
first publish
Revision 2:359f1f075c72, committed 2017-06-04
- Comitter:
- roger_wee
- Date:
- Sun Jun 04 06:46:28 2017 +0000
- Parent:
- 1:11117343d223
- Child:
- 3:394c971eab83
- Commit message:
- 9-dof implementation using madgwick's filter
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/HMC5883L.lib Sun Jun 04 06:46:28 2017 +0000 @@ -0,0 +1,1 @@ +https://mbed.org/users/BaserK/code/HMC5883L/#f5f6aaf24be0
--- a/IMU.h Mon May 15 21:26:09 2017 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,235 +0,0 @@ -#include "MPU6050.h" - -float sum = 0; -uint32_t sumCount = 0; -Timer t; -Serial pc(USBTX, USBRX); - -void IMUinit(MPU6050 &mpu6050) -{ - //start timer/clock - t.start(); - - // Read the WHO_AM_I register, this is a good test of communication - uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050 - pc.printf("I AM 0x%x\n\r", whoami); - pc.printf("I SHOULD BE 0x68\n\r"); - - if (whoami == 0x68) { // WHO_AM_I should always be 0x68 - pc.printf("MPU6050 is online..."); - wait(1); - //lcd.clear(); - //lcd.printString("MPU6050 OK", 0, 0); - - mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values - pc.printf("x-axis self test: acceleration trim within : "); - pc.printf("%f", SelfTest[0]); - pc.printf("% of factory value \n\r"); - pc.printf("y-axis self test: acceleration trim within : "); - pc.printf("%f", SelfTest[1]); - pc.printf("% of factory value \n\r"); - pc.printf("z-axis self test: acceleration trim within : "); - pc.printf("%f", SelfTest[2]); - pc.printf("% of factory value \n\r"); - pc.printf("x-axis self test: gyration trim within : "); - pc.printf("%f", SelfTest[3]); - pc.printf("% of factory value \n\r"); - pc.printf("y-axis self test: gyration trim within : "); - pc.printf("%f", SelfTest[4]); - pc.printf("% of factory value \n\r"); - pc.printf("z-axis self test: gyration trim within : "); - pc.printf("%f", SelfTest[5]); - pc.printf("% of factory value \n\r"); - wait(1); - - if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) { - mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration - - mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers - - mpu6050.resetMPU6050(); - - mpu6050.initMPU6050(); - pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature - wait(2); - - } else { - pc.printf("Device did not the pass self-test!\n\r"); - } - } else { - pc.printf("Could not connect to MPU6050: \n\r"); - pc.printf("%#x \n", whoami); - - while(1) ; // Loop forever if communication doesn't happen - } -} - - -void IMUPrintData(MPU6050 &mpu6050) -{ - - // pc.printf("Beginning IMU read\n"); -// If data ready bit set, all data registers have new data - if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt - - mpu6050.readAccelData(accelCount); // Read the x/y/z adc values - mpu6050.getAres(); - - // Now we'll calculate the accleration value into actual g's - ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set - ay = (float)accelCount[1]*aRes - accelBias[1]; - az = (float)accelCount[2]*aRes - accelBias[2]; - - mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values - mpu6050.getGres(); - - // Calculate the gyro value into actual degrees per second - gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set - gy = (float)gyroCount[1]*gRes - gyroBias[1]; - gz = (float)gyroCount[2]*gRes - gyroBias[2]; - - tempCount = mpu6050.readTempData(); // Read the x/y/z adc values - temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade - } - - Now = t.read_us(); - deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update - sampleFreq = 1/deltat; - lastUpdate = Now; - - sum += deltat; - sumCount++; - - if(lastUpdate - firstUpdate > 10000000.0f) { - beta = 0.04; // decrease filter gain after stabilized - zeta = 0.015; // increasey bias drift gain after stabilized - } - - //Convert gyro rate as rad/s - gx *= PI/180.0f; - gy *= PI/180.0f; - gz *= PI/180.0f; - - - // Pass gyro rate as rad/s - mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx, gy, gz); - //mpu6050.MadgwickAHRSupdate(gx, gy, gz, ax, ay, az, magData[0], magData[1], magData[2]); - - // Serial print and/or display at 0.5 s rate independent of data rates - delt_t = t.read_ms() - count; - if (delt_t > 0) { // update LCD once per half-second independent of read rate - - // pc.printf("ax = %f", 1000*ax); - // pc.printf(" ay = %f", 1000*ay); - // pc.printf(" az = %f mg\n\r", 1000*az); - - // pc.printf("gx = %f", gx); - // pc.printf(" gy = %f", gy); - // pc.printf(" gz = %f deg/s\n\r", gz); - - // pc.printf(" temperature = %f C\n\r", temperature); - - // pc.printf("q0 = %f\n\r", q[0]); - // pc.printf("q1 = %f\n\r", q[1]); - // pc.printf("q2 = %f\n\r", q[2]); - // pc.printf("q3 = %f\n\r", q[3]); - - // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. - // In this coordinate system, the positive z-axis is down toward Earth. - // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. - // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. - // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. - // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. - // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be - // applied in the correct order which for this configuration is yaw, pitch, and then roll. - // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. - yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); - pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); - roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); - pitch *= 180.0f / PI; - yaw *= 180.0f / PI; - roll *= 180.0f / PI; - -// pc.printf("Yaw, Pitch, Roll: \n\r"); -// pc.printf("%f", yaw); -// pc.printf(", "); -// pc.printf("%f", pitch); -// pc.printf(", "); -// pc.printf("%f\n\r", roll); -// pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r"); - - //pc.printf("average rate = %f\n\r", (float) sumCount/sum); - - //myled= !myled; - count = t.read_ms(); - sum = 0; - sumCount = 0; - } -} - -void IMUUpdate(MPU6050 &mpu6050) -{ - // If data ready bit set, all data registers have new data - if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt - mpu6050.readAccelData(accelCount); // Read the x/y/z adc values - mpu6050.getAres(); - - // Now we'll calculate the accleration value into actual g's - ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set - ay = (float)accelCount[1]*aRes - accelBias[1]; - az = (float)accelCount[2]*aRes - accelBias[2]; - - mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values - mpu6050.getGres(); - - // Calculate the gyro value into actual degrees per second - gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set - gy = (float)gyroCount[1]*gRes; // - gyroBias[1]; - gz = (float)gyroCount[2]*gRes; // - gyroBias[2]; - - tempCount = mpu6050.readTempData(); // Read the x/y/z adc values - temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade - } - - Now = t.read_us(); - deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update - lastUpdate = Now; - - sum += deltat; - sumCount++; - - if(lastUpdate - firstUpdate > 10000000.0f) { - beta = 0.04; // decrease filter gain after stabilized - zeta = 0.015; // increasey bias drift gain after stabilized - } - - // Pass gyro rate as rad/s - mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f); - - // Serial print and/or display at 0.5 s rate independent of data rates - delt_t = t.read_ms() - count; - - // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. - // In this coordinate system, the positive z-axis is down toward Earth. - // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. - // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. - // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. - // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. - // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be - // applied in the correct order which for this configuration is yaw, pitch, and then roll. - // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. - yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); - pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); - roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); - pitch *= 180.0f / PI; - yaw *= 180.0f / PI; - roll *= 180.0f / PI; - - //update timer for filter - count = t.read_ms(); - sum = 0; - sumCount = 0; - -} - -
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/MARGfilter.lib Sun Jun 04 06:46:28 2017 +0000 @@ -0,0 +1,1 @@ +https://mbed.org/users/elromulous/code/MARGfilter/#6259fdd04e83
--- a/MPU6050.h Mon May 15 21:26:09 2017 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,802 +0,0 @@ -#ifndef MPU6050_H -#define MPU6050_H - -#include "mbed.h" -#include "math.h" - -// Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device -// Invensense Inc., www.invensense.com -// See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in -// above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor -// -#define XGOFFS_TC 0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD -#define YGOFFS_TC 0x01 -#define ZGOFFS_TC 0x02 -#define X_FINE_GAIN 0x03 // [7:0] fine gain -#define Y_FINE_GAIN 0x04 -#define Z_FINE_GAIN 0x05 -#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer -#define XA_OFFSET_L_TC 0x07 -#define YA_OFFSET_H 0x08 -#define YA_OFFSET_L_TC 0x09 -#define ZA_OFFSET_H 0x0A -#define ZA_OFFSET_L_TC 0x0B -#define SELF_TEST_X 0x0D -#define SELF_TEST_Y 0x0E -#define SELF_TEST_Z 0x0F -#define SELF_TEST_A 0x10 -#define XG_OFFS_USRH 0x13 // User-defined trim values for gyroscope; supported in MPU-6050? -#define XG_OFFS_USRL 0x14 -#define YG_OFFS_USRH 0x15 -#define YG_OFFS_USRL 0x16 -#define ZG_OFFS_USRH 0x17 -#define ZG_OFFS_USRL 0x18 -#define SMPLRT_DIV 0x19 -#define CONFIG 0x1A -#define GYRO_CONFIG 0x1B -#define ACCEL_CONFIG 0x1C -#define FF_THR 0x1D // Free-fall -#define FF_DUR 0x1E // Free-fall -#define MOT_THR 0x1F // Motion detection threshold bits [7:0] -#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms -#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] -#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms -#define FIFO_EN 0x23 -#define I2C_MST_CTRL 0x24 -#define I2C_SLV0_ADDR 0x25 -#define I2C_SLV0_REG 0x26 -#define I2C_SLV0_CTRL 0x27 -#define I2C_SLV1_ADDR 0x28 -#define I2C_SLV1_REG 0x29 -#define I2C_SLV1_CTRL 0x2A -#define I2C_SLV2_ADDR 0x2B -#define I2C_SLV2_REG 0x2C -#define I2C_SLV2_CTRL 0x2D -#define I2C_SLV3_ADDR 0x2E -#define I2C_SLV3_REG 0x2F -#define I2C_SLV3_CTRL 0x30 -#define I2C_SLV4_ADDR 0x31 -#define I2C_SLV4_REG 0x32 -#define I2C_SLV4_DO 0x33 -#define I2C_SLV4_CTRL 0x34 -#define I2C_SLV4_DI 0x35 -#define I2C_MST_STATUS 0x36 -#define INT_PIN_CFG 0x37 -#define INT_ENABLE 0x38 -#define DMP_INT_STATUS 0x39 // Check DMP interrupt -#define INT_STATUS 0x3A -#define ACCEL_XOUT_H 0x3B -#define ACCEL_XOUT_L 0x3C -#define ACCEL_YOUT_H 0x3D -#define ACCEL_YOUT_L 0x3E -#define ACCEL_ZOUT_H 0x3F -#define ACCEL_ZOUT_L 0x40 -#define TEMP_OUT_H 0x41 -#define TEMP_OUT_L 0x42 -#define GYRO_XOUT_H 0x43 -#define GYRO_XOUT_L 0x44 -#define GYRO_YOUT_H 0x45 -#define GYRO_YOUT_L 0x46 -#define GYRO_ZOUT_H 0x47 -#define GYRO_ZOUT_L 0x48 -#define EXT_SENS_DATA_00 0x49 -#define EXT_SENS_DATA_01 0x4A -#define EXT_SENS_DATA_02 0x4B -#define EXT_SENS_DATA_03 0x4C -#define EXT_SENS_DATA_04 0x4D -#define EXT_SENS_DATA_05 0x4E -#define EXT_SENS_DATA_06 0x4F -#define EXT_SENS_DATA_07 0x50 -#define EXT_SENS_DATA_08 0x51 -#define EXT_SENS_DATA_09 0x52 -#define EXT_SENS_DATA_10 0x53 -#define EXT_SENS_DATA_11 0x54 -#define EXT_SENS_DATA_12 0x55 -#define EXT_SENS_DATA_13 0x56 -#define EXT_SENS_DATA_14 0x57 -#define EXT_SENS_DATA_15 0x58 -#define EXT_SENS_DATA_16 0x59 -#define EXT_SENS_DATA_17 0x5A -#define EXT_SENS_DATA_18 0x5B -#define EXT_SENS_DATA_19 0x5C -#define EXT_SENS_DATA_20 0x5D -#define EXT_SENS_DATA_21 0x5E -#define EXT_SENS_DATA_22 0x5F -#define EXT_SENS_DATA_23 0x60 -#define MOT_DETECT_STATUS 0x61 -#define I2C_SLV0_DO 0x63 -#define I2C_SLV1_DO 0x64 -#define I2C_SLV2_DO 0x65 -#define I2C_SLV3_DO 0x66 -#define I2C_MST_DELAY_CTRL 0x67 -#define SIGNAL_PATH_RESET 0x68 -#define MOT_DETECT_CTRL 0x69 -#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP -#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode -#define PWR_MGMT_2 0x6C -#define DMP_BANK 0x6D // Activates a specific bank in the DMP -#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank -#define DMP_REG 0x6F // Register in DMP from which to read or to which to write -#define DMP_REG_1 0x70 -#define DMP_REG_2 0x71 -#define FIFO_COUNTH 0x72 -#define FIFO_COUNTL 0x73 -#define FIFO_R_W 0x74 -#define WHO_AM_I_MPU6050 0x75 // Should return 0x68 - -// Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor -// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 - -//create constructor -#define MPU6050_ADDRESS 0x69<<1 // Device address when ADO = 1 - -//Set up I2C, (SDA,SCL) -I2C i2c(D14, D15); - -// Set initial input parameters -enum Ascale { - AFS_2G = 0, - AFS_4G, - AFS_8G, - AFS_16G -}; - -enum Gscale { - GFS_250DPS = 0, - GFS_500DPS, - GFS_1000DPS, - GFS_2000DPS -}; - -// Specify sensor full scale -int Gscale = GFS_250DPS; -int Ascale = AFS_2G; - - -float aRes, gRes; // scale resolutions per LSB for the sensors - -// Pin definitions -int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins - -int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output -float ax, ay, az; // Stores the real accel value in g's -int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output -float gx, gy, gz; // Stores the real gyro value in degrees per seconds -float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer -int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius -float temperature; -float SelfTest[6]; - -int delt_t = 0; // used to control display output rate -int count = 0; // used to control display output rate - -// parameters for 6 DoF sensor fusion calculations -float PI = 3.14159265358979323846f; -float GyroMeasError = PI * (30.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3 -float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta -float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) -float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value -float yaw, pitch, roll; -float deltat = 0.0f; // integration interval for both filter schemes -int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval -float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion - -//free IMU variables -#define twoKpDef (2.0f * 0.5f) // 2 * proportional gain -#define twoKiDef (2.0f * 0.1f) // 2 * integral gain -float sampleFreq; // half the sample period expressed in seconds -volatile float twoKp = twoKpDef; // 2 * proportional gain (Kp) -volatile float twoKi = twoKiDef; // 2 * integral gain (Ki) -float exInt, eyInt, ezInt; // scaled integral error -volatile float integralFBx, integralFBy, integralFBz; - -//math helper -float invSqrt(float number) { - volatile long i; - volatile float x, y; - volatile const float f = 1.5F; - - x = number * 0.5F; - y = number; - i = * ( long * ) &y; - i = 0x5f375a86 - ( i >> 1 ); - y = * ( float * ) &i; - y = y * ( f - ( x * y * y ) ); - return y; -} - - -class MPU6050 -{ - protected: - - public: - //=================================================================================================================== - //====== Set of useful function to access acceleratio, gyroscope, and temperature data - //=================================================================================================================== - - //create constructor to pass in address - - void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) { - char data_write[2]; - data_write[0] = subAddress; - data_write[1] = data; - i2c.write(address, data_write, 2, 0); - } - - char readByte(uint8_t address, uint8_t subAddress) { - char data[1]; // `data` will store the register data - char data_write[1]; - data_write[0] = subAddress; - i2c.write(address, data_write, 1, 1); // no stop - i2c.read(address, data, 1, 0); - return data[0]; - } - - void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) { - char data[14]; - char data_write[1]; - data_write[0] = subAddress; - i2c.write(address, data_write, 1, 1); // no stop - i2c.read(address, data, count, 0); - for(int ii = 0; ii < count; ii++) { - dest[ii] = data[ii]; - } - } - - - void getGres() { - switch (Gscale) { - // Possible gyro scales (and their register bit settings) are: - // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). - // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: - case GFS_250DPS: - gRes = 250.0/32768.0; - break; - case GFS_500DPS: - gRes = 500.0/32768.0; - break; - case GFS_1000DPS: - gRes = 1000.0/32768.0; - break; - case GFS_2000DPS: - gRes = 2000.0/32768.0; - break; - } - } - - void getAres() { - switch (Ascale) { - // Possible accelerometer scales (and their register bit settings) are: - // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). - // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: - case AFS_2G: - aRes = 2.0/32768.0; - break; - case AFS_4G: - aRes = 4.0/32768.0; - break; - case AFS_8G: - aRes = 8.0/32768.0; - break; - case AFS_16G: - aRes = 16.0/32768.0; - break; - } - } - - - void readAccelData(int16_t * destination) { - uint8_t rawData[6]; // x/y/z accel register data stored here - readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array - destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; - } - - void readGyroData(int16_t * destination) { - uint8_t rawData[6]; // x/y/z gyro register data stored here - readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array - destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; - } - - int16_t readTempData() { - uint8_t rawData[2]; // x/y/z gyro register data stored here - readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array - return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value - } - - - - // Configure the motion detection control for low power accelerometer mode - void LowPowerAccelOnly() { - - // The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly - // Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration - // above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a - // threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out - // consideration for these threshold evaluations; otherwise, the flags would be set all the time! - - uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1); - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6] - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running - - c = readByte(MPU6050_ADDRESS, PWR_MGMT_2); - writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5] - writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running - - c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0] - // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter - - c = readByte(MPU6050_ADDRESS, CONFIG); - writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0] - writeByte(MPU6050_ADDRESS, CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate - - c = readByte(MPU6050_ADDRESS, INT_ENABLE); - writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts - writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only - - // Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold - // for at least the counter duration - writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg - writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate - - wait(0.1); // Add delay for accumulation of samples - - c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0] - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance - - c = readByte(MPU6050_ADDRESS, PWR_MGMT_2); - writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7] - writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2]) - - c = readByte(MPU6050_ADDRESS, PWR_MGMT_1); - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5 - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts - - } - - - void resetMPU6050() { - // reset device - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device - wait(0.1); - } - - - void initMPU6050() { - // Initialize MPU6050 device - // wake up device - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors - wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt - - // get stable time source - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 - - // Configure Gyro and Accelerometer - // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; - // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both - // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate - writeByte(MPU6050_ADDRESS, CONFIG, 0x03); - - // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) - writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above - - // Set gyroscope full scale range - // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 - uint8_t c = readByte(MPU6050_ADDRESS, GYRO_CONFIG); - writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] - writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3] - writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro - - // Set accelerometer configuration - c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3] - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer - - // Configure Interrupts and Bypass Enable - // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips - // can join the I2C bus and all can be controlled by the Arduino as master - writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22); - writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt - } - - // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average - // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. - void calibrateMPU6050(float * dest1, float * dest2) { - uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data - uint16_t ii, packet_count, fifo_count; - int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; - - // reset device, reset all registers, clear gyro and accelerometer bias registers - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device - wait(0.1); - - // get stable time source - // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); - writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00); - wait(0.2); - - // Configure device for bias calculation - writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts - writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source - writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master - writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes - writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP - wait(0.015); - - // Configure MPU6050 gyro and accelerometer for bias calculation - writeByte(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz - writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz - writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity - - uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec - uint16_t accelsensitivity = 16384; // = 16384 LSB/g - - // Configure FIFO to capture accelerometer and gyro data for bias calculation - writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO - writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050) - wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes - - // At end of sample accumulation, turn off FIFO sensor read - writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO - readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count - fifo_count = ((uint16_t)data[0] << 8) | data[1]; - packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging - - for (ii = 0; ii < packet_count; ii++) { - int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; - readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging - accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO - accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ; - accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; - gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ; - gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ; - gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ; - - accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases - accel_bias[1] += (int32_t) accel_temp[1]; - accel_bias[2] += (int32_t) accel_temp[2]; - gyro_bias[0] += (int32_t) gyro_temp[0];// * scale_factor_gyro; - gyro_bias[1] += (int32_t) gyro_temp[1];// * scale_factor_gyro; - gyro_bias[2] += (int32_t) gyro_temp[2];// * scale_factor_gyro; - - } - accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases - accel_bias[1] /= (int32_t) packet_count; - accel_bias[2] /= (int32_t) packet_count; - - gyro_bias[0] /= (int32_t) packet_count; - gyro_bias[1] /= (int32_t) packet_count; - gyro_bias[2] /= (int32_t) packet_count; - - - if(accel_bias[2] > 0L) { - accel_bias[2] -= (int32_t) accelsensitivity; // Remove gravity from the z-axis accelerometer bias calculation - } else { - accel_bias[2] += (int32_t) accelsensitivity; - } - - - // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup - data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format - data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases - data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; - data[3] = (-gyro_bias[1]/4) & 0xFF; - data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; - data[5] = (-gyro_bias[2]/4) & 0xFF; - - // Push gyro biases to hardware registers - writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]); - writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]); - writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]); - writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]); - writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]); - writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]); - - dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction - dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity; - dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity; - - // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain - // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold - // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature - // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that - // the accelerometer biases calculated above must be divided by 8. - - int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases - readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values - accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; - readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]); - accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; - readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]); - accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; - - uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers - uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis - - for(ii = 0; ii < 3; ii++) { - if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit - } - - // Construct total accelerometer bias, including calculated average accelerometer bias from above - accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) - accel_bias_reg[1] -= (accel_bias[1]/8); - accel_bias_reg[2] -= (accel_bias[2]/8); - - data[0] = (accel_bias_reg[0] >> 8) & 0xFF; - data[1] = (accel_bias_reg[0]) & 0xFF; - data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers - data[2] = (accel_bias_reg[1] >> 8) & 0xFF; - data[3] = (accel_bias_reg[1]) & 0xFF; - data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers - data[4] = (accel_bias_reg[2] >> 8) & 0xFF; - data[5] = (accel_bias_reg[2]) & 0xFF; - data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers - - // Push accelerometer biases to hardware registers - writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]); - writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]); - writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]); - writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]); - writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]); - writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]); - - // Output scaled accelerometer biases for manual subtraction in the main program - dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; - dest2[1] = (float)accel_bias[1]/(float)accelsensitivity; - dest2[2] = (float)accel_bias[2]/(float)accelsensitivity; - } - - - // Accelerometer and gyroscope self test; check calibration wrt factory settings - void MPU6050SelfTest(float * destination) { // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass - uint8_t rawData[4] = {0, 0, 0, 0}; - uint8_t selfTest[6]; - float factoryTrim[6]; - - // Configure the accelerometer for self-test - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g - writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s - wait(0.25); // Delay a while to let the device execute the self-test - rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results - rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results - rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results - rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results - // Extract the acceleration test results first - selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer - selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer - selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer - // Extract the gyration test results first - selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer - selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer - selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer - // Process results to allow final comparison with factory set values - factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation - factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation - factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation - factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation - factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation - factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation - -// Output self-test results and factory trim calculation if desired -// Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]); -// Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]); -// Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]); -// Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]); - -// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response -// To get to percent, must multiply by 100 and subtract result from 100 - for (int i = 0; i < 6; i++) { - destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences - } - - } - - -// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" -// (see http://www.x-io.co.uk/category/open-source/ for examples and more details) -// which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative -// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. -// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms -// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! - void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz) { - float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability - float norm; // vector norm - float f1, f2, f3; // objective funcyion elements - float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements - float qDot1, qDot2, qDot3, qDot4; - float hatDot1, hatDot2, hatDot3, hatDot4; - float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error - - // Auxiliary variables to avoid repeated arithmetic - float _halfq1 = 0.5f * q1; - float _halfq2 = 0.5f * q2; - float _halfq3 = 0.5f * q3; - float _halfq4 = 0.5f * q4; - float _2q1 = 2.0f * q1; - float _2q2 = 