first publish

Dependencies:   HMC5883L mbed

Committer:
roger_wee
Date:
Sun Jun 04 06:58:45 2017 +0000
Revision:
3:394c971eab83
Parent:
2:359f1f075c72
9-dof implementation using madgwick's filter

Who changed what in which revision?

UserRevisionLine numberNew contents of line
roger_wee 0:ce3ac53af6e4 1 #include "MPU6050.h"
roger_wee 2:359f1f075c72 2 #include "HMC5883L.h"
roger_wee 0:ce3ac53af6e4 3
roger_wee 0:ce3ac53af6e4 4 float sum = 0;
roger_wee 0:ce3ac53af6e4 5 uint32_t sumCount = 0;
roger_wee 0:ce3ac53af6e4 6 Timer t;
roger_wee 0:ce3ac53af6e4 7 Serial pc(USBTX, USBRX);
roger_wee 0:ce3ac53af6e4 8
roger_wee 0:ce3ac53af6e4 9 void IMUinit(MPU6050 &mpu6050)
roger_wee 0:ce3ac53af6e4 10 {
roger_wee 0:ce3ac53af6e4 11 //start timer/clock
roger_wee 0:ce3ac53af6e4 12 t.start();
roger_wee 0:ce3ac53af6e4 13
roger_wee 0:ce3ac53af6e4 14 // Read the WHO_AM_I register, this is a good test of communication
roger_wee 0:ce3ac53af6e4 15 uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050
roger_wee 0:ce3ac53af6e4 16 pc.printf("I AM 0x%x\n\r", whoami);
roger_wee 0:ce3ac53af6e4 17 pc.printf("I SHOULD BE 0x68\n\r");
roger_wee 0:ce3ac53af6e4 18
roger_wee 0:ce3ac53af6e4 19 if (whoami == 0x68) { // WHO_AM_I should always be 0x68
roger_wee 0:ce3ac53af6e4 20 pc.printf("MPU6050 is online...");
roger_wee 0:ce3ac53af6e4 21 wait(1);
roger_wee 0:ce3ac53af6e4 22 //lcd.clear();
roger_wee 0:ce3ac53af6e4 23 //lcd.printString("MPU6050 OK", 0, 0);
roger_wee 0:ce3ac53af6e4 24
roger_wee 0:ce3ac53af6e4 25 mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
roger_wee 0:ce3ac53af6e4 26 pc.printf("x-axis self test: acceleration trim within : ");
roger_wee 0:ce3ac53af6e4 27 pc.printf("%f", SelfTest[0]);
roger_wee 0:ce3ac53af6e4 28 pc.printf("% of factory value \n\r");
roger_wee 0:ce3ac53af6e4 29 pc.printf("y-axis self test: acceleration trim within : ");
roger_wee 0:ce3ac53af6e4 30 pc.printf("%f", SelfTest[1]);
roger_wee 0:ce3ac53af6e4 31 pc.printf("% of factory value \n\r");
roger_wee 0:ce3ac53af6e4 32 pc.printf("z-axis self test: acceleration trim within : ");
roger_wee 0:ce3ac53af6e4 33 pc.printf("%f", SelfTest[2]);
roger_wee 0:ce3ac53af6e4 34 pc.printf("% of factory value \n\r");
roger_wee 0:ce3ac53af6e4 35 pc.printf("x-axis self test: gyration trim within : ");
roger_wee 0:ce3ac53af6e4 36 pc.printf("%f", SelfTest[3]);
roger_wee 0:ce3ac53af6e4 37 pc.printf("% of factory value \n\r");
roger_wee 0:ce3ac53af6e4 38 pc.printf("y-axis self test: gyration trim within : ");
roger_wee 0:ce3ac53af6e4 39 pc.printf("%f", SelfTest[4]);
roger_wee 0:ce3ac53af6e4 40 pc.printf("% of factory value \n\r");
roger_wee 0:ce3ac53af6e4 41 pc.printf("z-axis self test: gyration trim within : ");
roger_wee 0:ce3ac53af6e4 42 pc.printf("%f", SelfTest[5]);
roger_wee 0:ce3ac53af6e4 43 pc.printf("% of factory value \n\r");
roger_wee 0:ce3ac53af6e4 44 wait(1);
