Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Revision 0:1a04c0beef21, committed 2015-05-16
- Comitter:
- sakthipriya
- Date:
- Sat May 16 07:07:56 2015 +0000
- Commit message:
- acs beacon and hk integrated
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/ACS.cpp Sat May 16 07:07:56 2015 +0000
@@ -0,0 +1,566 @@
+#include "ACS.h"
+#include "MPU3300.h"
+#include "pin_config.h"
+#include "math.h"
+
+Serial pc1(USBTX, USBRX);
+SPI spi_acs (PIN16, PIN17, PIN15); // mosi, miso, sclk PTE18,19,17
+DigitalOut SSN_MAG (PIN61); // ssn for magnetometer PTB11
+DigitalInOut DRDY (PIN47); // drdy for magnetometer PTA17
+DigitalOut ssn_gyr (PIN62); //Slave Select pin of gyroscope PTB16
+InterruptIn dr(PIN81); //Interrupt pin for gyro PTC5
+PwmOut PWM1(PIN93); //Functions used to generate PWM signal
+PwmOut PWM2(PIN94);
+PwmOut PWM3(PIN95); //PWM output comes from pins p6
+Ticker tr; //Ticker function to give values for limited amount of time for gyro
+Timeout tr_mag;
+uint8_t trflag_mag;
+uint8_t trFlag; //ticker Flag for gyro
+uint8_t drFlag; //data-ready interrupt flag for gyro
+float pwm1;
+float pwm2;
+float pwm3;
+//--------------------------------TORQUE ROD--------------------------------------------------------------------------------------------------------------//
+
+void FUNC_ACS_GENPWM(float M[3])
+{
+
+ printf("\n\rEnterd PWMGEN function\n");
+ for(int i = 0 ; i<3;i++)
+ {
+ printf(" %f \t ",M[i]);
+ }
+ float timep = 0.02 ; //Time period is set to 0.02s
+
+
+ float DCx = 0; //Duty cycle of Moment in x direction
+ float ix = 0; //Current sent in x TR's
+ float Mx=M[0]; //Moment in x direction
+ ix = Mx * 0.3 ; //Moment and Current always have the linear relationship
+ if( ix>0&& ix < 0.006 )//Current and Duty cycle have the linear relationship between 1% and 100%
+ {
+ DCx = 6*1000000*pow(ix,4) - 377291*pow(ix,3) + 4689.6*pow(ix,2) + 149.19*ix - 0.0008;
+ PWM1.period(timep);
+ PWM1 = DCx/100 ;
+ }
+ else if( ix >= 0.006&& ix < 0.0116)
+ {
+ DCx = 1*100000000*pow(ix,4) - 5*1000000*pow(ix,3) + 62603*pow(ix,2) - 199.29*ix + 0.7648;
+ PWM1.period(timep);
+ PWM1 = DCx/100 ;
+ }
+ else if (ix >= 0.0116&& ix < 0.0624)
+ {
+ DCx = 212444*pow(ix,4) - 33244*pow(ix,3) + 1778.4*pow(ix,2) + 120.91*ix + 0.3878;
+ PWM1.period(timep);
+ PWM1 = DCx/100 ;
+ }
+ else if(ix >= 0.0624&& ix < 0.555)
+ {
+ printf("\n\rACS entered if\n\r"); //gotta check what this means
+ DCx = 331.15*pow(ix,4) - 368.09*pow(ix,3) + 140.43*pow(ix,2) + 158.59*ix + 0.0338;
+ PWM1.period(timep);
+ PWM1 = DCx/100 ;
+ }
+ else if(ix==0)
+ {
+ printf("\n \r ix====0");
+ DCx = 75;
+ PWM1.period(timep);
+ PWM1 = DCx/100 ;
+ }
+ else //not necessary
+ {
+ // printf("!!!!!!!!!!Error!!!!!!!!!");
+ }
+ pwm1 = PWM1;
+ printf("\n\r icx :%f pwm : %f \n\r",ix,pwm1);
+
+
+ float DCy = 0; //Duty cycle of Moment in y direction
+ float iy = 0; //Current sent in y TR's
+ float My=M[1]; //Moment in y direction
+ iy = My * 0.3 ; //Moment and Current always have the linear relationship
+ if( iy>0&& iy < 0.006 )//Current and Duty cycle have the linear relationship between 1% and 100%
+ {
+ DCy = 6*1000000*pow(iy,4) - 377291*pow(iy,3) + 4689.6*pow(iy,2) + 149.19*iy - 0.0008;
+ PWM2.period(timep);
+ PWM2 = DCy/100 ;
+ }
+ else if( iy >= 0.006&& iy < 0.0116)
+ {
+ DCy = 1*100000000*pow(iy,4) - 5*1000000*pow(iy,3) + 62603*pow(iy,2) - 199.29*iy + 0.7648;
+ PWM2.period(timep);
+ PWM2 = DCy/100 ;
+ }
+ else if (iy >= 0.0116&& iy < 0.0624)
+ {
+ DCy = 212444*pow(iy,4) - 33244*pow(iy,3) + 1778.4*pow(iy,2) + 120.91*iy + 0.3878;
+ PWM2.period(timep);
+ PWM2 = DCy/100 ;
+ }
+ else if(iy >= 0.0624&& iy < 0.555)
+ {
+ printf("\n\rACS entered if\n\r");
+ DCy = 331.15*pow(iy,4) - 368.09*pow(iy,3) + 140.43*pow(iy,2) + 158.59*iy + 0.0338;
+ PWM2.period(timep);
+ PWM2 = DCy/100 ;
+ }
+ else if(iy==0)
+ {
+ DCy = 0;
+ PWM2.period(timep);
+ PWM2 = DCy/100 ;
+ }
+ else
+ {
+ // printf("!!!!!!!!!!Error!!!!!!!!!");
+ }
+ pwm2 = PWM2;
+ printf("\n\r icy :%f pwm : %f \n\r",iy,pwm2);
+
+
+ float DCz = 0; //Duty cycle of Moment in z direction
+ float iz = 0; //Current sent in z TR's
+ float Mz=M[2]; //Moment in z direction
+ iz = Mz * 0.3 ; //Moment and Current always have the linear relationship
+ if( iz>0&& iz < 0.006 )//Current and Duty cycle have the linear relationship between 1% and 100%
+ {
+ DCz = 6*1000000*pow(iz,4) - 377291*pow(iz,3) + 4689.6*pow(iz,2) + 149.19*iz - 0.0008;
+ PWM3.period(timep);
+ PWM3 = DCz/100 ;
+ }
+ else if( iz >= 0.006&& iz < 0.0116)
+ {
+ DCz = 1*100000000*pow(iz,4) - 5*1000000*pow(iz,3) + 62603*pow(iz,2) - 199.29*iz + 0.7648;
+ PWM3.period(timep);
+ PWM3 = DCz/100 ;
+ }
+ else if (iz >= 0.0116&& iz < 0.0624)
+ {
+ DCz = 212444*pow(iz,4) - 33244*pow(iz,3) + 1778.4*pow(iz,2) + 120.91*iz + 0.3878;
+ PWM3.period(timep);
+ PWM3 = DCz/100 ;
+ }
+ else if(iz >= 0.0624&& iz < 0.555)
+ {
+ printf("\n\rACS entered if\n\r");
+ DCz = 331.15*pow(iz,4) - 368.09*pow(iz,3) + 140.43*pow(iz,2) + 158.59*iz + 0.0338;
+ PWM3.period(timep);
+ PWM3 = DCz/100 ;
+ }
+ else if(iz==0)
+ {
+ DCz = 0;
+ PWM3.period(timep);
+ PWM3 = DCz/100 ;
+ }
+ else
+ {
+ // printf("!!!!!!!!!!Error!!!!!!!!!");
+ }
+ pwm3 = PWM3;
+ printf("\n\r icy :%f pwm : %f \n\r",iz,pwm3);
+
+ printf("\n\rExited PWMGEN function\n\r");
+}
+/*-------------------------------------------------------------------------------------------------------------------------------------------------------
+-------------------------------------------MAGNETOMETER-------------------------------------------------------------------------------------------------*/
+
+void trsub_mag()
+{
+ trflag_mag=0;
+}
+
+void FUNC_ACS_MAG_INIT()
+{
+ DRDY = 0;
+ int a ;
+ a=DRDY;
+ printf("\n\r DRDY is %d\n\r",a);
+ SSN_MAG=1; //pin is disabled
+ spi_acs.format(8,0); //8bits,Mode 0
+ spi_acs.frequency(100000); //clock frequency
+ SSN_MAG=0; // Selecting pin
+ wait_ms(10); //accounts for delay.can be minimised.
+ spi_acs.write(0x83);
+ wait_ms(10);
+ unsigned char i;
+ for(i=0;i<3;i++) //initialising values.
+ {
+ spi_acs.write(0x00); //MSB of X,y,Z
+ spi_acs.write(0xc8); //LSB of X,Y,z;pointer increases automatically.
+ }
+ SSN_MAG=1;
+}
+
+void FUNC_ACS_MAG_EXEC(float mag_field[])
+{
+ printf("\n\rEntered magnetometer function\n\r");
+ DRDY.write(0);
+ int a;
+ a = DRDY;
+ printf("\n\r DRDY is %d\n\r",a);
+ SSN_MAG=0; //enabling slave to measure the values
+ wait_ms(10);
+ spi_acs.write(0x82); //initiates measurement
+ wait_ms(10);
+ spi_acs.write(0x01); //selecting x,y and z axes, measurement starts now
+ SSN_MAG=1;
+ wait_ms(10);
+
+ trflag_mag=1;
+ tr_mag.attach(&trsub_mag,1); //runs in background,makes trflag_mag=0 after 1s
+ DRDY.input();
+ while(trflag_mag) /*initially flag is 1,so loop is executed,if DRDY is high,then data is retrieved and programme ends,else
+ loop runs for at the max 1s and if still DRDY is zero,the flag becomes 0 and loop is not executed and
+ programme is terminated*/
+ {
+ wait_ms(5);
+ if(DRDY==1)
+ {
+ printf("\n\r DRDY is high\n");
+ SSN_MAG=0;
+ spi_acs.write(0xc9); //command byte for retrieving data
+ unsigned char axis;
+ float Bnewvalue[3]={0.0,0.0,0.0};
+ int32_t Bvalue[3]={0,0,0};
+ int32_t a= pow(2.0,24.0);
+ int32_t b= pow(2.0,23.0);
+ for(axis=0;axis<3;axis++)
+ {
+ Bvalue[axis]=spi_acs.write(0x00)<<16; //MSB 1 is send first
+ wait_ms(10);
+ Bvalue[axis]|=spi_acs.write(0x00)<<8; //MSB 2 is send next
+ wait_ms(10);
+ Bvalue[axis]|=spi_acs.write(0x00); //LSB is send.....total length is 24 bits(3*8bits)...which are appended to get actual bit configuration
+ if((Bvalue[axis]&b)==b)
+ {
+ Bvalue[axis]=Bvalue[axis]-a; //converting 2s complement to signed decimal
+
+ }
+ Bnewvalue[axis]=(float)Bvalue[axis]*22.0*pow(10.0,-3.0); //1 LSB=(22nT)...final value of field obtained in micro tesla
+ wait_ms(10);
+
+ mag_field[axis] = Bnewvalue[axis];
+ printf("\t%lf\n\r",mag_field[axis]);
+ }
+ SSN_MAG=1;
+ printf("\n\r exited magnetometer function\n");
+ //return Bnewvalue; //return here? doubt..
