My attempt to made a more useful lib. You can get the accelerator and magnetometer.
Fork of LSM303DLH by
LSM303DLH.cpp
- Committer:
- salco
- Date:
- 2017-08-06
- Revision:
- 5:48722ae56546
- Parent:
- 4:4f2ed3f8726c
- Child:
- 6:86cf2afe3e52
File content as of revision 5:48722ae56546:
/** LSM303DLH Interface Library * * Michael Shimniok http://bot-thoughts.com * * Based on test program by @tosihisa and * * Pololu sample library for LSM303DLH breakout by ryantm: * * Copyright (c) 2011 Pololu Corporation. For more information, see * * http://www.pololu.com/ * http://forum.pololu.com/ * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "mbed.h" #include "LSM303DLH.h" #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #define FILTER_SHIFT 6 // used in filtering acceleromter readings const int addr_acc = 0x32;//0x30; const int addr_mag = 0x3c; bool LSM303DLH::write_reg(int addr_i2c,int addr_reg, uint8_t v) { return this->write_reg(addr_i2c,addr_reg,(char)v); } bool LSM303DLH::write_reg(int addr_i2c,int addr_reg, char v) { bool result=false; char data[2] = {addr_reg, v}; //__disable_irq(); result = m_ptr_I2C->write(addr_i2c, data, 2) == 0; if(result == false) debug("Unable to Write \n"); //__enable_irq(); return result; } bool LSM303DLH::read_reg(int addr_i2c,int addr_reg, uint8_t *v) { return this->read_reg(addr_i2c,addr_reg,(char*)v); } bool LSM303DLH::read_reg(int addr_i2c,int addr_reg, char *v) { char data = addr_reg; bool result = false; //__disable_irq(); if(m_ptr_I2C->write(addr_i2c, &data, 1) == 0) { if (m_ptr_I2C->read(addr_i2c, &data, 1) == 0) { *v = data; result = true; } else { debug("Unable to Read \n"); } } else { debug("Unable to Write \n"); } //__enable_irq(); return result; } bool LSM303DLH::read_reg_short(int addr_i2c,int addr_reg, short *v) { char *pv = (char *)v; bool result; result = read_reg(addr_i2c,addr_reg+0,pv+1); result &= read_reg(addr_i2c,addr_reg+1,pv+0); return result; } LSM303DLH::LSM303DLH(PinName sda, PinName scl) { m_ptr_I2C = new I2C(sda, scl); init(); } LSM303DLH::LSM303DLH(I2C* ptrI2C) { m_ptr_I2C = ptrI2C; //debug( "ptr pass %d, ptr here %d \n",(int)ptrI2C,(int)m_ptr_I2C); this->init(); } void LSM303DLH::init(void) { char reg_v; debug("In INIT \n"); _offset_x = 0; _offset_y = 0; _offset_z = 0; _scale_x = 0; _scale_y = 0; _scale_z = 0; _filt_ax = 0; _filt_ay = 0; _filt_az = 6000; m_ptr_I2C->frequency(100000); ((Ctrl_Reg1_A_t*)®_v)->byte = 0; ((Ctrl_Reg1_A_t*)®_v)->ODR |= 0b0010; /* Normal mode */ ((Ctrl_Reg1_A_t*)®_v)->Xen |= 1; /* X/Y/Z axis enable. */ ((Ctrl_Reg1_A_t*)®_v)->Yen |= 1; ((Ctrl_Reg1_A_t*)®_v)->Zen |= 1; write_reg(addr_acc,CTRL_REG1_A,reg_v); //not sure if we need to read the register //reg_v = 0; //read_reg(addr_acc,CTRL_REG1_A,®_v); reg_v = 0; reg_v |= 0x01 << 7; //full read //reg_v |= 0x01 << 3; //hi res //reg_v |= 0x01 << 6; /* 1: data MSB @ lower address */ reg_v |= 0x01 << 4; /* +/- 4g */ write_reg(addr_acc,CTRL_REG4_A,reg_v); /* -- mag --- */ debug("in MAG \n"); reg_v = 0; reg_v |= 0x04 << 2; /* Minimum data output rate = 15Hz */ write_reg(addr_mag,CRA_REG_M,reg_v); reg_v = 0; //reg_v |= 0x01 << 5; /* +-1.3Gauss */ (((CRB_REG_M_t*)®_v)->GN) |= 