2.0f * q2; - float _2q3 = 2.0f * q3; - float _2q4 = 2.0f * q4; -// float _2q1q3 = 2.0f * q1 * q3; -// float _2q3q4 = 2.0f * q3 * q4; - - // Normalise accelerometer measurement - norm = sqrt(ax * ax + ay * ay + az * az); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f/norm; - ax *= norm; - ay *= norm; - az *= norm; - - // Compute the objective function and Jacobian - f1 = _2q2 * q4 - _2q1 * q3 - ax; - f2 = _2q1 * q2 + _2q3 * q4 - ay; - f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az; - J_11or24 = _2q3; - J_12or23 = _2q4; - J_13or22 = _2q1; - J_14or21 = _2q2; - J_32 = 2.0f * J_14or21; - J_33 = 2.0f * J_11or24; - - // Compute the gradient (matrix multiplication) - hatDot1 = J_14or21 * f2 - J_11or24 * f1; - hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3; - hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1; - hatDot4 = J_14or21 * f1 + J_11or24 * f2; - - // Normalize the gradient - norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4); - hatDot1 /= norm; - hatDot2 /= norm; - hatDot3 /= norm; - hatDot4 /= norm; - - // Compute estimated gyroscope biases - gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3; - gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2; - gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1; - - // Compute and remove gyroscope biases - gbiasx += gerrx * deltat * zeta; - gbiasy += gerry * deltat * zeta; - gbiasz += gerrz * deltat * zeta; - // gx -= gbiasx; - // gy -= gbiasy; - // gz -= gbiasz; - - // Compute the quaternion derivative - qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz; - qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy; - qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx; - qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx; - - // Compute then integrate estimated quaternion derivative - q1 += (qDot1 -(beta * hatDot1)) * deltat; - q2 += (qDot2 -(beta * hatDot2)) * deltat; - q3 += (qDot3 -(beta * hatDot3)) * deltat; - q4 += (qDot4 -(beta * hatDot4)) * deltat; - - // Normalize the quaternion - norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion - norm = 1.0f/norm; - q[0] = q1 * norm; - q[1] = q2 * norm; - q[2] = q3 * norm; - q[3] = q4 * norm; - - } - - void MadgwickAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) { - float recipNorm; - float q0 = q[0], q1 = q[1], q2 = q[2], q3 = q[3]; - float qDot1, qDot2, qDot3, qDot4; - float hx, hy; - float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3; - - // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation) - if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) { - MadgwickQuaternionUpdate(ax, ay, az, gx, gy, gz); - return; - } - - // Rate of change of quaternion from gyroscope - qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz); - qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy); - qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx); - qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx); - - // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation) - if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) { - - // Normalise accelerometer measurement - recipNorm = invSqrt(ax * ax + ay * ay + az * az); - ax *= recipNorm; - ay *= recipNorm; - az *= recipNorm; - - // Normalise magnetometer measurement - recipNorm = invSqrt(mx * mx + my * my + mz * mz); - mx *= recipNorm; - my *= recipNorm; - mz *= recipNorm; - - // Auxiliary variables to avoid repeated arithmetic - _2q0mx = 2.0f * q0 * mx; - _2q0my = 2.0f * q0 * my; - _2q0mz = 2.0f * q0;// * mz; - _2q1mx = 2.0f * q1 * mx; - _2q0 = 2.0f * q0; - _2q1 = 2.0f * q1; - _2q2 = 2.0f * q2; - _2q3 = 2.0f * q3; - _2q0q2 = 2.0f * q0 * q2; - _2q2q3 = 2.0f * q2 * q3; - q0q0 = q0 * q0; - q0q1 = q0 * q1; - q0q2 = q0 * q2; - q0q3 = q0 * q3; - q1q1 = q1 * q1; - q1q2 = q1 * q2; - q1q3 = q1 * q3; - q2q2 = q2 * q2; - q2q3 = q2 * q3; - q3q3 = q3 * q3; - - // Reference direction of Earth's magnetic field - hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3; - hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3; - _2bx = sqrt(hx * hx + hy * hy); - _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3; - _4bx = 2.0f * _2bx; - _4bz = 2.0f * _2bz; - - // Gradient decent algorithm corrective step - q0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz); - q1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz); - q2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz); - q3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz); - recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); // normalise step magnitude - q0 *= recipNorm; - q1 *= recipNorm; - q2 *= recipNorm; - q3 *= recipNorm; - - // Apply feedback step - qDot1 -= beta * q0; - qDot2 -= beta * q1; - qDot3 -= beta * q2; - qDot4 -= beta * q3; - } - - // Integrate rate of change of quaternion to yield quaternion - q0 += qDot1 * (1.0f / sampleFreq); - q1 += qDot2 * (1.0f / sampleFreq); - q2 += qDot3 * (1.0f / sampleFreq); - q3 += qDot4 * (1.0f / sampleFreq); - - // Normalise quaternion - recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); - q0 *= recipNorm; - q1 *= recipNorm; - q2 *= recipNorm; - q3 *= recipNorm; - - q[0] = q0; - q[1] = q1; - q[2] = q2; - q[3] = q3; -} - -}; -#endif \ No newline at end of file
--- a/MS5837.cpp Mon May 15 21:26:09 2017 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,100 +0,0 @@ -#include <stdlib.h> -#include "MS5837.h" - - -/* - * Sensor operating function according data sheet - */ - -void MS5837::MS5837Init(void) -{ - MS5837Reset(); - MS5837ReadProm(); - return; -} - -/* Send soft reset to the sensor */ -void MS5837::MS5837Reset(void) -{ - /* transmit out 1 byte reset command */ - ms5837_tx_data[0] = ms5837_reset; - if ( i2c.write( device_address, ms5837_tx_data, 1 ) ); - //printf("send soft reset"); - wait_ms(20); -} - -/* read the sensor calibration data from rom */ -void MS5837::MS5837ReadProm(void) -{ - uint8_t i,j; - for (i=0; i<8; i++) { - j = i; - ms5837_tx_data[0] = ms5837_PROMread + (j<<1); - if ( i2c.write( device_address, ms5837_tx_data, 1 ) ); - if ( i2c.read( device_address, ms5837_rx_data, 2 ) ); - C[i] = ms5837_rx_data[1] + (ms5837_rx_data[0]<<8); - } -} - -/* Start the sensor pressure conversion */ -void MS5837::MS5837ConvertD1(void) -{ - ms5837_tx_data[0] = ms5837_convD1; - if ( i2c.write( device_address, ms5837_tx_data, 1 ) ); -} - -/* Start the sensor temperature conversion */ -void MS5837:: MS5837ConvertD2(void) -{ - ms5837_tx_data[0] = ms5837_convD2; - if ( i2c.write( device_address, ms5837_tx_data, 1 ) ); -} - -/* Read the previous started conversion results */ -int32_t MS5837::MS5837ReadADC(void) -{ - int32_t adc; - wait_ms(150); - ms5837_tx_data[0] = ms5837_ADCread; - if ( i2c.write( device_address, ms5837_tx_data, 1 ) ); - if ( i2c.read( device_address, ms5837_rx_data, 3 ) ); - adc = ms5837_rx_data[2] + (ms5837_rx_data[1]<<8) + (ms5837_rx_data[0]<<16); - return (adc); -} - -/* return the results */ -float MS5837::MS5837_Pressure (void) -{ - return P_MS5837; -} -float MS5837::MS5837_Temperature (void) -{ - return T_MS5837; -} - -/* Sensor reading and calculation procedure */ -void MS5837::Barometer_MS5837(void) -{ - int32_t dT, temp; - int64_t OFF, SENS, press; - - //no need to do this everytime! - //MS5837Reset(); // reset the sensor - //MS5837ReadProm(); // read the calibration values - - - MS5837ConvertD1(); // start pressure conversion - D1 = MS5837ReadADC(); // read the pressure value - MS5837ConvertD2(); // start temperature conversion - D2 = MS5837ReadADC(); // read the temperature value - - /* calculation according MS5837-01BA data sheet DA5837-01BA_006 */ - dT = D2 - (C[5]* 256); - OFF = (int64_t)C[2] * (1<<16) + ((int64_t)dT * (int64_t)C[4]) / (1<<7); - SENS = (int64_t)C[1] * (1<<15) + ((int64_t)dT * (int64_t)C[3]) / (1<<8); - - temp = 2000 + (dT * C[6]) / (1<<23); - T_MS5837 = (float) temp / 100.0f; // result of temperature in deg C in this var - press = (((int64_t)D1 * SENS) / (1<<21) - OFF) / (1<<13); - P_MS5837 = (float) press / 10.0f; // result of pressure in mBar in this var -} \ No newline at end of file
--- a/MS5837.h Mon May 15 21:26:09 2017 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,64 +0,0 @@ -#include "mbed.h" - -#ifndef MS5837_H -#define MS5837_H - -#define MS5837_RX_DEPTH 3 // -#define MS5837_TX_DEPTH 2 // - -// choose your connection here -#define ms5837_addr_no_CS 0x76 //0b1110110 - -#define ms5837_reset 0x1E // Sensor Reset - -#define ms5837_convD1_256 0x40 // Convert D1 OSR 256 -#define ms5837_convD1_512 0x42 // Convert D1 OSR 512 -#define ms5837_convD1_1024 0x44 // Convert D1 OSR 1024 -#define ms5837_convD1_2048 0x46 // Convert D1 OSR 2048 -#define ms5837_convD1_4096 0x48 // Convert D1 OSR 4096 -#define ms5837_convD1_8192 0x4A // Convert D1 OSR 8192 - -#define ms5837_convD1 ms5837_convD1_4096 // choose your sampling rate here - -#define ms5837_convD2_256 0x50 // Convert D2 OSR 256 -#define ms5837_convD2_512 0x52 // Convert D2 OSR 512 -#define ms5837_convD2_1024 0x54 // Convert D2 OSR 1024 -#define ms5837_convD2_2048 0x56 // Convert D2 OSR 2048 -#define ms5837_convD2_4096 0x58 // Convert D2 OSR 4096 -#define ms5837_convD2_8192 0x5A // Convert D2 OSR 8192 - -#define ms5837_convD2 ms5837_convD2_4096 // choose your sampling rate here - -#define ms5837_ADCread 0x00 // read ADC command -#define ms5837_PROMread 0xA0 // read PROM command base address - -class MS5837{ -private: - int D1, D2, Temp, C[8]; - float T_MS5837, P_MS5837; - /* Data buffers */ - char ms5837_rx_data[MS5837_RX_DEPTH]; - char ms5837_tx_data[MS5837_TX_DEPTH]; - -public: - MS5837 (PinName sda, PinName scl, - char ms5837_addr = ms5837_addr_no_CS ) - : i2c( sda, scl ), device_address( ms5837_addr << 1 ) { - } - void MS5837Init(void); - void MS5837Reset(void); - void MS5837ReadProm(void); - void MS5837ConvertD1(void); - void MS5837ConvertD2(void); - int32_t MS5837ReadADC(void); - float MS5837_Pressure (void); - float MS5837_Temperature (void); - void Barometer_MS5837(void); - - -private: - I2C i2c; - char device_address; - -}; -#endif \ No newline at end of file
--- a/PID.h Mon May 15 21:26:09 2017 +0000 +++ b/PID.h Sun Jun 04 06:46:28 2017 +0000 @@ -40,7 +40,7 @@ void SetSampleTime(int); // * sets the frequency, in Milliseconds, with which // the PID calculation is performed. default is 100 - + // void changeSetpoint(*double); // changes system setpoint //Display functions **************************************************************** double GetKp(); // These functions query the pid for interal values.