+
+ break;
+ }
+ }
+}
+/*------------------------------------------------------------------------------------------------------------------------------------------------------
+-------------------------------------------torque to moment conversion------------------------------------------------------------------------------------------*/
+void moment_calc (float tauc[3], float b[3], float moment[3])
+{
+ float b1;
+ b1 = pow(b[0],2) + pow(b[1],2) +pow(b[2],2) ;
+ printf("\nvalue of b is %f\n",b1);
+ moment[0] = ((tauc[1]*b[2])-(tauc[2]*b[1]))/b1;
+ moment[1] = ((tauc[2]*b[0])-(tauc[0]*b[2]))/b1;
+ moment[2] = ((tauc[0]*b[1])-(tauc[1]*b[0]))/b1;
+
+}
+
+
+/*------------------------------------------------------------------------------------------------------------------------------------------------------
+-------------------------------------------CONTROL ALGORITHM------------------------------------------------------------------------------------------*/
+
+void FUNC_ACS_CNTRLALGO(float *b,float *omega,float tauc[3])
+{
+
+ float db[3]; // inputs
+ //initialization
+ float bb[3] = {0, 0, 0};
+ float d[3] = {0, 0, 0};
+ float Jm[3][3] = {{0.2730, 0, 0}, {0, 0.3018, 0}, {0, 0, 0.3031}};
+ float den = 0;
+ float den2;
+ int i, j; //temporary variables
+ float Mu[2], z[2], dv[2], v[2], u[2]; //outputs
+ float invJm[3][3];
+ float kmu2 = 0.07, gamma2 = 1.9e4, kz2 = 0.4e-2, kmu = 0.003, gamma = 5.6e4, kz = 0.1e-4;
+ printf("\n\r Entered cntrl algo\n\r");
+ for(int i=0; i<3; i++)
+ {
+ printf("%f\t",omega[i]);
+ }
+ for(int i=0; i<3; i++)
+ {
+ printf("%f\t",b[i]);
+ }
+ //structure parameters
+ void inverse (float mat[3][3], float inv[3][3]);
+ void getInput (float x[9]);
+ tauc[0] =tauc[1] =tauc[2]=0 ;
+
+ den = sqrt((b[0]*b[0]) + (b[1]*b[1]) + (b[2]*b[2]));
+ den2 = (b[0]*db[0]) + (b[1]*db[1]) + (b[2]*db[2]);
+ for(i=0;i<3;i++)
+ {
+ db[i] = (db[i]*den*den-b[i]*den2) / (pow(den,3));
+ //db[i]/=den*den*den;
+ }
+ for(i=0;i<3;i++) //gotta check what is this
+ {
+ printf("\n\rreached here\n\r");
+ if(den!=0)
+ b[i]=b[i]/den; //there is a problem here. The code gets stuck here. Maf value is required
+ }
+
+ // select kz, kmu, gamma
+ if(b[0]>0.9 || b[0]<-0.9)
+ {
+ kz = kz2;
+ kmu = kmu2;
+ gamma = gamma2;
+ }
+ // calculate Mu, v, dv, z, u
+ for(i=0;i<2;i++)
+ {
+ Mu[i] = b[i+1];
+ v[i] = -kmu*Mu[i];
+ dv[i] = -kmu*db[i+1];
+ z[i] = db[i+1] - v[i];
+ u[i] = -kz*z[i] + dv[i]-(Mu[i] / gamma);
+ }
+ inverse(Jm, invJm);
+ // calculate cross(omega,J*omega)for(i=0;i<3;i++)
+ for(i=0; i<3; i++) // for loop included after checking original code
+ {
+ for(j=0;j<3;j++)
+ bb[i] += omega[j]*(omega[(i+1)%3]*Jm[(i+2)%3][j] - omega[(i+2)%3]*Jm[(i+1)%3][j]);
+ }
+ // calculate invJm*cross(omega,J*omega) store in d
+ for(i=0;i<3;i++)
+ {
+ for(j=0;j<3;j++)
+ d[i] += bb[j]*invJm[i][j];
+ }
+ // calculate d = cross(invJm*cross(omega,J*omega),b) -cross(omega,db)
+ // bb =[0;u-d(2:3)]
+ // store in bb
+ bb[1] = u[0] + (d[0]*b[2])-(d[2]*b[0])-(omega[0]*db[2]) + (omega[2]*db[0]);
+ bb[2] = u[1]-(d[0]*b[1]) + (d[1]*b[0]) + (omega[0]*db[1])-(omega[1]*db[0]);
+ bb[0] = 0;
+ // calculate N
+ // reusing invJm as N
+ for(i=0;i<3;i++)
+ {
+ d[i] = invJm[1][i];
+ invJm[ 1][i] = b[2]*invJm[0][i] - b[0]*invJm[2][i];
+ invJm[2][i] = -b[1]*invJm[0][i] + b[0]*d[i];
+ invJm[0][i] = b[i];
+ }
+ // calculate inv(N) store in Jm
+ inverse(invJm, Jm);
+ // calculate tauc
+ printf("\n \r calculatin tauc");
+ for(i=0;i<3;i++)
+ {
+ for(j=0;j<3;j++)
+ tauc[i] += Jm[i][j]*bb[j];
+ printf(" %f \t",tauc[i]);
+ }
+}
+
+
+void inverse(float mat[3][3], float inv[3][3])
+{
+int i, j;
+float det = 0;
+for(i=0;i<3;i++)
+{ for(j=0;j<3;j++)
+inv[j][i] = (mat[(i+1)%3][(j+1)%3]*mat[(i+2)%3][(j+2)%3]) - (mat[(i+2)%3]
+[(j+1)%3]*mat[(i+1)%3][(j+2)%3]);
+}
+det += (mat[0][0]*inv[0][0]) + (mat[0][1]*inv[1][0]) + (mat[0][2]*inv[2][0]);
+for(i=0;i<3;i++)
+{ for(j=0;j<3;j++)
+inv[i][j] /= det;
+}
+}
+
+
+/*-------------------------------------------------------------------------------------------------------------------------------------------------------
+-------------------------------------------GYROSCOPE-------------------------------------------------------------------------------------------------*/
+
+void trSub();
+void drSub();
+void init_gyro();
+float * FUNC_ACS_EXEC_GYR();
+
+void drSub() //In this function we setting data-ready flag to 1
+{
+ drFlag=1;
+ //printf("\n dr interrupt detected");
+}
+void trSub() //In this function we are setting ticker flag to 0
+{
+ trFlag=0;
+}
+void FUNC_ACS_INIT_GYR()
+{
+ uint8_t response;
+ ssn_gyr=1; //Deselecting the chip
+ spi_acs.format(8,0); // Spi format is 8 bits, and clock mode 3
+ spi_acs.frequency(1000000); //frequency to be set as 1MHz
+ drFlag=0; //Intially defining data-ready flag to be 0
+ dr.mode(PullDown);
+ dr.rise(&drSub);
+ __disable_irq();
+
+ /*initializing the register and changing its configuration*/
+ ssn_gyr=0; //Selecting chip(Mpu-3300)
+ spi_acs.write(USER_CTRL|READFLAG); //sending USER_CTRL address with read bit
+ response=spi_acs.write(DUMMYBIT); //sending dummy bit to get default values of the register
+
+ ssn_gyr=1; //Deselecting the chip
+ wait(0.1); //waiting according the product specifications
+
+ ssn_gyr=0; //again selecting the chip
+ spi_acs.write(USER_CTRL); //sending USER_CTRL address without read bit
+ spi_acs.write(response|BIT_I2C_IF_DIS); //disabling the I2C mode in the register
+ ssn_gyr=1; //deselecting the chip
+ wait(0.1); // waiting for 100ms before going for another register
+
+ ssn_gyr=0;
+ spi_acs.write(PWR_MGMT_1|READFLAG); //Power Management register-1
+ response=spi_acs.write(DUMMYBIT);
+ ssn_gyr=1;
+ wait(0.1);
+
+ ssn_gyr=0;
+ spi_acs.write(PWR_MGMT_1);
+ response=spi_acs.write(response|BIT_CLKSEL_X); //Selecting the X axis gyroscope as clock as mentioned above
+ ssn_gyr=1;
+ wait(0.1);
+
+ ssn_gyr=0;
+ spi_acs.write(GYRO_CONFIG|READFLAG); //sending GYRO_CONFIG address with read bit
+ response=spi_acs.write(DUMMYBIT);
+ ssn_gyr=1;
+ wait(0.1);
+
+ ssn_gyr=0;
+ spi_acs.write(GYRO_CONFIG); //sending GYRO_CONFIG address to write to register
+ spi_acs.write(response&(~(BITS_FS_SEL_3|BITS_FS_SEL_4))); //selecting a full scale mode of +/=225 deg/sec
+ ssn_gyr=1;
+ wait(0.1);
+
+ ssn_gyr=0;
+ spi_acs.write(CONFIG|READFLAG); //sending CONFIG address with read bit
+ response=spi_acs.write(DUMMYBIT);
+ ssn_gyr=1;
+ wait(0.1);
+
+ ssn_gyr=0;
+ spi_acs.write(CONFIG); //sending CONFIG address to write to register
+ spi_acs.write(response|BITS_DLPF_CFG); //selecting a bandwidth of 42 hz and delay of 4.8ms
+ ssn_gyr=1;
+ wait(0.1);
+
+ ssn_gyr=0;
+ spi_acs.write(SMPLRT_DIV|READFLAG); //sending SMPLRT_DIV address with read bit
+ response=spi_acs.write(DUMMYBIT);
+ ssn_gyr=1;
+ wait(0.1);
+
+ ssn_gyr=0;
+ spi_acs.write(SMPLRT_DIV); //sending SMPLRT_DIV address to write to register
+ spi_acs.write(response&BITS_SMPLRT_DIV); //setting the sampling rate division to be 0 to make sample rate = gyroscopic output rate
+ ssn_gyr=1;
+ wait(0.1);
+
+ ssn_gyr=0;
+ spi_acs.write(INT_ENABLE|READFLAG); //sending address of INT_ENABLE with readflag
+ response=spi_acs.write(DUMMYBIT); //sending dummy byte to get the default values of the
+ // regiser
+ ssn_gyr=1;
+ wait(0.1);
+
+ ssn_gyr=0;
+ spi_acs.write(INT_ENABLE); //sending INT_ENABLE address to write to register
+ spi_acs.write(response|BIT_DATA_RDY_ENABLE); //Enbling data ready interrupt
+ ssn_gyr=1;
+ wait(0.1);
+
+ __enable_irq();
+}
+
+void FUNC_ACS_EXEC_GYR(float*omega)
+{
+ printf("\n\rEntered gyro\n\r");
+ uint8_t response;
+ uint8_t MSB,LSB;
+ int16_t bit_data;
+ float data[3],error[3]={0,0,0}; //declaring error array to add to the values when required
+ float senstivity = 145.6; //senstivity is 145.6 for full scale mode of +/-225 deg/sec
+ ssn_gyr=0;
+ spi_acs.write(PWR_MGMT_1|READFLAG); //sending address of INT_ENABLE with readflag
+ response=spi_acs.write(DUMMYBIT); //
+ ssn_gyr=1;
+ wait(0.1);
+
+ ssn_gyr=0;
+ spi_acs.write(PWR_MGMT_1); //sending PWR_MGMT_1 address to write to register
+ response=spi_acs.write(response&(~(BIT_SLEEP))); //waking up the gyroscope from sleep
+ ssn_gyr=1;
+ wait(0.1);
+
+ trFlag=1;
+ tr.attach(&trSub,1); //executes the function trSub afer 1sec
+
+ while(trFlag)
+ {
+ // printf("\n\r check1");
+ wait_ms(5); //This is required for this while loop to exit. I don't know why.
