEnabled(void) |
<> | 144:ef7eb2e8f9f7 | 270 | { |
<> | 144:ef7eb2e8f9f7 | 271 | if(RTCREG->CONTROL.BITS.SUB_SEC_COUNTER_EN | RTCREG->CONTROL.BITS.SEC_COUNTER_EN) { |
<> | 144:ef7eb2e8f9f7 | 272 | return True; |
<> | 144:ef7eb2e8f9f7 | 273 | } else { |
<> | 144:ef7eb2e8f9f7 | 274 | return False; |
<> | 144:ef7eb2e8f9f7 | 275 | } |
<> | 144:ef7eb2e8f9f7 | 276 | } |