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Sensors/IMU.h Sun Jun 04 06:46:28 2017 +0000 @@ -0,0 +1,241 @@ +#include "MPU6050.h" +#include "HMC5883L.h" + +float sum = 0; +uint32_t sumCount = 0; +Timer t; +Serial pc(USBTX, USBRX); + +void IMUinit(MPU6050 &mpu6050) +{ + //start timer/clock + t.start(); + + // Read the WHO_AM_I register, this is a good test of communication + uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050 + pc.printf("I AM 0x%x\n\r", whoami); + pc.printf("I SHOULD BE 0x68\n\r"); + + if (whoami == 0x68) { // WHO_AM_I should always be 0x68 + pc.printf("MPU6050 is online..."); + wait(1); + //lcd.clear(); + //lcd.printString("MPU6050 OK", 0, 0); + + mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values + pc.printf("x-axis self test: acceleration trim within : "); + pc.printf("%f", SelfTest[0]); + pc.printf("% of factory value \n\r"); + pc.printf("y-axis self test: acceleration trim within : "); + pc.printf("%f", SelfTest[1]); + pc.printf("% of factory value \n\r"); + pc.printf("z-axis self test: acceleration trim within : "); + pc.printf("%f", SelfTest[2]); + pc.printf("% of factory value \n\r"); + pc.printf("x-axis self test: gyration trim within : "); + pc.printf("%f", SelfTest[3]); + pc.printf("% of factory value \n\r"); + pc.printf("y-axis self test: gyration trim within : "); + pc.printf("%f", SelfTest[4]); + pc.printf("% of factory value \n\r"); + pc.printf("z-axis self test: gyration trim within : "); + pc.printf("%f", SelfTest[5]); + pc.printf("% of factory value \n\r"); + wait(1); + + if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) { + mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration + + mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers + + mpu6050.resetMPU6050(); + + mpu6050.initMPU6050(); + pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature + wait(2); + + } else { + pc.printf("Device did not the pass self-test!\n\r"); + } + } else { + pc.printf("Could not connect to MPU6050: \n\r"); + pc.printf("%#x \n", whoami); + + while(1) ; // Loop forever if communication doesn't happen + } +} + + +void IMUPrintData(MPU6050 &mpu6050, HMC5883L &compass) +{ + + // pc.printf("Beginning IMU read\n"); +// If data ready bit set, all data registers have new data + if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt + + mpu6050.readAccelData(accelCount); // Read the x/y/z adc values + mpu6050.getAres(); + + // Now we'll calculate the accleration value into actual g's + ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set + ay = (float)accelCount[1]*aRes - accelBias[1]; + az = (float)accelCount[2]*aRes - accelBias[2]; + + mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values + mpu6050.getGres(); + + // Calculate the gyro value into actual degrees per second + gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set + gy = (float)gyroCount[1]*gRes - gyroBias[1]; + gz = (float)gyroCount[2]*gRes - gyroBias[2]; + + tempCount = mpu6050.readTempData(); // Read the x/y/z adc values + temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade + + } + + //get magdata + compass.readMagData(magdata); + heading = compass.getHeading(); + + Now = t.read_us(); + deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update + sampleFreq = 1/deltat; + lastUpdate = Now; + + sum += deltat; + sumCount++; + + if(lastUpdate - firstUpdate > 10000000.0f) { + beta = 0.04; // decrease filter gain after stabilized + zeta = 0.015; // increasey bias drift gain after stabilized + } + + //Convert gyro rate as rad/s + gx *= PI/180.0f; + gy *= PI/180.0f; + gz *= PI/180.0f; + + + // Pass gyro rate as rad/s + mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx, gy, gz, magdata[0], magdata[1], magdata[2]); + + // Serial print and/or display at 0.5 s rate independent of data rates + delt_t = t.read_ms() - count; + if (delt_t > 0) { // update LCD once per half-second independent of read rate + + // pc.printf("ax = %f", 1000*ax); + // pc.printf(" ay = %f", 1000*ay); + // pc.printf(" az = %f mg\n\r", 1000*az); + + // pc.printf("gx = %f", gx); + // pc.printf(" gy = %f", gy); + // pc.printf(" gz = %f deg/s\n\r", gz); + + // pc.printf(" temperature = %f C\n\r", temperature); + + // pc.printf("q0 = %f\n\r", q[0]); + // pc.printf("q1 = %f\n\r", q[1]); + // pc.printf("q2 = %f\n\r", q[2]); + // pc.printf("q3 = %f\n\r", q[3]); + + // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. + // In this coordinate system, the positive z-axis is down toward Earth. + // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. + // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. + // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. + // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. + // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be + // applied in the correct order which for this configuration is yaw, pitch, and then roll. + // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. + yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); + pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); + roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); + + pitch *= 180.0f / PI; + yaw *= 180.0f / PI; + roll *= 180.0f / PI; + +// pc.printf("Yaw, Pitch, Roll: \n\r"); +// pc.printf("%f", yaw); +// pc.printf(", "); +// pc.printf("%f", pitch); +// pc.printf(", "); +// pc.printf("%f\n\r", roll); +// pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r"); + + //pc.printf("average rate = %f\n\r", (float) sumCount/sum); + + //myled= !myled; + count = t.read_ms(); + sum = 0; + sumCount = 0; + } +} + +void IMUUpdate(MPU6050 &mpu6050) +{ + // If data ready bit set, all data registers have new data + if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt + mpu6050.readAccelData(accelCount); // Read the x/y/z adc values + mpu6050.getAres(); + + // Now we'll calculate the accleration value into actual g's + ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set + ay = (float)accelCount[1]*aRes - accelBias[1]; + az = (float)accelCount[2]*aRes - accelBias[2]; + + mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values + mpu6050.getGres(); + + // Calculate the gyro value into actual degrees per second + gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set + gy = (float)gyroCount[1]*gRes; // - gyroBias[1]; + gz = (float)gyroCount[2]*gRes; // - gyroBias[2]; + + tempCount = mpu6050.readTempData(); // Read the x/y/z adc values + temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade + } + + Now = t.read_us(); + deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update + lastUpdate = Now; + + sum += deltat; + sumCount++; + + if(lastUpdate - firstUpdate > 10000000.0f) { + beta = 0.04; // decrease filter gain after stabilized + zeta = 0.015; // increasey bias drift gain after stabilized + } + + // Pass gyro rate as rad/s + mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f); + + // Serial print and/or display at 0.5 s rate independent of data rates + delt_t = t.read_ms() - count; + + // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. + // In this coordinate system, the positive z-axis is down toward Earth. + // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. + // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. + // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. + // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. + // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be + // applied in the correct order which for this configuration is yaw, pitch, and then roll. + // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. + yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); + pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); + roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); + pitch *= 180.0f / PI; + yaw *= 180.0f / PI; + roll *= 180.0f / PI; + + //update timer for filter + count = t.read_ms(); + sum = 0; + sumCount = 0; + +} + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Sensors/MPU6050.h Sun Jun 04 06:46:28 2017 +0000 @@ -0,0 +1,803 @@ +#ifndef MPU6050_H +#define MPU6050_H + +#include "mbed.h" +#include "math.h" + +// Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device +// Invensense Inc., www.invensense.com +// See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in +// above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor +// +#define XGOFFS_TC 0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD +#define YGOFFS_TC 0x01 +#define ZGOFFS_TC 0x02 +#define X_FINE_GAIN 0x03 // [7:0] fine gain +#define Y_FINE_GAIN 0x04 +#define Z_FINE_GAIN 0x05 +#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer +#define XA_OFFSET_L_TC 0x07 +#define YA_OFFSET_H 0x08 +#define YA_OFFSET_L_TC 0x09 +#define ZA_OFFSET_H 0x0A +#define ZA_OFFSET_L_TC 0x0B +#define SELF_TEST_X 0x0D +#define SELF_TEST_Y 0x0E +#define SELF_TEST_Z 0x0F +#define SELF_TEST_A 0x10 +#define XG_OFFS_USRH 0x13 // User-defined trim values for gyroscope; supported in MPU-6050? +#define XG_OFFS_USRL 0x14 +#define YG_OFFS_USRH 0x15 +#define YG_OFFS_USRL 0x16 +#define ZG_OFFS_USRH 0x17 +#define ZG_OFFS_USRL 0x18 +#define SMPLRT_DIV 0x19 +#define CONFIG 0x1A +#define GYRO_CONFIG 0x1B +#define ACCEL_CONFIG 0x1C +#define FF_THR 0x1D // Free-fall +#define FF_DUR 0x1E // Free-fall +#define MOT_THR 0x1F // Motion detection threshold bits [7:0] +#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms +#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] +#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms +#define FIFO_EN 0x23 +#define I2C_MST_CTRL 0x24 +#define I2C_SLV0_ADDR 0x25 +#define I2C_SLV0_REG 0x26 +#define I2C_SLV0_CTRL 0x27 +#define I2C_SLV1_ADDR 0x28 +#define I2C_SLV1_REG 0x29 +#define I2C_SLV1_CTRL 0x2A +#define I2C_SLV2_ADDR 0x2B +#define I2C_SLV2_REG 0x2C +#define I2C_SLV2_CTRL 0x2D +#define I2C_SLV3_ADDR 0x2E +#define I2C_SLV3_REG 0x2F +#define I2C_SLV3_CTRL 0x30 +#define I2C_SLV4_ADDR 0x31 +#define I2C_SLV4_REG 0x32 +#define I2C_SLV4_DO 0x33 +#define I2C_SLV4_CTRL 0x34 +#define I2C_SLV4_DI 0x35 +#define I2C_MST_STATUS 0x36 +#define INT_PIN_CFG 0x37 +#define INT_ENABLE 0x38 +#define DMP_INT_STATUS 0x39 // Check DMP interrupt +#define INT_STATUS 0x3A +#define ACCEL_XOUT_H 0x3B +#define ACCEL_XOUT_L 0x3C +#define ACCEL_YOUT_H 0x3D +#define ACCEL_YOUT_L 0x3E +#define ACCEL_ZOUT_H 0x3F +#define ACCEL_ZOUT_L 0x40 +#define TEMP_OUT_H 0x41 +#define TEMP_OUT_L 0x42 +#define GYRO_XOUT_H 0x43 +#define GYRO_XOUT_L 0x44 +#define GYRO_YOUT_H 0x45 +#define GYRO_YOUT_L 0x46 +#define GYRO_ZOUT_H 0x47 +#define GYRO_ZOUT_L 0x48 +#define EXT_SENS_DATA_00 0x49 +#define EXT_SENS_DATA_01 0x4A +#define EXT_SENS_DATA_02 0x4B +#define EXT_SENS_DATA_03 0x4C +#define EXT_SENS_DATA_04 0x4D +#define EXT_SENS_DATA_05 0x4E +#define EXT_SENS_DATA_06 0x4F +#define EXT_SENS_DATA_07 0x50 +#define EXT_SENS_DATA_08 0x51 +#define EXT_SENS_DATA_09 0x52 +#define EXT_SENS_DATA_10 0x53 +#define EXT_SENS_DATA_11 0x54 +#define EXT_SENS_DATA_12 0x55 +#define EXT_SENS_DATA_13 0x56 +#define EXT_SENS_DATA_14 0x57 +#define EXT_SENS_DATA_15 0x58 +#define EXT_SENS_DATA_16 0x59 +#define EXT_SENS_DATA_17 0x5A +#define EXT_SENS_DATA_18 0x5B +#define EXT_SENS_DATA_19 0x5C +#define EXT_SENS_DATA_20 0x5D +#define EXT_SENS_DATA_21 0x5E +#define EXT_SENS_DATA_22 0x5F +#define EXT_SENS_DATA_23 0x60 +#define MOT_DETECT_STATUS 0x61 +#define I2C_SLV0_DO 0x63 +#define I2C_SLV1_DO 0x64 +#define I2C_SLV2_DO 0x65 +#define I2C_SLV3_DO 0x66 +#define I2C_MST_DELAY_CTRL 0x67 +#define SIGNAL_PATH_RESET 0x68 +#define MOT_DETECT_CTRL 0x69 +#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP +#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode +#define PWR_MGMT_2 0x6C +#define DMP_BANK 0x6D // Activates a specific bank in the DMP +#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank +#define DMP_REG 0x6F // Register in DMP from which to read or to which to write +#define DMP_REG_1 0x70 +#define DMP_REG_2 0x71 +#define FIFO_COUNTH 0x72 +#define FIFO_COUNTL 0x73 +#define FIFO_R_W 0x74 +#define WHO_AM_I_MPU6050 0x75 // Should return 0x68 + +// Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor +// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 + +//create constructor +#define MPU6050_ADDRESS 0x69<<1 // Device address when ADO = 1 + +//Set up I2C, (SDA,SCL) +I2C i2c(D14, D15); + +// Set initial input parameters +enum Ascale { + AFS_2G = 0, + AFS_4G, + AFS_8G, + AFS_16G +}; + +enum Gscale { + GFS_250DPS = 0, + GFS_500DPS, + GFS_1000DPS, + GFS_2000DPS +}; + +// Specify sensor full scale +int Gscale = GFS_250DPS; +int Ascale = AFS_2G; + + +float aRes, gRes; // scale resolutions per LSB for the sensors + +// Pin definitions +int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins + +int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output +float ax, ay, az; // Stores the real accel value in g's +int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output +float gx, gy, gz; // Stores the real gyro value in degrees per seconds +float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer +int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius +float temperature; +float SelfTest[6]; + + +float heading = 0; +float magdata[3]; + +int delt_t = 0; // used to control display output rate +int count = 0; // used to control display output rate + +// parameters for 6 DoF sensor fusion calculations +float PI = 3.14159265358979323846f; +float GyroMeasError = PI * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3 +float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta +float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) +float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value +float yaw, pitch, roll; +float deltat = 0.0f; // integration interval for both filter schemes +int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval +float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion + +//free IMU variables +#define twoKpDef (2.0f * 0.5f) // 2 * proportional gain +#define twoKiDef (2.0f * 0.1f) // 2 * integral gain +float sampleFreq; // half the sample period expressed in seconds +volatile float twoKp = twoKpDef; // 2 * proportional gain (Kp) +volatile float twoKi = twoKiDef; // 2 * integral gain (Ki) +float exInt, eyInt, ezInt; // scaled integral error +volatile float integralFBx, integralFBy, integralFBz; + +//math helper +float invSqrt(float number) { + volatile long i; + volatile float x, y; + volatile const float f = 1.5F; + + x = number * 0.5F; + y = number; + i = * ( long * ) &y; + i = 0x5f375a86 - ( i >> 1 ); + y = * ( float * ) &i; + y = y * ( f - ( x * y * y ) ); + return y; +} + + +class MPU6050 +{ + protected: + + public: + //=================================================================================================================== + //====== Set of useful function to access acceleratio, gyroscope, and temperature data + //=================================================================================================================== + + //create constructor to pass in address + + void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) { + char data_write[2]; + data_write[0] = subAddress; + data_write[1] = data; + i2c.write(address, data_write, 2, 0); + } + + char readByte(uint8_t address, uint8_t subAddress) { + char data[1]; // `data` will store the register data + char data_write[1]; + data_write[0] = subAddress; + i2c.write(address, data_write, 1, 1); // no stop + i2c.read(address, data, 1, 0); + return data[0]; + } + + void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) { + char data[14]; + char data_write[1]; + data_write[0] = subAddress; + i2c.write(address, data_write, 1, 1); // no stop + i2c.read(address, data, count, 0); + for(int ii = 0; ii < count; ii++) { + dest[ii] = data[ii]; + } + } + + + void getGres() { + switch (Gscale) { + // Possible gyro scales (and their register bit settings) are: + // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). + // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: + case GFS_250DPS: + gRes = 250.0/32768.0; + break; + case GFS_500DPS: + gRes = 500.0/32768.0; + break; + case GFS_1000DPS: + gRes = 1000.0/32768.0; + break; + case GFS_2000DPS: + gRes = 2000.0/32768.0; + break; + } + } + + void getAres() { + switch (Ascale) { + // Possible accelerometer scales (and their register bit settings) are: + // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). + // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: + case AFS_2G: + aRes = 2.0/32768.0; + break; + case AFS_4G: + aRes = 4.0/32768.0; + break; + case AFS_8G: + aRes = 8.0/32768.0; + break; + case AFS_16G: + aRes = 16.0/32768.0; + break; + } + } + + + void readAccelData(int16_t * destination) { + uint8_t rawData[6]; // x/y/z accel register data stored here + readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array + destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + } + + void readGyroData(int16_t * destination) { + uint8_t rawData[6]; // x/y/z gyro register data stored here + readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + } + + int16_t readTempData() { + uint8_t rawData[2]; // x/y/z gyro register data stored here + readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array + return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value + } + + + + // Configure the motion detection control for low power accelerometer mode + void LowPowerAccelOnly() { + + // The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly + // Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration + // above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a + // threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out + // consideration for these threshold evaluations; otherwise, the flags would be set all the time! + + uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1); + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6] + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running + + c = readByte(MPU6050_ADDRESS, PWR_MGMT_2); + writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5] + writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running + + c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0] + // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter + + c = readByte(MPU6050_ADDRESS, CONFIG); + writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0] + writeByte(MPU6050_ADDRESS, CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate + + c = readByte(MPU6050_ADDRESS, INT_ENABLE); + writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts + writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only + + // Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold + // for at least the counter duration + writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg + writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate + + wait(0.1); // Add delay for accumulation of samples + + c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0] + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance + + c = readByte(MPU6050_ADDRESS, PWR_MGMT_2); + writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7] + writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2]) + + c = readByte(MPU6050_ADDRESS, PWR_MGMT_1); + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5 + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts + + } + + + void resetMPU6050() { + // reset device + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device + wait(0.1); + } + + + void initMPU6050() { + // Initialize MPU6050 device + // wake up device + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors + wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt + + // get stable time source + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 + + // Configure Gyro and Accelerometer + // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; + // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both + // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate + writeByte(MPU6050_ADDRESS, CONFIG, 0x03); + + // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) + writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above + + // Set gyroscope full scale range + // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 + uint8_t c = readByte(MPU6050_ADDRESS, GYRO_CONFIG); + writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] + writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3] + writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro + + // Set accelerometer configuration + c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3] + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer + + // Configure Interrupts and Bypass Enable + // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips + // can join the I2C bus and all can be controlled by the Arduino as master + writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22); + writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt + } + + // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average + // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. + void calibrateMPU6050(float * dest1, float * dest2) { + uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data + uint16_t ii, packet_count, fifo_count; + int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; + + // reset device, reset all registers, clear gyro and accelerometer bias registers + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device + wait(0.1); + + // get stable time source + // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); + writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00); + wait(0.2); + + // Configure device for bias calculation + writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts + writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO + writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source + writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master + writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes + writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP + wait(0.015); + + // Configure MPU6050 gyro and