+ if(drFlag==1)
+ {
+ //printf("\n\r check2");
+ ssn_gyr=0;
+ spi_acs.write(GYRO_XOUT_H|READFLAG); //sending address of PWR_MGMT_1 with readflag
+ for(int i=0;i<3;i++)
+ {
+ MSB = spi_acs.write(DUMMYBIT); //reading the MSB values of x,y and z respectively
+ LSB = spi_acs.write(DUMMYBIT); //reading the LSB values of x,y and z respectively
+ bit_data= ((int16_t)MSB<<8)|LSB; //concatenating to get 16 bit 2's complement of the required gyroscope values
+ data[i]=(float)bit_data;
+ data[i]=data[i]/senstivity; //dividing with senstivity to get the readings in deg/sec
+ data[i]+=error[i]; //adding with error to remove offset errors
+ }
+ ssn_gyr=1;
+ for (int i=0;i<3;i++)
+ {
+ printf("%f\t",data[i]); //printing the angular velocity values
+ omega[i] = data[i];
+ }
+ printf("\n\r");
+ break;
+ }
+ drFlag=0;
+ }
+ ssn_gyr=0;
+ spi_acs.write(PWR_MGMT_1|READFLAG); //sending address of PWR_MGMT_1 with readflag
+ response=spi_acs.write(DUMMYBIT);
+ ssn_gyr=1;
+ wait(0.1);
+
+ ssn_gyr=0;
+ spi_acs.write(PWR_MGMT_1); //sending PWR_MGMT_1 address to write to register
+ response=spi_acs.write(response|BIT_SLEEP); //setting the gyroscope in sleep mode
+ ssn_gyr=1;
+ wait(0.1);
+ printf("\n\rExited gyro\n\r");
+
+}
+
+
+
+
+
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ACS.h Sat May 16 07:07:56 2015 +0000 @@ -0,0 +1,12 @@ +#include "mbed.h" +#include "math.h" + +void FUNC_ACS_GENPWM(float *); +void FUNC_ACS_MAG_EXEC(float *); +void FUNC_ACS_MAG_INIT(); +//void Read_data_acs() +void moment_calc (float* , float* , float* ); +void FUNC_ACS_CNTRLALGO(float*,float*,float a[]); +void FUNC_ACS_EXEC_GYR(float*); +void FUNC_ACS_INIT_GYR(); +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/HK.cpp Sat May 16 07:07:56 2015 +0000
@@ -0,0 +1,190 @@
+#include "HK.h"
+#include "pin_config.h"
+
+
+//GPIO pins used=> D2-D12, A0-A1
+
+DigitalOut SelectLinesA[]={PIN43,PIN44,PIN45,PIN46}; //to mux1=>voltage mux , PTA 13-16 , CHNGE TO PIN43 LATER
+DigitalOut SelectLinesB[]={PIN56,PIN57,PIN58,PIN59}; //to mux2=>current mux(differential mux) , PTB 3,7,8,9
+DigitalOut SelectLinesC[]={PIN64,PIN65,PIN66,PIN67}; //to mux3=>temp mux PTB 18-21
+
+//--------------------------------------------MSB is SelectLines[0],LSB is SelectLines[3]--------------------------------
+
+AnalogIn CurrentInput(PIN53); // output from Current Mux PTB0
+AnalogIn VoltageInput(PIN54); // output from Voltage Multiplexer PTB1
+AnalogIn TemperatureInput(PIN55); /*PTB2 output from Temperature Multiplexer,thermistor Multiplexer- same multiplexer for both(lines 1-4 for thermistor,line 0 for temperature sensor)*/
+
+
+
+int quantiz(float start,float step,float x) // accepts min and measured values and step->quantises on a scale 0-15..(4 bit quantisation)
+{
+ int y=(x-start)/step;
+ if(y<=0)y=0;
+ if(y>=15)y=15;
+ return y;
+}
+
+void init_beacon(ShortBeacy* x,SensorDataQuantised y)
+{
+ (*x).Voltage[0]=2; //quantised value
+ (*x).Temp[0]=y.PanelTemperature[0]; //quantised value
+ (*x).Temp[1]=y.PanelTemperature[1]; //quantised value
+ (*x).AngularSpeed[0]=y.AngularSpeed[0];
+ (*x).AngularSpeed[1]=y.AngularSpeed[1];
+
+ (*x).SubsystemStatus[0]=145; //dummy values----------to be changed-------------------
+ (*x).ErrorFlag[0]=3; //dummy values----------to be changed-------------------
+}
+
+SensorData Sensor;
+SensorDataQuantised SensorQuantised;
+ShortBeacy Shortbeacon;
+void FUNC_HK_MAIN()
+{
+ //define structure variables
+
+ //initialise all selectlines to zeroes->1st line of muxes selected
+ SelectLinesA[0]=SelectLinesA[1]=SelectLinesA[2]=SelectLinesA[3]=0;
+ SelectLinesB[0]=SelectLinesB[1]=SelectLinesB[2]=0;
+ SelectLinesC[0]=SelectLinesC[1]=SelectLinesC[2]=SelectLinesC[3]=0;
+
+ int LoopIterator;
+ int SelectLineIterator;
+
+ float resistance_thermistor,voltage_thermistor;//for thermistor
+
+ //measurement from voltage sensor=> 16 sensors in place
+ for(LoopIterator=0; LoopIterator<16; LoopIterator++)
+ {
+ //read the sensor values and stores them in 'SensorData' structure's variable 'Sensor'
+ Sensor.Voltage[LoopIterator]=(VoltageInput.read()*3.3*5.545454);//resistors in voltage divider=>15Mohm,3.3Mohm
+
+ if(LoopIterator%2==0)
+ SensorQuantised.Voltage[LoopIterator/2]=quantiz(vstart,vstep,Sensor.Voltage[LoopIterator]);
+
+ else
+ SensorQuantised.Voltage[(LoopIterator)/2]=SensorQuantised.Voltage[(LoopIterator)/2]<<4+quantiz(vstart,vstep,Sensor.Voltage[LoopIterator]);
+
+ //iterate the select lines from 0 to 15
+ for(SelectLineIterator=3;SelectLineIterator>=0;SelectLineIterator--)
+ {
+ if(SelectLinesA[SelectLineIterator]==0)
+ {
+ SelectLinesA[SelectLineIterator]=1;
+ break;
+ }
+ else SelectLinesA[SelectLineIterator]=0;
+ }
+
+ wait_us(10.0); // A delay of 10 microseconds between each sensor output. Can be changed.
+ }
+
+
+ //measurement from current sensor=> 8 sensors in place
+ for(LoopIterator=0; LoopIterator<8; LoopIterator++)
+ {
+ //read the sensor values and stores them in 'SensorData' structure variable 'Sensor'
+ Sensor.Current[LoopIterator]=(CurrentInput.read()*3.3/(50*rsens));
+ if(LoopIterator%2==0)
+ SensorQuantised.Current[LoopIterator/2]=quantiz(cstart,cstep,Sensor.Current[LoopIterator]);
+ else
+ SensorQuantised.Current[(LoopIterator)/2]=SensorQuantised.Current[(LoopIterator)/2]<<4+quantiz(cstart,cstep,Sensor.Current[LoopIterator]);
+
+ //iterate the select lines from 0 to 7
+ for(SelectLineIterator=2;SelectLineIterator>=0;SelectLineIterator--)
+ {
+ if(SelectLinesB[SelectLineIterator]==0)
+ {
+ SelectLinesB[SelectLineIterator]=1;
+ break;
+ }
+ else SelectLinesB[SelectLineIterator]=0;
+
+ }
+
+ wait_us(10.0); // A delay of 10 microseconds between each sensor output. Can be changed.
+ }
+
+
+ //measurement of temperature
+ //temperature measurement=> 4 thermistors, 1 temperature sensor
+ //mux line 1=>temp sensor, mux lines 2 to 5 =>thermistors
+
+ for(LoopIterator=0; LoopIterator<5; LoopIterator++)
+ {
+ //read the sensor values and stores them in 'SensorData' structure variable 'Sensor'
+ Sensor.Temperature[LoopIterator]=(-90.7*3.3*TemperatureInput.read()+190.1543);
+ voltage_thermistor=TemperatureInput.read()*3.3;//voltage across thermistor
+ resistance_thermistor=24000*voltage_thermistor/(3.3-voltage_thermistor);//resistance of thermistor
+ if (LoopIterator==0)
+ {
+ printf(" \n\rTemp =%f",-90.7*3.3*TemperatureInput.read()+190.1543);
+ }
+
+ if(LoopIterator%2==0)
+ {
+ if(LoopIterator<1) //->corresponding to temperature sensor
+ SensorQuantised.Temperature[(LoopIterator)/2]=quantiz(tstart,tstep,Sensor.Temperature[LoopIterator]);
+
+ else //->corresponding to thermistor
+ {
+ if(voltage_thermistor<1.378) //Temperature>12 degC
+ Sensor.PanelTemperature[(LoopIterator-1)]=(3694/log(24.032242*resistance_thermistor));
+
+ else
+ Sensor.PanelTemperature[(LoopIterator-1)]=(3365.4792/log(7.60404*resistance_thermistor));
+
+
+ SensorQuantised.PanelTemperature[(LoopIterator-1)/2]=quantiz(tstart_thermistor,tstep_thermistor,Sensor.PanelTemperature[(LoopIterator-1)]);
+
+ }
+ }
+ else
+ {
+ if(LoopIterator<1)
+ SensorQuantised.Temperature[(LoopIterator)/2]=SensorQuantised.Temperature[(LoopIterator)/2]<<4+quantiz(tstart,tstep,Sensor.Temperature[LoopIterator]);
+
+ else
+ {
+ if(voltage_thermistor<1.378) //Temperature>12 degC
+ Sensor.PanelTemperature[LoopIterator-1]=(3694/log(24.032242*resistance_thermistor));
+ else
+ Sensor.PanelTemperature[LoopIterator-1]=(3365.4792/log(7.60404*resistance_thermistor));
+
+ SensorQuantised.PanelTemperature[(LoopIterator-1)/2]=SensorQuantised.PanelTemperature[(LoopIterator-1)/2]<<4+quantiz(tstart_thermistor,tstep_thermistor,Sensor.PanelTemperature[LoopIterator-1]);
+ }
+ }
+ // The following lines are used to iterate the select lines from 0 to 4
+ for(SelectLineIterator=3;SelectLineIterator>=0;SelectLineIterator--)
+ {
+ if(SelectLinesC[SelectLineIterator]==0)
+ {
+ SelectLinesC[SelectLineIterator]=1;
+ break;
+ }
+ else SelectLinesC[SelectLineIterator]=0;
+ }
+
+ wait_us(10.0); // A delay of 10 microseconds between each sensor output. Can be changed.
