sakthi priya amirtharaj
/
BAE_vr2_gingerbread
i2c working with new hk(no pin conflict)
Fork of BAE_vr2_1_4 by
Diff: HK.cpp
- Revision:
- 0:e9c32e1df869
- Child:
- 1:bd715ccef1bb
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/HK.cpp Wed Dec 17 06:52:26 2014 +0000 @@ -0,0 +1,226 @@ +#include "HK.h" + + +//GPIO pins used=> D2-D12, A0-A1 + +DigitalOut SelectLinesA[]={D2,D3,D4,D5};//to mux1=>voltage mux +DigitalOut SelectLinesB[]={PTB18,PTB19,PTC10};//to mux2=>current mux(differential mux) +DigitalOut SelectLinesC[]={PTC0,PTC4,PTC6,PTC7};//to mux3=>temp mux + +//--------------------------------------------MSB is SelectLines[0],LSB is SelectLines[3]-------------------------------- + +AnalogIn CurrentInput(A0); // Input from Current Mux +AnalogIn VoltageInput(A1); // Input from Voltage Multiplexer +AnalogIn TemperatureInput(A2); /*Input from Temperature Multiplexer,thermistor Multiplexer- same multiplexer for both(lines 1-4 for thermistor,line 0 for temperature sensor)*/ + + + + +int quantiz(float start,float step,float x) // accepts min and measured values and step->quantises on a scale 0-15..(4 bit quantisation) +{ + int y=(x-start)/step; + if(y<=0)y=0; + if(y>=15)y=15; + return y; +} + +void init_beacon(ShortBeacy* x,SensorDataQuantised y) +{ + (*x).Voltage[0]=2;//quantised value + (*x).Temp[0]=y.PanelTemperature[0];//quantised value + (*x).Temp[1]=y.PanelTemperature[1];//quantised value + (*x).AngularSpeed[0]=y.AngularSpeed[0]; + (*x).AngularSpeed[1]=y.AngularSpeed[1]; + + (*x).SubsystemStatus[0]=145;//dummy values----------to be changed------------------- + (*x).ErrorFlag[0]=3;//dummy values----------to be changed------------------- +} + +SensorData Sensor; +SensorDataQuantised SensorQuantised; +ShortBeacy Shortbeacon; +void FUNC_HK_MAIN() +{ + //define structure variables + + + + + //initialise all selectlines to zeroes->1st line of muxes selected + SelectLinesA[0]=SelectLinesA[1]=SelectLinesA[2]=SelectLinesA[3]=0; + SelectLinesB[0]=SelectLinesB[1]=SelectLinesB[2]=0; + SelectLinesC[0]=SelectLinesC[1]=SelectLinesC[2]=SelectLinesC[3]=0; + + int LoopIterator; + int SelectLineIterator; + + float resistance_thermistor,voltage_thermistor;//for thermistor + + //measurement from voltage sensor=> 16 sensors in place + for(LoopIterator=0; LoopIterator<16; LoopIterator++) +{ + //following lines read the sensor values and stores them in 'SensorData' structure's variable 'Sensor' + Sensor.Voltage[LoopIterator]=(VoltageInput.read()*3.3*5.545454);//resistors in voltage divider=>15Mohm,3.3Mohm + + if(LoopIterator%2==0) + SensorQuantised.Voltage[LoopIterator/2]=quantiz(vstart,vstep,Sensor.Voltage[LoopIterator]); + + else + SensorQuantised.Voltage[(LoopIterator)/2]=SensorQuantised.Voltage[(LoopIterator)/2]<<4+quantiz(vstart,vstep,Sensor.Voltage[LoopIterator]); + + + + // The following lines are used to iterate the select lines from 0 to 15 + //following is an algorithm similar to counting binary numbers of 4 bit + for(SelectLineIterator=3;SelectLineIterator>=0;SelectLineIterator--) + { + if(SelectLinesA[SelectLineIterator]==0) + { + SelectLinesA[SelectLineIterator]=1; + break; + } + else SelectLinesA[SelectLineIterator]=0; + + } + + + wait_us(10.0); // A delay of 10 microseconds between each sensor output. Can be changed. + + } + + + + + + //measurement from current sensor=> 8 sensors in place + + for(LoopIterator=0; LoopIterator<8; LoopIterator++) +{ + //following lines read the sensor values and stores them in 'SensorData' structure variable 'Sensor' + Sensor.Current[LoopIterator]=(CurrentInput.read()*3.3/(50*rsens)); + if(LoopIterator%2==0) + SensorQuantised.Current[LoopIterator/2]=quantiz(cstart,cstep,Sensor.Current[LoopIterator]); + else + SensorQuantised.Current[(LoopIterator)/2]=SensorQuantised.Current[(LoopIterator)/2]<<4+quantiz(cstart,cstep,Sensor.Current[LoopIterator]); + + + // The following lines are used to