accelerometer for bias calculation + writeByte(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz + writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz + writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity + + uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec + uint16_t accelsensitivity = 16384; // = 16384 LSB/g + + // Configure FIFO to capture accelerometer and gyro data for bias calculation + writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO + writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050) + wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes + + // At end of sample accumulation, turn off FIFO sensor read + writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO + readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count + fifo_count = ((uint16_t)data[0] << 8) | data[1]; + packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging + + for (ii = 0; ii < packet_count; ii++) { + int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; + readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging + accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO + accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ; + accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; + gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ; + gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ; + gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ; + + accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases + accel_bias[1] += (int32_t) accel_temp[1]; + accel_bias[2] += (int32_t) accel_temp[2]; + gyro_bias[0] += (int32_t) gyro_temp[0];// * scale_factor_gyro; + gyro_bias[1] += (int32_t) gyro_temp[1];// * scale_factor_gyro; + gyro_bias[2] += (int32_t) gyro_temp[2];// * scale_factor_gyro; + + } + accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases + accel_bias[1] /= (int32_t) packet_count; + accel_bias[2] /= (int32_t) packet_count; + + gyro_bias[0] /= (int32_t) packet_count; + gyro_bias[1] /= (int32_t) packet_count; + gyro_bias[2] /= (int32_t) packet_count; + + + if(accel_bias[2] > 0L) { + accel_bias[2] -= (int32_t) accelsensitivity; // Remove gravity from the z-axis accelerometer bias calculation + } else { + accel_bias[2] += (int32_t) accelsensitivity; + } + + + // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup + data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format + data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases + data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; + data[3] = (-gyro_bias[1]/4) & 0xFF; + data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; + data[5] = (-gyro_bias[2]/4) & 0xFF; + + // Push gyro biases to hardware registers + writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]); + writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]); + writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]); + writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]); + writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]); + writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]); + + dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction + dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity; + dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity; + + // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain + // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold + // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature + // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that + // the accelerometer biases calculated above must be divided by 8. + + int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases + readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values + accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]); + accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]); + accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + + uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers + uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis + + for(ii = 0; ii < 3; ii++) { + if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit + } + + // Construct total accelerometer bias, including calculated average accelerometer bias from above + accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) + accel_bias_reg[1] -= (accel_bias[1]/8); + accel_bias_reg[2] -= (accel_bias[2]/8); + + data[0] = (accel_bias_reg[0] >> 8) & 0xFF; + data[1] = (accel_bias_reg[0]) & 0xFF; + data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers + data[2] = (accel_bias_reg[1] >> 8) & 0xFF; + data[3] = (accel_bias_reg[1]) & 0xFF; + data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers + data[4] = (accel_bias_reg[2] >> 8) & 0xFF; + data[5] = (accel_bias_reg[2]) & 0xFF; + data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers + + // Push accelerometer biases to hardware registers + writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]); + writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]); + writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]); + writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]); + writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]); + writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]); + + // Output scaled accelerometer biases for manual subtraction in the main program + dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; + dest2[1] = (float)accel_bias[1]/(float)accelsensitivity; + dest2[2] = (float)accel_bias[2]/(float)accelsensitivity; + } + + + // Accelerometer and gyroscope self test; check calibration wrt factory settings + void MPU6050SelfTest(float * destination) { // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass + uint8_t rawData[4] = {0, 0, 0, 0}; + uint8_t selfTest[6]; + float factoryTrim[6]; + + // Configure the accelerometer for self-test + writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g + writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s + wait(0.25); // Delay a while to let the device execute the self-test + rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results + rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results + rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results + rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results + // Extract the acceleration test results first + selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer + selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer + selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer + // Extract the gyration test results first + selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer + selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer + selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer + // Process results to allow final comparison with factory set values + factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation + factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation + factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation + factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation + factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation + factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation + +// Output self-test results and factory trim calculation if desired +// Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]); +// Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]); +// Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]); +// Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]); + +// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response +// To get to percent, must multiply by 100 and subtract result from 100 + for (int i = 0; i < 6; i++) { + destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences + } + + } + + +// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" +// (see http://www.x-io.co.uk/category/open-source/ for examples and more details) +// which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative +// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. +// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms +// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! + void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz) { + float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability + float norm; // vector norm + float f1, f2, f3; // objective funcyion elements + float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements + float qDot1, qDot2, qDot3, qDot4; + float hatDot1, hatDot2, hatDot3, hatDot4; + float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error + + // Auxiliary variables to avoid repeated arithmetic + float _halfq1 = 0.5f * q1; + float _halfq2 = 0.5f * q2; + float _halfq3 = 0.5f * q3; + float _halfq4 = 0.5f * q4; + float _2q1 = 2.0f * q1; + float _2q2 = 2.0f * q2; + float _2q3 = 2.0f * q3; + float _2q4 = 2.0f * q4; +// float _2q1q3 = 2.0f * q1 * q3; +// float _2q3q4 = 2.0f * q3 * q4; + + // Normalise accelerometer measurement + norm = sqrt(ax * ax + ay * ay + az * az); + if (norm == 0.0f) return; // handle NaN + norm = 1.0f/norm; + ax *= norm; + ay *= norm; + az *= norm; + + // Compute the objective function and Jacobian + f1 = _2q2 * q4 - _2q1 * q3 - ax; + f2 = _2q1 * q2 + _2q3 * q4 - ay; + f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az; + J_11or24 = _2q3; + J_12or23 = _2q4; + J_13or22 = _2q1; + J_14or21 = _2q2; + J_32 = 2.0f * J_14or21; + J_33 = 2.0f * J_11or24; + + // Compute the gradient (matrix multiplication) + hatDot1 = J_14or21 * f2 - J_11or24 * f1; + hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3; + hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1; + hatDot4 = J_14or21 * f1 + J_11or24 * f2; + + // Normalize the gradient + norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4); + hatDot1 /= norm; + hatDot2 /= norm; + hatDot3 /= norm; + hatDot4 /= norm; + + // Compute estimated gyroscope biases + gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3; + gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2; + gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1; + + // Compute and remove gyroscope biases + gbiasx += gerrx * deltat * zeta; + gbiasy += gerry * deltat * zeta; + gbiasz += gerrz * deltat * zeta; + // gx -= gbiasx; + // gy -= gbiasy; + // gz -= gbiasz; + + // Compute the quaternion derivative + qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz; + qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy; + qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx; + qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx; + + // Compute then integrate estimated quaternion derivative + q1 += (qDot1 -(beta * hatDot1)) * deltat; + q2 += (qDot2 -(beta * hatDot2)) * deltat; + q3 += (qDot3 -(beta * hatDot3)) * deltat; + q4 += (qDot4 -(beta * hatDot4)) * deltat; + + // Normalize the quaternion + norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion + norm = 1.0f/norm; + q[0] = q1 * norm; + q[1] = q2 * norm; + q[2] = q3 * norm; + q[3] = q4 * norm; + } + +// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" +// (see