+ }
+
+
+ //update magnetometer data->
+ //populate values in structure variable 'Sensor' from data to be given by Green
+ SensorQuantised.AngularSpeed[0]=quantiz(AngularSpeed_start,AngularSpeed_step,Sensor.AngularSpeed[1]);
+ SensorQuantised.AngularSpeed[0]=SensorQuantised.AngularSpeed[0]<<4+quantiz(AngularSpeed_start,AngularSpeed_step,Sensor.AngularSpeed[0]);
+ SensorQuantised.AngularSpeed[1]=quantiz(AngularSpeed_start,AngularSpeed_step,Sensor.AngularSpeed[2]);
+
+ //update gyro data->
+ //populate values in structure variable 'Sensor' from data to be given by Green
+ SensorQuantised.Bnewvalue[0]=quantiz(Bnewvalue_start,Bnewvalue_step,Sensor.Bnewvalue[1]);
+ SensorQuantised.Bnewvalue[0]=SensorQuantised.Bnewvalue[0]<<4+quantiz(Bnewvalue_start,Bnewvalue_step,Sensor.Bnewvalue[0]);
+ SensorQuantised.Bnewvalue[1]=quantiz(Bnewvalue_start,Bnewvalue_step,Sensor.Bnewvalue[2]);
+
+ //update beacon structure
+ init_beacon(&Shortbeacon,SensorQuantised);//Shortbeacon is passed
+ printf("\n here temperature :%d",SensorQuantised.Temperature);
+}
+
+
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/HK.h Sat May 16 07:07:56 2015 +0000
@@ -0,0 +1,69 @@
+//to be saved as HK.h
+
+#include "mbed.h"
+#define tstart -40
+#define tstep 8
+#define tstep_thermistor 8//verify!!
+#define tstart_thermistor -40
+#define vstart 3.3
+#define vstep 0.84667
+#define cstart 0.0691
+#define cstep 0.09133
+#define rsens 0.095
+#define Bnewvalue_start -100//in microTesla...max possible field is .0001 T
+#define Bnewvalue_step 13.333
+#define AngularSpeed_start -10//max possible ang. velocity in space is 10 deg/sec
+#define AngularSpeed_step 1.3333
+
+
+
+typedef struct SensorData
+{
+ float Voltage[16];
+ float Current[8];
+ float Temperature[1];
+ float PanelTemperature[4];
+ float BatteryTemperature; //to be populated
+ char faultpoll; //polled faults
+ char faultir; //interrupted faults
+ char power_mode; //power modes
+
+ float AngularSpeed[3]; //in order x,y,z
+ float Bnewvalue[3]; //in order Bx,By,Bz
+
+
+} SensorData;
+
+
+typedef struct SensorDataQuantised {
+ char Voltage[8];
+ char Current[4];
+ char Temperature[1];
+ char PanelTemperature[2];//read by the 4 thermistors on solar panels
+ char BatteryTemperature; //to be populated
+ char faultpoll; //polled faults
+ char faultir; //interrupted faults
+ char power_mode; //power modes
+ char AngularSpeed[2];
+ char Bnewvalue[2];
+
+ //float magnetometer,gyro=>to be addes
+} SensorDataQuantised;
+
+
+typedef struct ShortBeacon
+{
+ char Voltage[1]; //battery voltage from gauge, needs to be quantised
+ char AngularSpeed[2]; //all the 3 data
+ char SubsystemStatus[1]; //power modes
+ char Temp[2]; //temp of solar panel
+ //Temp[0]'s LSB=> PanelTemperature[0], Temp[0]'s MSB=> PanelTemperature[1], Temp[1]'s LSB=> PanelTemperature[2], Temp[1]'s MSB=> PanelTemperature[3]
+ char ErrorFlag[1]; //fault
+}ShortBeacy;
+
+
+
+void FUNC_HK_MAIN();
+
+int quantiz(float start,float step,float x);
+void init_beacon(ShortBeacy* x,SensorDataQuantised y);
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/MPU3300.h Sat May 16 07:07:56 2015 +0000 @@ -0,0 +1,26 @@ +//MPU 3300 registers +#define SMPLRT_DIV 0x19 +#define CONFIG 0x1A +#define GYRO_CONFIG 0x1B +#define GYRO_XOUT_H 0x43 +#define GYRO_XOUT_L 0x44 +#define GYRO_YOUT_H 0x45 +#define GYRO_YOUT_L 0x46 +#define GYRO_ZOUT_H 0x47 +#define GYRO_ZOUT_L 0x48 +#define USER_CTRL 0x6A +#define PWR_MGMT_1 0x6B +#define INT_ENABLE 0x38 + +//MPU configuration bits +#define READFLAG 0x80 +#define DUMMYBIT 0x00 +#define BITS_DLPF_CFG 0x07 +#define BITS_FS_SEL_3 0x08 +#define BITS_FS_SEL_4 0x10 +#define BIT_I2C_IF_DIS 0x10 +#define BITS_SMPLRT_DIV 0x00 +#define BIT_SLEEP 0x40 +#define BIT_DATA_RDY_ENABLE 0x01 +#define BIT_DATA_RDY_INT 0x01 +#define BIT_CLKSEL_X 0x01
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/beacon.cpp Sat May 16 07:07:56 2015 +0000
@@ -0,0 +1,238 @@
+//switch off the sync!!!!!!!
+//switch off the preamble!!!!!!!
+/*for crc in tx:
+regIrq2(0x28) :
+
+regpacketconfig 1(0x37) :
+set crc detection/calc. on : | 0x10
+crcautoclearoff : | 0x08
+
+for data whitening : regpacketconfig 1(0x37) :| 0x40
+for
+
+
+
+*/
+// 6CC000 for 435 MHz
+//set all values as FF for checking on spectrum analyzer
+#include "beacon.h"
+#include "HK.h"
+#include "pin_config.h"
+Serial chavan(USBTX, USBRX); // tx, rx
+//SPI spi(PIN2,PIN1,PIN3); // mosi, miso, sclk
+DigitalOut cs(PIN6); //slave select or chip select
+//SPI spi(PTD6,PTD7,PTD5); // mosi, miso, sclk
+SPI spi(PIN16,PIN17,PIN15);
+//DigitalOut cs_bar(PTC11); //slave select or chip select
+//InterruptIn button(p9);
+//#define TIMES 16
+//Timer t;
+
+/*void interrupt_func()
+{
+ chavan.printf("INTERRUPT_FUNC TRIGGERED\n wait for 3 secs\n");
+ wait(3);
+
+}*/
+
+
+
+extern ShortBeacy Shortbeacon;
+
+void writereg(uint8_t reg,uint8_t val)
+{
+ cs = 0;__disable_irq();spi.write(reg | 0x80);spi.write(val);__enable_irq();cs = 1;
+}
+uint8_t readreg(uint8_t reg)
+{
+ int val;cs = 0;__disable_irq();spi.write(reg & ~0x80);val = spi.write(0);__enable_irq();cs = 1;return val;
+}
+void clearTxBuf()
+{
+ writereg(RF22_REG_08_OPERATING_MODE2,0x01);
+ writereg(RF22_REG_08_OPERATING_MODE2,0x00);
+}
+void clearRxBuf()
+{
+ writereg(RF22_REG_08_OPERATING_MODE2,0x02);
+ writereg(RF22_REG_08_OPERATING_MODE2,0x00);
+}
+int setFrequency(float centre,float afcPullInRange)
+{
+//freq setting begins
+ uint8_t fbsel = 0x40;
+ uint8_t afclimiter;
+ if (centre >= 480.0) {
+ centre /= 2;
+ fbsel |= 0x20;
+ afclimiter = afcPullInRange * 1000000.0 / 1250.0;
+ } else {
+ if (afcPullInRange < 0.0 || afcPullInRange > 0.159375)
+ return false;
+ afclimiter = afcPullInRange * 1000000.0 / 625.0;
+ }
+ centre /= 10.0;
+ float integerPart = floor(centre);
+ float fractionalPart = centre - integerPart;
+
+ uint8_t fb = (uint8_t)integerPart - 24; // Range 0 to 23
+ fbsel |= fb;
+ uint16_t fc = fractionalPart * 64000;
+ writereg(RF22_REG_73_FREQUENCY_OFFSET1, 0); // REVISIT
+ writereg(RF22_REG_74_FREQUENCY_OFFSET2, 0);
+ writereg(RF22_REG_75_FREQUENCY_BAND_SELECT, fbsel);
+ writereg(RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1, fc >> 8);
+ writereg(RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0, fc & 0xff);
+ writereg(RF22_REG_2A_AFC_LIMITER, afclimiter);
+ return 0;
+}
+
+
+
+void init_beacon()
+{
+ //reset()
+ writereg(RF22_REG_07_OPERATING_MODE1,0x80); //sw_reset
+ wait(1); //takes time to reset
+
+ clearTxBuf();
+ clearRxBuf();
+ //txfifoalmostempty
+ writereg(RF22_REG_7D_TX_FIFO_CONTROL2,5);
+ //rxfifoalmostfull
+ writereg(RF22_REG_7E_RX_FIFO_CONTROL,20);
+ //Packet-engine registers
+ writereg(RF22_REG_30_DATA_ACCESS_CONTROL,0x8E); //RF22_REG_30_DATA_ACCESS_CONTROL, RF22_ENPACRX | RF22_ENPACTX | RF22_ENCRC | RF22_CRC_CRC_16_IBM
+ //&0x77 = diasable packet rx-tx handling
+ writereg(RF22_REG_32_HEADER_CONTROL1,0x88); //RF22_REG_32_HEADER_CONTROL1, RF22_BCEN_HEADER3 | RF22_HDCH_HEADER3
+ writereg(RF22_REG_33_HEADER_CONTROL2,0x42); //RF22_REG_33_HEADER_CONTROL2, RF22_HDLEN_4 | RF22_SYNCLEN_2
+ writereg(RF22_REG_34_PREAMBLE_LENGTH,8); //RF22_REG_34_PREAMBLE_LENGTH, nibbles); preamble length = 8;
+ writereg(RF22_REG_36_SYNC_WORD3,0x2D); //syncword3=2D
+ writereg(RF22_REG_37_SYNC_WORD2,0xD4); //syncword2=D4
+ writereg(RF22_REG_3F_CHECK_HEADER3,0); //RF22_REG_3F_CHECK_HEADER3, RF22_DEFAULT_NODE_ADDRESS
+ writereg(RF22_REG_3A_TRANSMIT_HEADER3,0xab); //header_to
+ writereg(RF22_REG_3B_TRANSMIT_HEADER2,0xbc); //header_from
+ writereg(RF22_REG_3C_TRANSMIT_HEADER1,0xcd); //header_ids
+ writereg(RF22_REG_3D_TRANSMIT_HEADER0,0xde); //header_flags
+ writereg(RF22_REG_3F_CHECK_HEADER3,0xab);
+ writereg(RF22_REG_40_CHECK_HEADER2,0xbc);
+ writereg(RF22_REG_41_CHECK_HEADER1,0xcd);
+ writereg(RF22_REG_42_CHECK_HEADER0,0xde);
+
+ //RSSI threshold for clear channel indicator
+ writereg(RF22_REG_27_RSSI_THRESHOLD,0xA5); //55 for -80dBm, 2D for -100dBm, 7D for -60dBm, A5 for -40dBm, CD for -20 dBm
+
+ writereg(RF22_REG_0B_GPIO_CONFIGURATION0,0x15); // TX state ??
+ writereg(RF22_REG_0C_GPIO_CONFIGURATION1,0x12); // RX state ??