0b111; /* +-8.1Gauss */ write_reg(addr_mag,CRB_REG_M,reg_v); reg_v = 0; /* Continuous-conversion mode */ write_reg(addr_mag,MR_REG_M,reg_v); debug("Out INIT \n"); clearscreen(); } void LSM303DLH::setOffset(float x, float y, float z) { _offset_x = x; _offset_y = y; _offset_z = z; } void LSM303DLH::setScale(float x, float y, float z) { _scale_x = x; _scale_y = y; _scale_z = z; } //#define _FS 4 bool LSM303DLH::read(vector &a, vector &m) { bool result = true; //short a_x, a_y, a_z; short m_x, m_y, m_z; #if defined(CHECK_TIME_SEQUENCE) Timer t; int usec1, usec2; t.reset(); t.start(); usec1 = t.read_us(); #endif /*union{ int16_t number; char byte[2]; struct{ char MSB; char LSB; }; }*/ OUT_XYZ_t my_test; vector a_test, m_test; char data_read_acc =0; read_reg(addr_acc,STATUS_REG_A,&data_read_acc); char _FS = get_FullScall_selection(); if(((Status_Reg_A_t*)&data_read_acc)->ZYXDA)//new data { result &= read_reg(addr_acc,OUT_X_A ,&(my_test.UT_L_A/*MSB*/));//MSB at lower result &= read_reg(addr_acc,OUT_X_A+1,&(my_test.UT_H_A/*LSB*/)); if(result) { //a_test.x = my_test.number; a_test.x = (my_test.value/*number*/ / (float)(32768 /*half of the ADC resolution*/ / _FS/*+- 4g*/)); //setText(0,0,"read from reg _x:(%d) %.2X %.2X \n",my_test.value/*number*/, my_test.byte[1],my_test.byte[0]); } else { debug("error reading \n"); } if(result) { result &= read_reg(addr_acc,OUT_Y_A ,&(my_test.UT_L_A/*MSB*/));//MSB at lower result &= read_reg(addr_acc,OUT_Y_A+1,&(my_test.UT_H_A/*LSB*/)); } if(result) { //a_test.y = my_test.number; a_test.y = (my_test.value/*number*/ / (float)(32768 /*half of the ADC resolution*/ / _FS/*+- 4g*/)); //setText(0,1,"read from reg _y:(%d) %.2X %.2X \n",my_test.value/*number*/, my_test.byte[1],my_test.byte[0]); } else { debug("error reading \n"); } if(result) { result &= read_reg(addr_acc,OUT_Z_A ,&(my_test.UT_L_A/*MSB*/));//MSB at lower result &= read_reg(addr_acc,OUT_Z_A+1,&(my_test.UT_H_A/*LSB*/)); } if(result) { //a_test.z = my_test.number; a_test.z = (my_test.value/*number*/ / (float)(32768 /*half of the ADC resolution*/ / _FS/*+- 4g*/)); //setText(0,2,"read from reg _z:(%d) %.2X %.2X \n",my_test.value/*number*/, my_test.byte[1],my_test.byte[0]); } else { debug("error reading \n"); } //setText(0,4,"test 4: x: %.4f y: %.4f z: %.4f \n",a_test.x,a_test.y,a_test.z); } /*result &= read_reg_short(addr_acc, OUT_X_A, &a_x); result &= read_reg_short(addr_acc, OUT_Y_A, &a_y); result &= read_reg_short(addr_acc, OUT_Z_A, &a_z);*/ //This test pass so its ok char data_read_mag =0; read_reg(addr_mag,SR_REG_M,&data_read_mag); if(((SR_Reg_M_t*)&data_read_acc)->DRDY) { float gainxy[] = { 1100., 855., 670., 450., 400., 330., 230. }; float gainz[] = { 980., 760., 600., 400., 355., 295., 205. }; char _GN; read_reg(addr_mag,CRB_REG_M ,&_GN); _GN = (((CRB_REG_M_t*)&_GN)->GN)-1; setText(0,6,"GN: %d \n",_GN); //result &= read_reg_short(addr_mag, OUT_X_M, &m_x); result &= read_reg(addr_mag,OUT_X_M ,&(my_test.UT_L_A/*MSB*/));//MSB at lower result &= read_reg(addr_mag,OUT_X_M+1,&(my_test.UT_H_A/*LSB*/)); //a_test.x = (my_test.value/*number*/ / (float)(32768 /*half of the ADC resolution*/ / _FS/*+- 4g*/)); setText(0,0,"read