http://www.x-io.co.uk/category/open-source/ for examples and more details) +// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute +// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. +// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms +// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! + void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) + { + float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability + float norm; + float hx, hy, _2bx, _2bz; + float s1, s2, s3, s4; + float qDot1, qDot2, qDot3, qDot4; + + // Auxiliary variables to avoid repeated arithmetic + float _2q1mx; + float _2q1my; + float _2q1mz; + float _2q2mx; + float _4bx; + float _4bz; + float _2q1 = 2.0f * q1; + float _2q2 = 2.0f * q2; + float _2q3 = 2.0f * q3; + float _2q4 = 2.0f * q4; + float _2q1q3 = 2.0f * q1 * q3; + float _2q3q4 = 2.0f * q3 * q4; + float q1q1 = q1 * q1; + float q1q2 = q1 * q2; + float q1q3 = q1 * q3; + float q1q4 = q1 * q4; + float q2q2 = q2 * q2; + float q2q3 = q2 * q3; + float q2q4 = q2 * q4; + float q3q3 = q3 * q3; + float q3q4 = q3 * q4; + float q4q4 = q4 * q4; + + // Normalise accelerometer measurement + norm = sqrt(ax * ax + ay * ay + az * az); + if (norm == 0.0f) return; // handle NaN + norm = 1.0f/norm; + ax *= norm; + ay *= norm; + az *= norm; + + // Normalise magnetometer measurement + norm = sqrt(mx * mx + my * my + mz * mz); + if (norm == 0.0f) return; // handle NaN + norm = 1.0f/norm; + mx *= norm; + my *= norm; + mz *= norm; + + // Reference direction of Earth's magnetic field + _2q1mx = 2.0f * q1 * mx; + _2q1my = 2.0f * q1 * my; + _2q1mz = 2.0f * q1 * mz; + _2q2mx = 2.0f * q2 * mx; + hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4; + hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4; + _2bx = sqrt(hx * hx + hy * hy); + _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4; + _4bx = 2.0f * _2bx; + _4bz = 2.0f * _2bz; + + // Gradient decent algorithm corrective step + s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); + s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); + s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); + s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); + norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude + norm = 1.0f/norm; + s1 *= norm; + s2 *= norm; + s3 *= norm; + s4 *= norm; + + // Compute rate of change of quaternion + qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1; + qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2; + qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3; + qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4; + + // Integrate to yield quaternion + q1 += qDot1 * deltat; + q2 += qDot2 * deltat; + q3 += qDot3 * deltat; + q4 += qDot4 * deltat; + norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion + norm = 1.0f/norm; + q[0] = q1 * norm; + q[1] = q2 * norm; + q[2] = q3 * norm; + q[3] = q4 * norm; + + } + + +}; +#endif \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Sensors/MS5837.cpp Sun Jun 04 06:46:28 2017 +0000 @@ -0,0 +1,100 @@ +#include <stdlib.h> +#include "MS5837.h" + //Pressure Sensor + +/* + * Sensor operating function according data sheet + */ + +void MS5837::MS5837Init(void) +{ + MS5837Reset(); + MS5837ReadProm(); + return; +} + +/* Send soft reset to the sensor */ +void MS5837::MS5837Reset(void) +{ + /* transmit out 1 byte reset command */ + ms5837_tx_data[0] = ms5837_reset; + if ( i2c.write( device_address, ms5837_tx_data, 1 ) ); + //printf("send soft reset"); + wait_ms(20); +} + +/* read the sensor calibration data from rom */ +void MS5837::MS5837ReadProm(void) +{ + uint8_t i,j; + for (i=0; i<8; i++) { + j = i; + ms5837_tx_data[0] = ms5837_PROMread + (j<<1); + if ( i2c.write( device_address, ms5837_tx_data, 1 ) ); + if ( i2c.read( device_address, ms5837_rx_data, 2 ) ); + C[i] = ms5837_rx_data[1] + (ms5837_rx_data[0]<<8); + } +} + +/* Start the sensor pressure conversion */ +void MS5837::MS5837ConvertD1(void) +{ + ms5837_tx_data[0] = ms5837_convD1; + if ( i2c.write( device_address, ms5837_tx_data, 1 ) ); +} + +/* Start the sensor temperature conversion */ +void MS5837:: MS5837ConvertD2(void) +{ + ms5837_tx_data[0] = ms5837_convD2; + if ( i2c.write( device_address, ms5837_tx_data, 1 ) ); +} + +/* Read the previous started conversion results */ +int32_t MS5837::MS5837ReadADC(void) +{ + int32_t adc; + wait_ms(150); + ms5837_tx_data[0] = ms5837_ADCread; + if ( i2c.write( device_address, ms5837_tx_data, 1 ) ); + if ( i2c.read( device_address, ms5837_rx_data, 3 ) ); + adc = ms5837_rx_data[2] + (ms5837_rx_data[1]<<8) + (ms5837_rx_data[0]<<16); + return (adc); +} + +/* return the results */ +float MS5837::MS5837_Pressure (void) +{ + return P_MS5837; +} +float MS5837::MS5837_Temperature (void) +{ + return T_MS5837; +} + +/* Sensor reading and calculation procedure */ +void MS5837::Barometer_MS5837(void) +{ + int32_t dT, temp; + int64_t OFF, SENS, press; + + //no need to do this everytime! + //MS5837Reset(); // reset the sensor + //MS5837ReadProm(); // read the calibration values + + + MS5837ConvertD1(); // start pressure conversion + D1 = MS5837ReadADC(); // read the pressure value + MS5837ConvertD2(); // start temperature conversion + D2 = MS5837ReadADC(); // read the temperature value + + /* calculation according MS5837-01BA data sheet DA5837-01BA_006 */ + dT = D2 - (C[5]* 256); + OFF = (int64_t)C[2] * (1<<16) + ((int64_t)dT * (int64_t)C[4]) / (1<<7); + SENS = (int64_t)C[1] * (1<<15) + ((int64_t)dT * (int64_t)C[3]) / (1<<8); + + temp = 2000 + (dT * C[6]) / (1<<23); + T_MS5837 = (float) temp / 100.0f; // result of temperature in deg C in this var + press = (((int64_t)D1 * SENS) / (1<<21) - OFF) / (1<<13); + P_MS5837 = (float) press / 10.0f; // result of pressure in mBar in this var +} \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Sensors/MS5837.h Sun Jun 04 06:46:28 2017 +0000 @@ -0,0 +1,64 @@ +#include "mbed.h" + +#ifndef MS5837_H +#define MS5837_H + +#define MS5837_RX_DEPTH 3 // +#define MS5837_TX_DEPTH 2 // + +// choose your connection here +#define ms5837_addr_no_CS 0x76 //0b1110110 + +#define ms5837_reset 0x1E // Sensor Reset + +#define ms5837_convD1_256 0x40 // Convert D1 OSR 256 +#define ms5837_convD1_512 0x42 // Convert D1 OSR 512 +#define ms5837_convD1_1024 0x44 // Convert D1 OSR 1024 +#define ms5837_convD1_2048 0x46 // Convert D1 OSR 2048 +#define ms5837_convD1_4096 0x48 // Convert D1 OSR 4096 +#define ms5837_convD1_8192 0x4A // Convert D1 OSR 8192 + +#define ms5837_convD1 ms5837_convD1_4096 // choose your sampling rate here + +#define ms5837_convD2_256 0x50 // Convert D2 OSR 256 +#define ms5837_convD2_512 0x52 // Convert D2 OSR 512 +#define ms5837_convD2_1024 0x54 // Convert D2 OSR 1024 +#define ms5837_convD2_2048 0x56 // Convert D2 OSR 2048 +#define ms5837_convD2_4096 0x58 // Convert D2 OSR 4096 +#define ms5837_convD2_8192 0x5A // Convert D2 OSR 8192 + +#define ms5837_convD2 ms5837_convD2_4096 // choose your sampling rate here + +#define ms5837_ADCread 0x00 // read ADC command +#define ms5837_PROMread 0xA0 // read PROM command base address + +class MS5837{ +private: + int D1, D2, Temp, C[8]; + float T_MS5837, P_MS5837; + /* Data buffers */ + char ms5837_rx_data[MS5837_RX_DEPTH]; + char ms5837_tx_data[MS5837_TX_DEPTH]; + +public: + MS5837 (PinName sda, PinName scl, + char ms5837_addr = ms5837_addr_no_CS ) + : i2c( sda, scl ), device_address( ms5837_addr << 1 ) { + } + void MS5837Init(void); + void MS5837Reset(void); + void MS5837ReadProm(void); + void MS5837ConvertD1(void); + void MS5837ConvertD2(void); + int32_t MS5837ReadADC(void); + float MS5837_Pressure (void); + float MS5837_Temperature (void); + void Barometer_MS5837(void); + + +private: + I2C i2c; + char device_address; + +}; +#endif \ No newline at end of file
--- a/main.cpp Mon May 15 21:26:09 2017 +0000 +++ b/main.cpp Sun Jun 04 06:46:28 2017 +0000 @@ -1,45 +1,109 @@ #include "IMU.h" #include "PID.h" -//#include "MS5837.h" +#include "MS5837.h" #include "Motor.h" +#include "HMC5883L.h" -//Declare IMU object -MPU6050 mpu1; +// Maps value from incoming analog signal to correct range +// to be sent out to as pwm signal to motors +float map(float x, float in_min, float in_max, float out_min, float out_max) +{ + return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min; +} double myPitch, sOut, setPoint; double k_p, k_i, k_d; +//Declare digital button input +DigitalIn tuningButton(USER_BUTTON); + + +// Declare mpu object +MPU6050 mpu1; +HMC5883L compass; + +MS5837 pressure_sensor = MS5837(D14, D15, ms5837_addr_no_CS); + +// Declare motor objects Motor mBlack(D3,D2,D9); // pwm, fwd, rev Motor mWhite(D4,D5,D8); -//Input, Output, SetPoint, kp, ki, kd, Controller Direction +// Declare analog input pin +AnalogIn kpKnob(A0); +AnalogIn kiKnob(A1); +AnalogIn kdKnob(A2); + +// Input, Output, SetPoint, kp, ki, kd, Controller Direction PID pidp(&myPitch, &sOut, &setPoint, 1, 1, 1, DIRECT); +//Serial pc(USBTX, USBRX); + int main() -{ - i2c.frequency(400000); // use fast (400 kHz) I2C - wait(.2); - //Initialize mpu] +{ + // Initialize IMU IMUinit(mpu1); + compass.init(); + // Initialize pressure sensor + // pressure_sensor.MS5837Init(); + + // Initialize PID pidp.SetMode(AUTOMATIC); pidp.SetOutputLimits(0.5, 1); - pidp.SetTunings(.028, 0.01, 0.025); + + //Default kp ki kd parameters + float kpKnobVal = .028; + float kiKnobVal = .01; + float kdKnobVal = .025; + pidp.SetTunings(kpKnobVal, kiKnobVal, kdKnobVal); setPoint = 0; + // float pressure; + while(1) { - //other stuff .. ie state machines - IMUPrintData(mpu1); - myPitch = pitch; - pidp.Compute(); - float s2Out = 1.5 - sOut; - mWhite.speed(s2Out); - mBlack.speed(-sOut); + + // Read pressure sensor data + // pressure_sensor.Barometer_MS5837(); + // pressure = pressure_sensor.MS5837_Temperature(); + // pc.printf("pressure: %f \n", pressure); - char text[60]; - sprintf(text, "%f,%f,%f,%f,%f \n", yaw, pitch, roll,sOut, s2Out); + // If button is pressed kp ki kd values can be adjusted + if(!tuningButton) + { + // Read raw potentiometer values from k-knob and map to kpknobVal + kpKnobVal = map(kpKnob.read(), 0.000, 1.000, 0.000, .050); + kiKnobVal = map(kiKnob.read(), 0.000, 1.000, 0.000, 0.008); + kdKnobVal = map(kdKnob.read(), 0.000, 1.000, 0.000, .040); + + // Adjust tunings + pidp.SetTunings(kpKnobVal,kiKnobVal,kdKnobVal); + + } + //print mapped joystick values + // pc.printf("kp: %f -- ki: %f -- kd %f \n", kpKnobVal, kiKnobVal, kdKnobVal); + + // Obtain mpu data -> pass through filter -> obtain yaw pitch roll + IMUPrintData(mpu1, compass); + //myPitch = pitch; + + // char textA[90]; + // sprintf(textA, "%f,%f,%f,%f \n", heading, magdata[0], magdata[1], heading); + // pc.printf("%s", textA); + + // Compute output using pid controller + //pidp.Compute(); + + // Send pwm output to Motors + //float s2Out = 1.5 - sOut; + //mWhite.speed(s2Out); + //mBlack.speed(-sOut); + + //Display telemetry + char text[90]; + sprintf(text, "%f,%f,%f \n", yaw, pitch, roll); pc.printf("%s", text); + wait(.01); } }