+
+ //interrupts
+ // spiWrite(RF22_REG_05_INTERRUPT_ENABLE1, RF22_ENTXFFAEM |RF22_ENRXFFAFULL | RF22_ENPKSENT |RF22_ENPKVALID| RF22_ENCRCERROR);
+ // spiWrite(RF22_REG_06_INTERRUPT_ENABLE2, RF22_ENPREAVAL);
+
+ setFrequency(435.0, 0.05);
+
+ //return !(statusRead() & RF22_FREQERR);
+ if((readreg(RF22_REG_02_DEVICE_STATUS)& 0x08)!= 0x00)
+ printf("frequency not set properly\n");
+ //frequency set
+
+ //setModemConfig(FSK_Rb2_4Fd36); FSK_Rb2_4Fd36, ///< FSK, No Manchester, Rb = 2.4kbs, Fd = 36kHz
+ //setmodemregisters
+ //0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x22, 0x3a = FSK_RB2_4FD36
+ //0xc8, 0x03, 0x39, 0x20, 0x68, 0xdc, 0x00, 0x6b, 0x2a, 0x08, 0x2a, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x21, 0x08 = OOK,2.4, 335
+ writereg(RF22_REG_1C_IF_FILTER_BANDWIDTH,0x2B);
+ writereg(RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE,0x03);
+ writereg(RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE,0x41);
+ writereg(RF22_REG_21_CLOCK_RECOVERY_OFFSET2,0x60);
+ writereg(RF22_REG_22_CLOCK_RECOVERY_OFFSET1,0x27); //updated 20 to 25 reg values from excel sheet for 1.2 Khz freq. deviation,fsk
+ writereg(RF22_REG_23_CLOCK_RECOVERY_OFFSET0,0x52);
+ writereg(RF22_REG_24_CLOCK_RECOVERY_TIMING_LOOP_GAIN1,0x00);
+ writereg(RF22_REG_25_CLOCK_RECOVERY_TIMING_LOOP_GAIN0,0x51);
+ /*writereg(RF22_REG_2C_OOK_COUNTER_VALUE_1,0x2a);
+ writereg(RF22_REG_2D_OOK_COUNTER_VALUE_2,0x08);*/ //not required for fsk (OOK counter value)
+ writereg(RF22_REG_2E_SLICER_PEAK_HOLD,0x1e); //??
+ writereg(RF22_REG_58,0x80);
+ writereg(RF22_REG_69_AGC_OVERRIDE1,0x60);
+ writereg(RF22_REG_6E_TX_DATA_RATE1,0x09);
+ writereg(RF22_REG_6F_TX_DATA_RATE0,0xd5);
+ writereg(RF22_REG_70_MODULATION_CONTROL1,0x2c);
+ writereg(RF22_REG_71_MODULATION_CONTROL2,0x22);//ook = 0x21 //fsk = 0x22
+ writereg(RF22_REG_72_FREQUENCY_DEVIATION,0x02);
+ //set tx power
+ writereg(RF22_REG_6D_TX_POWER,0x07); //20dbm
+ writereg(RF22_REG_3E_PACKET_LENGTH,TX_DATA); //packet length
+}
+
+void FUNC_BEA()
+{
+ init_beacon();
+ printf("\nBeacon function entered\n");
+ wait(1); // wait for POR to complete //change the timing later
+ cs=1; // chip must be deselected
+ wait(1); //change the time later
+ spi.format(8,0);
+ spi.frequency(10000000); //10MHz SCLK
+ if (readreg(RF22_REG_00_DEVICE_TYPE) == 0x08) printf("spi connection valid\n");
+ else printf("error in spi connection\n");
+
+
+
+ //********
+ //button.rise(&interrupt_func); //interrupt enabled ( rising edge of pin 9)
+ wait(0.02); // pl. update this value or even avoid it!!!
+ //extract values from short_beacon[]
+ uint8_t byte_counter = 0;
+ /*struct Short_beacon{
+ uint8_t Voltage[1];
+ uint8_t AngularSpeed[2];
+ uint8_t SubsystemStatus[1];
+ uint8_t Temp[3];
+ uint8_t ErrorFlag[1];
+ }Shortbeacon = { {0x88}, {0x99, 0xAA} , {0xAA},{0xAA,0xDD,0xEE}, {0x00} };
+ */
+ //filling hk data
+ uint8_t short_beacon[] = { 0xAB, 0x8A, 0xE2, 0xBB, 0xB8, 0xA2, 0x8E,Shortbeacon.Voltage[0],Shortbeacon.AngularSpeed[0], Shortbeacon.AngularSpeed[1],Shortbeacon.SubsystemStatus[0],Shortbeacon.Temp[0],Shortbeacon.Temp[1],Shortbeacon.Temp[2],Shortbeacon.ErrorFlag[0]};
+
+ for(int i = 0; i < 15 ; i++)
+ {
+ printf("0x%X\n",(short_beacon[i]));
+ }
+ //tx settings begin
+ //setModeIdle();
+ writereg(RF22_REG_07_OPERATING_MODE1,0x01); //ready mode
+ //fillTxBuf(data, len);
+ clearTxBuf();
+
+ //Set to Tx mode
+ writereg(RF22_REG_07_OPERATING_MODE1,0x09);
+
+ while(byte_counter!=15){
+ //Check for fifoThresh
+ while((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x20) != 0x20);
+ //writing again
+ cs = 0;
+ spi.write(0xFF);
+ for(int i=7; i>=0 ;i--)
+ {
+ //pc.printf("%d\n",byte_counter);
+ if((short_beacon[byte_counter] & (uint8_t) pow(2.0,i))!=0)
+ {
+ spi.write(0xFF);
+ spi.write(0xFF);
+ }
+ else
+ {
+ spi.write(0x00);
+ spi.write(0x00);
+
+ }
+ }
+ cs = 1;
+ byte_counter++;
+
+ }
+ //rf22.waitPacketSent();
+ while((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x04) != 0x04);//pc.printf(" chck pkt sent!\n");
+ printf("\nBeacon function exiting\n");
+
+}
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/beacon.h Sat May 16 07:07:56 2015 +0000 @@ -0,0 +1,108 @@ +#include "mbed.h" + + + +#define TIMES 20 +#define RX_DATA 240 //in bytes +#define TX_DATA 240 //in bytes + +void writereg(uint8_t reg,uint8_t val); +uint8_t readreg(uint8_t reg); +void clearTxBuf(); +void clearRxBuf(); +int setFrequency(float,float); +void init_beacon(); +void FUNC_BEA(); + +#define RF22_MAX_MESSAGE_LEN 255 +// These values we set for FIFO thresholds +#define RF22_TXFFAEM_THRESHOLD 4 +#define RF22_RXFFAFULL_THRESHOLD 55 + +// Register names +#define RF22_REG_00_DEVICE_TYPE 0x00 +#define RF22_REG_02_DEVICE_STATUS 0x02 +#define RF22_REG_03_INTERRUPT_STATUS1 0x03 +#define RF22_REG_04_INTERRUPT_STATUS2 0x04 +#define RF22_REG_07_OPERATING_MODE1 0x07 +#define RF22_REG_08_OPERATING_MODE2 0x08 +#define RF22_REG_09_OSCILLATOR_LOAD_CAPACITANCE 0x09 +#define RF22_REG_0B_GPIO_CONFIGURATION0 0x0b +#define RF22_REG_0C_GPIO_CONFIGURATION1 0x0c +#define RF22_REG_0D_GPIO_CONFIGURATION2 0x0d +#define RF22_REG_1C_IF_FILTER_BANDWIDTH 0x1c +#define RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE 0x1f +#define RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE 0x20 +#define RF22_REG_21_CLOCK_RECOVERY_OFFSET2 0x21 +#define RF22_REG_22_CLOCK_RECOVERY_OFFSET1 0x22 +#define RF22_REG_23_CLOCK_RECOVERY_OFFSET0 0x23 +#define RF22_REG_24_CLOCK_RECOVERY_TIMING_LOOP_GAIN1 0x24 +#define RF22_REG_25_CLOCK_RECOVERY_TIMING_LOOP_GAIN0 0x25 +#define RF22_REG_26_RSSI 0x26 +#define RF22_REG_27_RSSI_THRESHOLD 0x27 +#define RF22_REG_28_ANTENNA_DIVERSITY1 0x28 +#define RF22_REG_29_ANTENNA_DIVERSITY2 0x29 +#define RF22_REG_2A_AFC_LIMITER 0x2a +#define RF22_REG_2B_AFC_CORRECTION_READ 0x2b +#define RF22_REG_2C_OOK_COUNTER_VALUE_1 0x2c +#define RF22_REG_2D_OOK_COUNTER_VALUE_2 0x2d +#define RF22_REG_2E_SLICER_PEAK_HOLD 0x2e +#define RF22_REG_30_DATA_ACCESS_CONTROL 0x30 +#define RF22_REG_31_EZMAC_STATUS 0x31 +#define RF22_REG_32_HEADER_CONTROL1 0x32 +#define RF22_REG_33_HEADER_CONTROL2 0x33 +#define RF22_REG_34_PREAMBLE_LENGTH 0x34 +#define RF22_REG_35_PREAMBLE_DETECTION_CONTROL1 0x35 +#define RF22_REG_36_SYNC_WORD3 0x36 +#define RF22_REG_37_SYNC_WORD2 0x37 +#define RF22_REG_38_SYNC_WORD1 0x38 +#define RF22_REG_39_SYNC_WORD0 0x39 +#define RF22_REG_3A_TRANSMIT_HEADER3 0x3a +#define RF22_REG_3B_TRANSMIT_HEADER2 0x3b +#define RF22_REG_3C_TRANSMIT_HEADER1 0x3c +#define RF22_REG_3D_TRANSMIT_HEADER0 0x3d +#define RF22_REG_3E_PACKET_LENGTH 0x3e +#define RF22_REG_3F_CHECK_HEADER3 0x3f +#define RF22_REG_40_CHECK_HEADER2 0x40 +#define RF22_REG_41_CHECK_HEADER1 0x41 +#define RF22_REG_42_CHECK_HEADER0 0x42 +#define RF22_REG_43_HEADER_ENABLE3 0x43 +#define RF22_REG_44_HEADER_ENABLE2 0x44 +#define RF22_REG_45_HEADER_ENABLE1 0x45 +#define RF22_REG_46_HEADER_ENABLE0 0x46 +#define RF22_REG_47_RECEIVED_HEADER3 0x47 +#define RF22_REG_48_RECEIVED_HEADER2 0x48 +#define RF22_REG_49_RECEIVED_HEADER1 0x49 +#define RF22_REG_4A_RECEIVED_HEADER0 0x4a +#define RF22_REG_4B_RECEIVED_PACKET_LENGTH 0x4b +#define RF22_REG_58 0x58 +#define RF22_REG_60_CHANNEL_FILTER_COEFFICIENT_ADDRESS 0x60 +#define RF22_REG_61_CHANNEL_FILTER_COEFFICIENT_VALUE 0x61 +#define RF22_REG_62_CRYSTAL_OSCILLATOR_POR_CONTROL 0x62 +#define RF22_REG_63_RC_OSCILLATOR_COARSE_CALIBRATION 0x63 +#define RF22_REG_64_RC_OSCILLATOR_FINE_CALIBRATION 0x64 +#define RF22_REG_65_LDO_CONTROL_OVERRIDE 0x65 +#define RF22_REG_66_LDO_LEVEL_SETTINGS 0x66 +#define RF22_REG_67_DELTA_SIGMA_ADC_TUNING1 0x67 +#define RF22_REG_68_DELTA_SIGMA_ADC_TUNING2 0x68 +#define RF22_REG_69_AGC_OVERRIDE1 0x69 +#define RF22_REG_6A_AGC_OVERRIDE2 0x6a +#define RF22_REG_6B_GFSK_FIR_FILTER_COEFFICIENT_ADDRESS 0x6b +#define RF22_REG_6C_GFSK_FIR_FILTER_COEFFICIENT_VALUE 0x6c +#define RF22_REG_6D_TX_POWER 0x6d +#define RF22_REG_6E_TX_DATA_RATE1 0x6e +#define RF22_REG_6F_TX_DATA_RATE0 0x6f +#define RF22_REG_70_MODULATION_CONTROL1 0x70 +#define RF22_REG_71_MODULATION_CONTROL2 0x71 +#define RF22_REG_72_FREQUENCY_DEVIATION 0x72 +#define RF22_REG_73_FREQUENCY_OFFSET1 0x73 +#define RF22_REG_74_FREQUENCY_OFFSET2 0x74 +#define RF22_REG_75_FREQUENCY_BAND_SELECT 0x75 +#define RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1 0x76 +#define RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0 0x77 +#define RF22_REG_79_FREQUENCY_HOPPING_CHANNEL_SELECT 0x79 +#define RF22_REG_7A_FREQUENCY_HOPPING_STEP_SIZE 0x7a +#define RF22_REG_7C_TX_FIFO_CONTROL1 0x7c +#define RF22_REG_7D_TX_FIFO_CONTROL2 0x7d +#define RF22_REG_7E_RX_FIFO_CONTROL 0x7e +#define RF22_REG_7F_FIFO_ACCESS 0x7f \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/fault.cpp Sat May 16 07:07:56 2015 +0000
@@ -0,0 +1,171 @@
+#include "fault.h"
+#include "HK.h"
+
+
+DigitalIn fault0(FAULT0,PullUp);
+DigitalIn fault1(FAULT1,PullUp);
+DigitalIn fault2(FAULT2,PullUp);
+DigitalIn fault3(FAULT3,PullUp);
+DigitalIn fault4(FAULT4,PullUp);
+//DigitalIn fault5(FAULT5,PullUp);