iterate the select lines from 0 to 7 + //following is an algorithm similar to counting binary numbers of 3 bits + for(SelectLineIterator=2;SelectLineIterator>=0;SelectLineIterator--) + { + if(SelectLinesB[SelectLineIterator]==0) + { + SelectLinesB[SelectLineIterator]=1; + break; + } + else SelectLinesB[SelectLineIterator]=0; + + } + + + wait_us(10.0); // A delay of 10 microseconds between each sensor output. Can be changed. + +} + + +//measurement of temperature +//temperature measurement=> 4 thermistors, 1 temperature sensor +//mux line 1=>temp sensor, mux lines 2 to 5 =>thermistors + + for(LoopIterator=0; LoopIterator<5; LoopIterator++) +{ + //following lines read the sensor values and stores them in 'SensorData' structure variable 'Sensor' + Sensor.Temperature[LoopIterator]=(-90.7*3.3*TemperatureInput.read()+190.1543); + voltage_thermistor=TemperatureInput.read()*3.3;//voltage across thermistor + resistance_thermistor=24000*voltage_thermistor/(3.3-voltage_thermistor);//resistance of thermistor + //PanelTemperature will be updated depending on voltage_thermistor value later in the lines to follow + + if(LoopIterator%2==0) + { + if(LoopIterator<1) //->corresponding to temperature sensor + SensorQuantised.Temperature[(LoopIterator)/2]=quantiz(tstart,tstep,Sensor.Temperature[LoopIterator]); + + else //->corresponding to thermistor + { + if(voltage_thermistor<1.378) //Temperature>12 degC + Sensor.PanelTemperature[(LoopIterator-1)]=(3694/log(24.032242*resistance_thermistor)); + + else + Sensor.PanelTemperature[(LoopIterator-1)]=(3365.4792/log(7.60404*resistance_thermistor)); + + + SensorQuantised.PanelTemperature[(LoopIterator-1)/2]=quantiz(tstart_thermistor,tstep_thermistor,Sensor.PanelTemperature[(LoopIterator-1)]); + + } + + } + + else + { + if(LoopIterator<1) + SensorQuantised.Temperature[(LoopIterator)/2]=SensorQuantised.Temperature[(LoopIterator)/2]<<4+quantiz(tstart,tstep,Sensor.Temperature[LoopIterator]); + + else + { + if(voltage_thermistor<1.378) //Temperature>12 degC + Sensor.PanelTemperature[LoopIterator-1]=(3694/log(24.032242*resistance_thermistor)); + + + else + Sensor.PanelTemperature[LoopIterator-1]=(3365.4792/log(7.60404*resistance_thermistor)); + + SensorQuantised.PanelTemperature[(LoopIterator-1)/2]=SensorQuantised.PanelTemperature[(LoopIterator-1)/2]<<4+quantiz(tstart_thermistor,tstep_thermistor,Sensor.PanelTemperature[LoopIterator-1]); + + } + + } + + + + +// The following lines are used to iterate the select lines from 0 to 4 + + //following is an algorithm similar to counting binary numbers of 4 bit + for(SelectLineIterator=3;SelectLineIterator>=0;SelectLineIterator--) + { + if(SelectLinesC[SelectLineIterator]==0) + { + SelectLinesC[SelectLineIterator]=1; + break; + } + else SelectLinesC[SelectLineIterator]=0; + + } + + + wait_us(10.0); // A delay of 10 microseconds between each sensor output. Can be changed. + +} + + + + + + //update magnetometer data-> + //populate values in structure variable 'Sensor' from data to be given by Green + SensorQuantised.AngularSpeed[0]=quantiz(AngularSpeed_start,AngularSpeed_step,Sensor.AngularSpeed[1]); + SensorQuantised.AngularSpeed[0]=SensorQuantised.AngularSpeed[0]<<4+quantiz(AngularSpeed_start,AngularSpeed_step,Sensor.AngularSpeed[0]); + SensorQuantised.AngularSpeed[1]=quantiz(AngularSpeed_start,AngularSpeed_step,Sensor.AngularSpeed[2]); + + //update gyro data-> + //populate values in structure variable 'Sensor' from data to be given by Green + SensorQuantised.Bnewvalue[0]=quantiz(Bnewvalue_start,Bnewvalue_step,Sensor.Bnewvalue[1]); + SensorQuantised.Bnewvalue[0]=SensorQuantised.Bnewvalue[0]<<4+quantiz(Bnewvalue_start,Bnewvalue_step,Sensor.Bnewvalue[0]); + SensorQuantised.Bnewvalue[1]=quantiz(Bnewvalue_start,Bnewvalue_step,Sensor.Bnewvalue[2]); + + + + + //update beacon structure + init_beacon(&Shortbeacon,SensorQuantised);//Shortbeacon is passed + + +} + + +