from reg _x:(%d) %.2X %.2X \n",my_test.value/*number*/, my_test.byte[1],my_test.byte[0]); m_test.x = float(my_test.value) / gainxy[_GN]; //result &= read_reg_short(addr_mag, OUT_Y_M, &m_y); result &= read_reg(addr_mag,OUT_Y_M ,&(my_test.UT_L_A/*MSB*/));//MSB at lower result &= read_reg(addr_mag,OUT_Y_M+1,&(my_test.UT_H_A/*LSB*/)); setText(0,1,"read from reg _y:(%d) %.2X %.2X \n",my_test.value/*number*/, my_test.byte[1],my_test.byte[0]); m_test.y = float(my_test.value) / gainxy[_GN]; //result &= read_reg_short(addr_mag, OUT_Z_M, &m_z); result &= read_reg(addr_mag,OUT_Z_M ,&(my_test.UT_L_A/*MSB*/));//MSB at lower result &= read_reg(addr_mag,OUT_Z_M+1,&(my_test.UT_H_A/*LSB*/)); setText(0,2,"read from reg _z:(%d) %.2X %.2X \n",my_test.value/*number*/, my_test.byte[1],my_test.byte[0]); m_test.z = float(my_test.value) / gainz[_GN]; setText(0,4,"test 4: x: %.4f y: %.4f z: %.4f \n",m_test.x,m_test.y,m_test.z); } #if defined(CHECK_TIME_SEQUENCE) usec2 = t.read_us(); debug("%d %d %d\n", usec1, usec2, usec2-usec1);//if (debug) debug->printf("%d %d %d\n", usec1, usec2, usec2-usec1); #endif if(result == true) { // Perform simple lowpass filtering // Intended to stabilize heading despite // device vibration such as on a UGV #if 0 if(data_read_acc & (1<<3)) { a_test.x= a_test.x / (32768 /*half of the ADC resolution*/ / _FS/*+- 4g*/); a_test.y= a_test.y / (32768 /*half of the ADC resolution*/ / _FS/*+- 4g*/); a_test.z= a_test.z / (32768 /*half of the ADC resolution*/ / _FS/*+- 4g*/); } #endif //float( a[i] ) * pow(2.,(fs+1)) / 32768. //x/8 = reading /0xFFFF(655355) // _filt_ax = _filt_ax + (a_x - (_filt_ax >> FILTER_SHIFT)); /* _filt_ax = _filt_ax + (ax_test - (_filt_ax >> FILTER_SHIFT)); _filt_ay += a_y - (_filt_ay >> FILTER_SHIFT); _filt_az += a_z - (_filt_az >> FILTER_SHIFT); a.x = (float) (_filt_ax >> FILTER_SHIFT); a.y = (float) (_filt_ay >> FILTER_SHIFT); a.z = (float) (_filt_az >> FILTER_SHIFT);*/ if(((Status_Reg_A_t*)&data_read_acc)->ZYXDA) { a.x = a_test.x; a.y = a_test.y; a.z = a_test.z; } // offset and scale if(((SR_Reg_M_t*)&data_read_acc)->DRDY) { m.x = (/*m_*/m_test.x + _offset_x) * _scale_x; m.y = (/*m_*/m_test.y + _offset_y) * _scale_y; m.z = (/*m_*/m_test.z + _offset_z) * _scale_z; } } return result; } // Returns the number of degrees from the -Y axis that it // is pointing. float LSM303DLH::heading() { return heading((vector){0,-1,0}); } float LSM303DLH::heading(vector from) { vector a, m; read(a, m); //////////////////////////////////////////////// // compute heading //////////////////////////////////////////////// vector temp_a = a; // normalize vector_normalize(&temp_a); //vector_normalize(&m); // compute E and N vector E; vector N; vector_cross(&m,&temp_a,&E); vector_normalize(&E); vector_cross(&temp_a,&E,&N); // compute heading float heading = atan2(vector_dot(&E,&from), vector_dot(&N,&from)) * 180/M_PI; if (heading < 0) heading += 360; return heading; } void LSM303DLH::frequency(int hz) { m_ptr_I2C->frequency(hz); } int8_t LSM303DLH::get_FullScall_selection(void) { char data_read_acc =0; read_reg(addr_acc,CTRL_REG4_A,&data_read_acc); return 2<<((((Ctrl_Reg4_A_t*)&data_read_acc)->FS)); }