+//DigitalIn fault6(FAULT6,PullUp);
+//DigitalIn fault7(FAULT7,PullUp);
+//DigitalIn fault8(FAULT8,PullUp);
+
+
+InterruptIn fault_IR1(FAULT5);
+InterruptIn fault_IR2(FAULT6);
+InterruptIn fault_IR3(FAULT7);
+InterruptIn fault_IR4(FAULT8);
+InterruptIn fault_IR5(FAULT9);
+
+
+
+DigitalOut clear1(FAULT_CLEAR1,0);
+DigitalOut clear2(FAULT_CLEAR2,0);
+DigitalOut clear3(FAULT_CLEAR3,0);
+DigitalOut clear4(FAULT_CLEAR4,0);
+DigitalOut clear5(FAULT_CLEAR5);
+DigitalOut clear6(FAULT_CLEAR6);
+DigitalOut clear7(FAULT_CLEAR7);
+DigitalOut clear8(FAULT_CLEAR8);
+DigitalOut clear9(FAULT_CLEAR9);
+
+
+DigitalOut acs_active(ACS);
+
+
+BusIn fault_poll(FAULT0,FAULT1,FAULT2,FAULT3,FAULT4);
+BusIn fault_ir(FAULT5,FAULT6,FAULT7,FAULT8,FAULT9);
+
+BusOut clear_poll(FAULT_CLEAR1,FAULT_CLEAR2,FAULT_CLEAR3,FAULT_CLEAR4);//to send fault data along with hk
+BusOut clear_ir(FAULT_CLEAR5,FAULT_CLEAR6,FAULT_CLEAR7,FAULT_CLEAR8,FAULT_CLEAR9);
+
+
+extern SensorDataQuantised SensorQuantised;
+extern int beacon_sc; //to switch beacon between low and high power mode
+extern int acs_pflag; //to activate/deactivate control algo
+char out_poll;
+char out_ir;
+
+void FUNC_HK_FAULTS()
+{
+
+ printf("Entered Fault management \n");
+ /*if(fault0==0)printf("CHARGER IS CHARGING THE BATTERY ");
+ if(fault0==1)printf("CHRGER GONE OFFLINE, BATTERY DRAINING");
+
+ if(fault1==0)
+ { clear1=1;printf("");}
+ else
+ { clear1=0;}
+
+ if(fault2==0)
+ { clear2=1;printf("");}
+ else
+ { clear2=0;}
+
+ if(fault3==0)
+ { clear3=1;printf("");}
+ else
+ { clear3=0;}
+
+ if(fault4==0)
+ { clear4=1;printf("");}
+ else
+ { clear4=0;}*/
+
+
+
+
+
+
+
+
+ //clear1 = !fault1;
+ //clear2 = !fault2;
+ //clear3 = !fault3;
+ //clear4 = !fault4;
+ //clear5 = !fault5;
+ //clear6 = !fault6;
+ //clear7 = !fault7;
+ //clear8 = !fault8;
+
+
+ // out_poll = clear_poll;
+ //out_ir = clear_ir;
+ SensorQuantised.faultpoll = fault_poll ;
+ SensorQuantised.faultir=fault_ir ;
+ printf(" %d , %d \n ",SensorQuantised.faultpoll, SensorQuantised.faultir ) ;
+
+}
+
+
+
+void Clear_IR1()
+{clear5=!clear5;
+}
+
+void Clear_IR2()
+{clear6=!clear6;
+}
+
+void Clear_IR3()
+{clear7=!clear7;
+}
+
+void Clear_IR4()
+{clear8=!clear8;
+}
+
+void Clear_IR5()
+{clear9=!clear9;
+}
+
+void interrupt_fault()
+{
+ fault_IR1.rise(&Clear_IR1);
+ fault_IR2.rise(&Clear_IR2);
+ fault_IR3.rise(&Clear_IR3);
+ fault_IR4.rise(&Clear_IR4);
+ fault_IR5.rise(&Clear_IR5);
+ fault_IR1.fall(&Clear_IR1);
+ fault_IR2.fall(&Clear_IR2);
+ fault_IR3.fall(&Clear_IR3);
+ fault_IR4.fall(&Clear_IR4);
+ fault_IR5.fall(&Clear_IR5);
+}
+
+
+void FUNC_HK_POWER(char flag) //flag corresponds to the power mode
+{
+ printf("Entered Power Management \n");
+ printf("Entering mode %c \n", flag);
+ switch (flag)
+ {
+ case '0': beacon_sc = 6; //least power mode
+ acs_pflag = 0;
+ acs_active = 0; //switching off a component of acs
+ break;
+ case '1': beacon_sc = 3;
+ acs_pflag = 0;
+ acs_active = 0;
+ break;
+ case '2': beacon_sc = 3;
+ acs_pflag = 0;
+ acs_active = 0;
+ break;
+ case '3': beacon_sc = 3; //normal mode
+ acs_pflag = 1;
+ acs_active = 1;
+ break;
+ }
+ /* if (flag == '0')
+ beacon_sc = 30;
+ else
+ beacon_sc = 3;
+ if (flag == '3')
+ acs_pflag = 1;
+ else
+ acs_pflag = 0; */
+}
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/fault.h Sat May 16 07:07:56 2015 +0000 @@ -0,0 +1,35 @@ +#include "mbed.h" +#include "pin_config.h" + +#define FAULT0 PIN31 // CHARGEBAR +#define FAULT1 PIN42 // FAULTBAR +#define FAULT2 PIN40 // 3V3APGOOD +#define FAULT3 PIN39 // 3V3BPGOOD +#define FAULT4 PIN41 // 3V3CPGOOD +#define FAULT5 PIN79 // 3V3AOCBAR +#define FAULT6 PIN80 // 3V3COC +#define FAULT7 PIN89 // TRZ +#define FAULT8 PIN83 // TRXTRY +#define FAULT9 PIN97 // SW0FAULT + +//CONTROL SIGNALS +#define FAULT_CLEAR1 D8 +#define FAULT_CLEAR2 D9 +#define FAULT_CLEAR3 D10 +#define FAULT_CLEAR4 D11 +#define FAULT_CLEAR5 D12 +#define FAULT_CLEAR6 D13 +#define FAULT_CLEAR7 PTC7 +#define FAULT_CLEAR8 PTC10 +#define FAULT_CLEAR9 PTC11 + + + +#define ACS PTE2 +#define TX PTE3 +#define PAYLOAD PTE6 + + +void FUNC_HK_FAULTS(); +void FUNC_HK_POWER(char flag); +void interrupt_fault(); \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp Sat May 16 07:07:56 2015 +0000
@@ -0,0 +1,422 @@
+#include "mbed.h"
+#include "rtos.h"
+#include "HK.h"
+#include "slave.h"
+#include "beacon.h"
+#include "ACS.h"
+#include "fault.h"
+#include "slave.h"
+#include "mnm.h"
+
+Serial pc(USBTX, USBRX);
+
+InterruptIn interrupt(PIN97); //I2c interrupt from CDMS
+DigitalOut data_ready(PIN90); //Sends interrupt to CDMS
+
+Timer t; //To know the time of execution each thread
+Timer t1; //To know the time of entering of each thread
+Timer t2; //To check the time sync in i2c communication
+Timer t3; //To know the time taken by i2c read/write function
+Timer i1;
+Timer i2;
+/*****************************************************************Threads USed***********************************************************************************/
+//Thread *ptr_t_hk_acq;
+//Thread *ptr_t_acs;
+//Thread *ptr_t_bea;
+Thread *ptr_t_i2c;
+Thread *ptr_t_wdt;
+Thread *ptr_t_abh;
+
+/****************************************************************configuring I2c*********************************************************************************/
+I2CSlave slave(PIN72,PIN71); //configuring pins p27, p28 as I2Cslave
+
+int i2c_status=0; //read or write mode for i2c 0: write2slave 1: write2master
+typedef struct //structure of i2c data
+{
+ char data[25];
+ int length;
+}i2c_data;
+
+
+//Mail<i2c_data,16> i2c_data_receive;
+Mail<i2c_data,16> i2c_data_send;
+
+void F_HK_ACQ();
+void F_ACS();
+void F_BEA();
+
+
+//---------------------------------------------------------------------------------------------------------------------------------------
+//ACS HK BEACON
+//---------------------------------------------------------------------------------------------------------------------------------------
+int beacon_sc = 3;
+uint16_t tcount=1;
+void T_ABH(void const *args)
+{
+ while(1)
+ {
+
+ Thread::signal_wait(0x1);
+ if(tcount == 65532) //to reset the counter
+ {
+ tcount = 0;
+ }
+ if(tcount%1==0)
+ {
+ F_ACS();
+ }
+ if(tcount%2==0)
+ {
+ F_HK_ACQ();
+ }
+ if(tcount%beacon_sc==0)
+ {
+ F_BEA();
+ }
+
+ tcount++;
+ }
+
+
+}
+
+
+//--------------------------------------------------------------------------------------------------------------------------------------------------
+//TASK 2 : HK
+//--------------------------------------------------------------------------------------------------------------------------------------------------
+
+char hk_data[25];
+extern SensorDataQuantised SensorQuantised;
+void F_HK_ACQ()
+{
+ SensorQuantised.power_mode='3'; //default power mode(dummy)
+ printf("\n\rTHIS IS HK %f\n\r",t1.read());
+ t.start();
+ FUNC_HK_FAULTS(); // !Actual fault management is not implemented
+ FUNC_HK_POWER(SensorQuantised.power_mode); // !The power mode algorithm is yet to be obtained
+ FUNC_HK_MAIN(); //Collecting HK data
+ FUNC_I2C_IR2CDMS(); //sending HK data to CDMS
+ t.stop();
+ printf("The time to execute hk_acq is %f seconds\n\r",t.read());
+ t.reset();
+}
+
+
+
+//---------------------------------------------------------------------------------------------------------------------------------------
+//TASK 1 : ACS
+//---------------------------------------------------------------------------------------------------------------------------------------
+
+int acs_pflag = 1;
+void F_ACS()
+{
+ float mag_field[3];
+ float omega[3];
+ float *mnm_data;
+ float mag_field1[3];
+ float omega1[3];
+ float tauc1[3];
+ float moment[3];
+ printf("\n\rEntered ACS %f\n",t1.read());
+ t.start();
+ FUNC_ACS_MAG_EXEC(mag_field);
+ for(int i=0; i<3; i++)
+ {
+ printf("%f\t",mag_field[i]);
+ }
+ FUNC_ACS_EXEC_GYR(omega);
+ acs_pflag =1;
+ omega[0] = 1.0; //to be removed later
+ omega[1] = 1.0;
+ omega[2] = 1.0;
+
+ /* mnm_data=EXECUTE_PNI(); //the angular velocity is stored in the first 3 values and magnetic field values in next 3
+ printf("\n\rmnm gyro values\n"); //printing the angular velocity and magnetic field values
+ for(int i=0; i<3; i++)
+ {
+ printf("%f\t",mnm_data[i]);
+ }
+ printf("\n\r mnm mag values\n");
+ for(int i=3; i<6; i++)
+ {
+ printf("%f\t",mnm_data[i]);
+ }
+ for(int i = 0 ; i<3;i++)
+ {
+ omega1[i] = mnm_data[i];
+ }
+ for( int i = 3;i<6;i++)
+ {
+ mag_field1[i-3] = mnm_data[i];
+ }
+ */
+ if(acs_pflag == 1)
+ {
+ FUNC_ACS_CNTRLALGO(mag_field,omega,tauc1);
+ printf("\n\r control algo values ");
+ for(int i=0; i<3; i++)
+ {
+ printf("%f\t",tauc1[i]);
+ }
+ moment_calc (tauc1, mag_field,moment);
+ printf("\n\r moment values ");
+ for(int i=0; i<3; i++)
+ {
+ printf("%f\t",moment[i]);
+ }
+ FUNC_ACS_GENPWM(moment);
+ }
+ t.reset();
+}
+
+//---------------------------------------------------BEACON--------------------------------------------------------------------------------------------
+
+int beac_flag=0; //To receive telecommand from ground.
+
+
+/*void T_BEA_TELECOMMAND(void const *args)
+{
+ char c = pc.getc();
+ if(c=='a')
+ {
+ printf("Telecommand detected\n\r");
+ beac_flag=1;
+ }
+}
+*/
+
+void F_BEA()
+{
+ printf("\n\rTHIS IS BEACON %f\n\r",t1.read());
+ t.start();
+ FUNC_BEA();
+ if(beac_flag==1)
+ {
+ Thread::wait(600000);
+ beac_flag = 0;
+ }
+ printf("The time to execute beacon thread is %f seconds\n\r",t.read());
+ t.reset();
+}
+
+
+
+extern SensorDataQuantised SensorQuantised;
+
+/*-------------------------------------------------------------------------------------------------------------------------------------------
+-------------------------------------------------------WATCHDOG----------------------------------------------------------------------------*/
+DigitalOut trigger(PIN63); // has to be changed
+void T_WDT(void const * args)
+{
+ trigger = 1;
+ while(true)
+ {
+ Thread::signal_wait(0x5); //signal set from scheduler or sthing. r RTOS timer nce the timing is finalized
+ printf("\n\rEntered WD\n\r");
+ trigger = !trigger;
+ }
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------------------------
+//TASK 5 : i2c data
+//---------------------------------------------------------------------------------------------------------------------------------------------------
+
+void FUNC_I2C_WRITE2CDMS(char *data, int length=1)
+{
+ int slave_status = 1;
+ int inter_test = interrupt;
+ int slr = slave.receive();
+ wait_ms(20);
+ //printf("\n\r time is %d\n",t2.read_us());
+ //if(interrupt ==1)
+ //{
+ //printf("\n\r slave status %d",slave.receive());
+ //t2.stop();
+ if(slave.receive() == 0)
+ t2.stop();
+ if( slave.receive()==1)
+ {
+ t2.stop();
+ t3.start();
+ slave_status=slave.write(data,length);
+ t3.stop();
+ }
+ else if( slave.receive()==3 || slave.receive()==2)
+ {
+ t2.stop();
+ t3.start();
+ slave_status=slave.read(data,length);
+ t3.stop();
+ }
+ //}
+ // printf("\n\r time taken to receive intrpt 4m cdms %d",i1.read_us());
+ //i1.reset();
+ printf("\n\r slave status %d",slave.receive());
+ printf("\n\r time taken from interrupt to reach i2c fn %d",t2.read_us());
+ t2.stop();
+ t2.reset();
+ printf("\n\r time to execute i2c function %d",t3.read_us());
+ t3.reset();
+}
+
+char data_send[25],data_receive;
+void T_I2C_BAE(void const * args)
+{
+ while(1)
+ {
+ Thread::signal_wait(0x4);
+ int something = interrupt;
+ // printf("\n\r interrupt %d",interrupt);
+ if(i2c_status == 0 )
+
+ {
+ // wait_ms(23);
+ FUNC_I2C_WRITE2CDMS(&data_receive,1);
+ /*i2c_data * i2c_data_r = i2c_data_receive.alloc();
+ i2c_data_r->data = data_receive;
+ i2c_data_r->length = 1;
+ i2c_data_receive.put(i2c_data_r);*/
+ printf("\n\r Data received from CDMS is %c \n\r",data_receive);
+ FUNC_I2C_TC_EXECUTE(data_receive); // This has to be done from a differen thread
+
+ }
+ else if(i2c_status ==1)
+ {
+ osEvent evt = i2c_data_send.get();
+ if (evt.status == osEventMail)
+ {
+ i2c_data *i2c_data_s = (i2c_data*)evt.value.p;
+ strcpy(data_send,i2c_data_s -> data);
+ //wait_ms(25);
+
+ FUNC_I2C_WRITE2CDMS(data_send,25);
+ printf("\n\rData sent to CDMS is %s\n\r",data_send);
+
+ i2c_data_send.free(i2c_data_s);
+ i2c_status = 0;
+ }
+ }
+
+ }
+}
+
+
+
+void FUNC_I2C_INT()
+{
+ //i1.stop();
+
+ // t3.start();
+ ptr_t_i2c->signal_set(0x4);
+ //printf("\n ceckh\n");
+ t2.start();
+ // printf("\n\r time taken from interrupt to reach i2c fn %d",t2.read_us());
+}
+
+void FUNC_I2C_IR2CDMS()
+{
+ data_ready=0;
+ //char data[25];
+ strcpy(hk_data,"hk_Data");
+ strcat(hk_data,SensorQuantised.Voltage);
+ strcat(hk_data,SensorQuantised.Current);
+ strcat(hk_data,SensorQuantised.Temperature);
+ strcat(hk_data,SensorQuantised.PanelTemperature);
+ strcat(hk_data,SensorQuantised.AngularSpeed);
+ strcat(hk_data,SensorQuantised.Bnewvalue);
+ char fdata[5] = {SensorQuantised.BatteryTemperature,SensorQuantised.faultpoll,SensorQuantised.faultir,SensorQuantised.power_mode};
+
+ /*strcat(hk_data,sfaultpoll);
+ strcat(hk_data,sfaultir);
+ strcat(hk_data,spower_mode);*/
+ strcat(hk_data,fdata);
+ printf("\n\r hk data being sent %s ",hk_data);
+ //for(int i=0;i<100000000000;i++)
+ //;
+
+ /*for(int d=0;d<23;d++) //was written just to check hk data
+ {
+ if(hk_data[d]>10)
+ printf("\n\rhk data : %d\n\r",hk_data[d]);
+ } */
+
+ //data = pcslave.getc();
+
+ i2c_status=1;
+ i2c_data * i2c_data_s = i2c_data_send.alloc();
+ strcpy(i2c_data_s->data,hk_data);
+ i2c_data_s->length = 25;
+ i2c_data_send.put(i2c_data_s);
+ data_ready=1;
+ // i1.start();
+ //temp = i2c_status;
+}
+
+
+//------------------------------------------------------------------------------------------------------------------------------------------------
+//TELECOMMAND
+//------------------------------------------------------------------------------------------------------------------------------------------------
+void FUNC_I2C_TC_EXECUTE (char command)
+{ switch(command)
+ { case '0' : printf("command 0 executed");
+ break;
+ case '1' : printf("command 1 executed");
+ break;
+ case '2' : printf("command 2 executed");
+ break;
+ case '3' : printf("command 3 executed");
+ }
+}
+
+
+//------------------------------------------------------------------------------------------------------------------------------------------------
+//SCHEDULER
+//------------------------------------------------------------------------------------------------------------------------------------------------
+
+void T_SC(void const *args)
+{
+ ptr_t_abh -> signal_set(0x1);
+ ptr_t_wdt -> signal_set(0x5);
+
+}
+//---------------------------------------------------------------------------------------------------------------------------------------------
+
+int main()
+{
+ t1.start();
+ printf("\n\rIITMSAT BAE Activated \n");
+ //INIT_PNI(); // Initializing mnm blue
+ //FUNC_ACS_MAG_INIT(); // Initializing magnetometer
+ //FUNC_ACS_INIT_GYR(); // Initializing Gyroscope
+ slave.address(0x20); // setting slave address for BAE for I2C communication
+ //init_beacon();
+ ptr_t_abh = new Thread(T_ABH);
+ ptr_t_i2c = new Thread(T_I2C_BAE);
+ //ptr_t_sc = new Thread(T_SC);
+ ptr_t_wdt = new Thread(T_WDT);
+
+ interrupt_fault(); // Dummy function called when a fault interrupt is detected
+
+ ptr_t_abh->set_priority(osPriorityAboveNormal);
+ ptr_t_i2c->set_priority(osPriorityHigh);
+ //ptr_t_hk_acq->set_priority(osPriorityAboveNormal);
+ //ptr_t_bea->set_priority(osPriorityAboveNormal);
+ //ptr_t_sc->set_priority(osPriorityAboveNormal);
+ ptr_t_wdt -> set_priority(osPriorityIdle);
+
+
+ // ----------------------------------------------------------------------------------------------
+ printf("\n\r T_ABH priority is %d",ptr_t_abh->get_priority());
+ //printf("\n\r T_I2C priority is %d",ptr_t_hk_acq->get_priority());
+ //printf("\n\r T_WDT priority is %d",ptr_t_bea->get_priority());
+ RtosTimer t_sc_timer(T_SC,osTimerPeriodic);
+ t_sc_timer.start(10000);
+ printf("\n\r%f\n\r",t1.read());
+
+ interrupt.rise(&FUNC_I2C_INT); //interrupt received from CDMS
+ while(1) //required to prevent main from terminating
+ {
+ Thread::wait(5000);
+ }
+
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mbed-rtos.lib Sat May 16 07:07:56 2015 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/mbed_official/code/mbed-rtos/#13a25134ac60
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mbed.bld Sat May 16 07:07:56 2015 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/mbed_official/code/mbed/builds/4fc01daae5a5 \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/mnm.cpp Sat May 16 07:07:56 2015 +0000
@@ -0,0 +1,164 @@
+#include<mbed.h>
+#include "mnm.h"
+#include "pin_config.h"
+#include "pni.h" //pni header file
+Serial mnm(USBTX,USBRX); //for usb communication
+I2C i2c (PIN85,PIN84); //PTC9-sda,PTC8-scl
+/*void INIT_PNI(void); //initialization of registers happens
+float *EXECUTE_PNI(); //data is obtained
+void T_OUT(); //timeout function to stop infinite loop*/
+Timeout to; //Timeout variable to
+int toFlag;
+void T_OUT()
+{
+ toFlag=0; //as T_OUT function gets called the while loop gets terminated
+}
+
+//DEFINING VARIABLES
+char cmd[2];
+char raw_gyro[6];
+char raw_mag[6];
+char store,status;
+int16_t bit_data;
+float gyro_data[3], mag_data[3],combined_values[6],*data;
+float senstivity_gyro =6.5536; //senstivity is obtained from 2^15/5000dps
+float senstivity_mag =32.768; //senstivity is obtained from 2^15/1000microtesla
+float gyro_error[3]= {0,0,0}, mag_error[3]= {0,0,0};
+
+Timer r0;
+Timer r1;
+Timer r2;
+Timer r3;
+Timer r4;
+
+
+/*
+int main(void)
+{
+
+ INIT_PNI();
+ data=EXECUTE_PNI(); //the angular velocity is stored in the first 3 values and magnetic field values in next 3
+ mnm.printf("gyro values\n"); //printing the angular velocity and magnetic field values
+ for(int i=0; i<3; i++) {
+ mnm.printf("%f\t",data[i]);
+ }
+ mnm.printf("mag values\n");
+ for(int i=3; i<6; i++) {
+ mnm.printf("%f\t",data[i]);
+ }
+}*/
+
+void INIT_PNI()
+{ r0.start();
+ cmd[0]=RESETREQ;
+ cmd[1]=BIT_RESREQ;
+ i2c.write(SLAVE_ADDR,cmd,2);
+ r0.stop(); //When 0x01 is written in reset request register Emulates a hard power down/power up
+ wait_ms(2000); //waiting for loading configuration file stored in EEPROM
+ cmd[0]=SENTRALSTATUS;
+ r1.start();
+ i2c.write(SLAVE_ADDR,cmd,1);
+ i2c.read(SLAVE_ADDR_READ,&store,1);
+ r1.stop();
+ wait_ms(100);
+ //to check whether EEPROM is uploaded
+
+ /* switch((int)store) {
+ case(3): {
+ printf("\nstore :%d\n",store);
+ break;
+ }
+ case(11): {
+ printf("\nstore11 :%d\n",store);
+ break;
+ }
+ default: {
+ cmd[0]=RESETREQ;
+ cmd[1]=BIT_RESREQ;
+ i2c.write(SLAVE_ADDR,cmd,2);
+ wait_ms(2000);
+ }
+ }*/
+ //mnm.printf("Sentral Status is %x\n",(int)store);
+ r2.start();
+ cmd[0]=HOST_CTRL; //0x01 is written in HOST CONTROL register to enable the sensors
+ cmd[1]=BIT_RUN_ENB;
+ i2c.write(SLAVE_ADDR,cmd,2);
+ r2.stop();
+ wait_ms(100);
+ r3.start();
+ cmd[0]=MAGRATE; //Output data rate of 100Hz is used for magnetometer
+ cmd[1]=BIT_MAGODR;
+ i2c.write(SLAVE_ADDR,cmd,2);
+ r3.stop();
+ wait_ms(100);
+ r4.start();
+ cmd[0]=GYRORATE; //Output data rate of 150Hz is used for gyroscope
+ cmd[1]=BIT_GYROODR;
+ i2c.write(SLAVE_ADDR,cmd,2);
+ r4.stop();
+ wait_ms(100);
+ cmd[0]=ALGO_CTRL; //When 0x00 is written to ALGO CONTROL register we get scaled sensor values
+ cmd[1]=0x00;
+ i2c.write(SLAVE_ADDR,cmd,2);
+ wait_ms(100);
+ cmd[0]=ENB_EVT; //enabling the error,gyro values and magnetometer values
+ cmd[1]=BIT_EVT_ENB;
+ i2c.write(SLAVE_ADDR,cmd,2);
+ wait_ms(100);
+ printf("\n \r %d %d %d %d %d",r0.read_us(),r1.read_us(),r2.read_us(),r3.read_us(),r4.read_us());
+}
+
+float *EXECUTE_PNI()
+{
+ //printf("\n\r mnm func \n");
+ toFlag=1; //toFlag is set to 1 so that it enters while loop
+ to.attach(&T_OUT,2); //after 2 seconds the while loop gets terminated
+ while(toFlag) {
+ cmd[0]=EVT_STATUS;
+ i2c.write(SLAVE_ADDR,cmd,1);
+ i2c.read(SLAVE_ADDR_READ,&status,1);
+ wait_ms(100);
+ //mnm.printf("\nEvent Status is %x\n",(int)status);
+ //if the 6th and 4th bit are 1 then it implies that gyro and magnetometer values are ready to take
+ if(((int)status&40)==40) {
+ printf("\nin if of mnm\n");
+ cmd[0]=GYRO_XOUT_H; //0x22 gyro LSB of x
+ i2c.write(SLAVE_ADDR,cmd,1);
+ i2c.read(SLAVE_ADDR_READ,raw_gyro,6);
+ cmd[0]=MAG_XOUT_H; //LSB of x
+ i2c.write(SLAVE_ADDR,cmd,1);
+ i2c.read(SLAVE_ADDR_READ,raw_mag,6);
+ //mnm.printf("\nGyro Values:\n");
+ for(int i=0; i<3; i++) {
+ //concatenating gyro LSB and MSB to get 16 bit signed data values
+ bit_data= ((int16_t)raw_gyro[2*i+1]<<8)|(int16_t)raw_gyro[2*i];
+ gyro_data[i]=(float)bit_data;
+ gyro_data[i]=gyro_data[i]/senstivity_gyro;
+ gyro_data[i]+=gyro_error[i];
+ //mnm.printf("%f\t",gyro_data[i]);
+ }
+ //mnm.printf("\nMag Values:\n");
+ for(int i=0; i<3; i++) {
+ //concatenating mag LSB and MSB to get 16 bit signed data values
+ bit_data= ((int16_t)raw_mag[2*i+1]<<8)|(int16_t)raw_mag[2*i];
+ mag_data[i]=(float)bit_data;
+ mag_data[i]=mag_data[i]/senstivity_mag;
+ mag_data[i]+=mag_error[i];
+ //mnm.printf("%f\t",mag_data[i]);
+ }
+ for(int i=0; i<3; i++) {
+ combined_values[i]=gyro_data[i];
+ combined_values[i+3]=mag_data[i];
+ }
+ return(combined_values); //returning poiter combined values
+ }
+ //checking for the error
+
+ else if (((int)status&2)==2) {
+ INIT_PNI(); //when there is any error then Again inilization is done to remove error
+ }
+
+
+ }
+}
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mnm.h Sat May 16 07:07:56 2015 +0000 @@ -0,0 +1,3 @@ +void INIT_PNI(void); //initialization of registers happens +float *EXECUTE_PNI(); //data is obtained +void T_OUT(); //timeout function to stop infinite loop
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pin_config.h Sat May 16 07:07:56 2015 +0000 @@ -0,0 +1,101 @@ +// 100 LQFP format pin assignment +#define PIN1 PTE0 +#define PIN2 PTE1 +#define PIN3 PTE2 +#define PIN4 PTE3 +#define PIN5 PTE4 +#define PIN6 PTE5 +#define PIN7 PTE6 +//#define 8 +//#define 9 +//#define 10 +//#define 11 +//#define 12 +//#define 13 +#define PIN14 PTE16 +#define PIN15 PTE17 +#define PIN16 PTE18 +#define PIN17 PTE19 +#define PIN18 PTE20 +#define PIN19 PTE21 +#define PIN20 PTE22 +#define PIN21 PTE23 +//#define 22 +//#define 23 +//#define 24 +//#define 25 +#define PIN26 PTE29 +#define PIN27 PTE30 +#define PIN28 PTE31 +//#define 29 +//#define 30 +#define PIN31 PTE24 +#define PIN32 PTE25 +#define PIN33 PTE26 +#define PIN34 PTA0 +#define PIN35 PTA1 +#define PIN36 PTA2 +#define PIN37 PTA3 +#define PIN38 PTA4 +#define PIN39 PTA5 +#define PIN40 PTA6 +#define PIN41 PTA7 +#define PIN42 PTA12 +#define PIN43 PTA13 +#define PIN44 PTA14 +#define PIN45 PTA15 +#define PIN46 PTA16 +#define PIN47 PTA17 +//#define 48 +//#define 49 +#define PIN50 PTA18 +#define PIN51 PTA19 +#define PIN52 PTA20 +#define PIN53 PTB0 +#define PIN54 PTB1 +#define PIN55 PTB2 +#define PIN56 PTB3 +#define PIN57 PTB7 +#define PIN58 PTB8 +#define PIN59 PTB9 +#define PIN60 PTB10 +#define PIN61 PTB11 +#define PIN62 PTB16 +#define PIN63 PTB17 +#define PIN64 PTB18 +#define PIN65 PTB19 +#define PIN66 PTB20 +#define PIN67 PTB21 +#define PIN68 PTB22 +#define PIN69 PTB23 +#define PIN70 PTC0 +#define PIN71 PTC1 +#define PIN72 PTC2 +#define PIN73 PTC3 +//#define 74 +//#define 75 +#define PIN76 PTC20 +#define PIN77 PTC21 +#define PIN78 PTC22 +#define PIN79 PTC23 +#define PIN80 PTC4 +#define PIN81 PTC5 +#define PIN82 PTC6 +#define PIN83 PTC7 +#define PIN84 PTC8 +#define PIN85 PTC9 +#define PIN86 PTC10 +#define PIN87 PTC11 +#define PIN88 PTC12 +#define PIN89 PTC13 +#define PIN90 PTC16 +#define PIN91 PTC17 +#define PIN92 PTC18 +#define PIN93 PTD0 +#define PIN94 PTD1 +#define PIN95 PTD2 +#define PIN96 PTD3 +#define PIN97 PTD4 +#define PIN98 PTD5 +#define PIN99 PTD6 +#define PIN100 PTD7 \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pni.h Sat May 16 07:07:56 2015 +0000 @@ -0,0 +1,37 @@ +#define SLAVE_ADDR 0x50 +#define SLAVE_ADDR_READ 0x51 +#define SENTRALSTATUS 0x37 +#define RESETREQ 0x9B +#define MAGRATE 0x55 +#define ACCERATE 0x56 +#define GYRORATE 0x57 +#define QRATE_DIV 0x32 +#define ALGO_CTRL 0x54 +#define ENB_EVT 0x33 +#define HOST_CTRL 0x34 +#define EVT_STATUS 0x35 +#define ALGO_STATUS 0x38 +#define GYRO_XOUT_H 0x22 +#define MAG_XOUT_H 0X12 + +//Configaration bits +#define BIT_RESREQ 0x01 +#define BIT_EEP_DET 0x01 +#define BIT_EEP_UPDN 0x02 +#define BIT_EEP_UPERR 0x04 +#define BIT_EEP_IDLE 0x08 +#define BIT_EEP_NODET 0x10 +#define BIT_STBY 0x01 +#define BIT_RAW_ENB 0x02 +#define BIT_HPR_OUT 0x04 +#define BIT_CPU_RES 0x01 +#define BIT_ERR 0x02 +#define BIT_QRES 0x04 +#define BIT_MAG_RES 0x08 +#define BIT_ACC_RES 0x10 +#define BIT_GYRO_RES 0x20 +#define BIT_GYROODR 0x0F +#define BIT_MAGODR 0x64 +#define BIT_RUN_ENB 0x01 +#define BIT_ALGO_RAW 0x02 +#define BIT_EVT_ENB 0X2A \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/slave.h Sat May 16 07:07:56 2015 +0000 @@ -0,0 +1,12 @@ +#include "mbed.h" +#define WriteGeneral 3 +#define ReadAddressed 1 +#define slave_address 0x20 + + +void FUNC_I2C_WRITE2CDMS(char* ,int); +void FUNC_I2C_IR2CDMS(); +void FUNC_I2C_INT(); +void FUNC_I2C_RESET(); +void FUNC_I2C_TC_EXECUTE (char command) ; +