roger_wee 0:ce3ac53af6e4 45
roger_wee 0:ce3ac53af6e4 46 if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) {
roger_wee 0:ce3ac53af6e4 47 mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
roger_wee 0:ce3ac53af6e4 48
roger_wee 0:ce3ac53af6e4 49 mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
roger_wee 0:ce3ac53af6e4 50
roger_wee 0:ce3ac53af6e4 51 mpu6050.resetMPU6050();
roger_wee 0:ce3ac53af6e4 52
roger_wee 0:ce3ac53af6e4 53 mpu6050.initMPU6050();
roger_wee 0:ce3ac53af6e4 54 pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
roger_wee 0:ce3ac53af6e4 55 wait(2);
roger_wee 0:ce3ac53af6e4 56
roger_wee 0:ce3ac53af6e4 57 } else {
roger_wee 0:ce3ac53af6e4 58 pc.printf("Device did not the pass self-test!\n\r");
roger_wee 0:ce3ac53af6e4 59 }
roger_wee 0:ce3ac53af6e4 60 } else {
roger_wee 0:ce3ac53af6e4 61 pc.printf("Could not connect to MPU6050: \n\r");
roger_wee 0:ce3ac53af6e4 62 pc.printf("%#x \n", whoami);
roger_wee 0:ce3ac53af6e4 63
roger_wee 0:ce3ac53af6e4 64 while(1) ; // Loop forever if communication doesn't happen
roger_wee 0:ce3ac53af6e4 65 }
roger_wee 0:ce3ac53af6e4 66 }
roger_wee 0:ce3ac53af6e4 67
roger_wee 0:ce3ac53af6e4 68
roger_wee 2:359f1f075c72 69 void IMUPrintData(MPU6050 &mpu6050, HMC5883L &compass)
roger_wee 0:ce3ac53af6e4 70 {
roger_wee 0:ce3ac53af6e4 71
roger_wee 0:ce3ac53af6e4 72 // pc.printf("Beginning IMU read\n");
roger_wee 0:ce3ac53af6e4 73 // If data ready bit set, all data registers have new data
roger_wee 0:ce3ac53af6e4 74 if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt
roger_wee 0:ce3ac53af6e4 75
roger_wee 0:ce3ac53af6e4 76 mpu6050.readAccelData(accelCount); // Read the x/y/z adc values
roger_wee 0:ce3ac53af6e4 77 mpu6050.getAres();
roger_wee 0:ce3ac53af6e4 78
roger_wee 0:ce3ac53af6e4 79 // Now we'll calculate the accleration value into actual g's
roger_wee 0:ce3ac53af6e4 80 ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
roger_wee 0:ce3ac53af6e4 81 ay = (float)accelCount[1]*aRes - accelBias[1];
roger_wee 0:ce3ac53af6e4 82 az = (float)accelCount[2]*aRes - accelBias[2];
roger_wee 0:ce3ac53af6e4 83
roger_wee 0:ce3ac53af6e4 84 mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values
roger_wee 0:ce3ac53af6e4 85 mpu6050.getGres();
roger_wee 0:ce3ac53af6e4 86
roger_wee 0:ce3ac53af6e4 87 // Calculate the gyro value into actual degrees per second
roger_wee 0:ce3ac53af6e4 88 gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set
roger_wee 0:ce3ac53af6e4 89 gy = (float)gyroCount[1]*gRes - gyroBias[1];
roger_wee 0:ce3ac53af6e4 90 gz = (float)gyroCount[2]*gRes - gyroBias[2];
roger_wee 0:ce3ac53af6e4 91
roger_wee 0:ce3ac53af6e4 92 tempCount = mpu6050.readTempData(); // Read the x/y/z adc values
roger_wee 0:ce3ac53af6e4 93 temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
roger_wee 2:359f1f075c72 94
roger_wee 0:ce3ac53af6e4 95 }
roger_wee 0:ce3ac53af6e4 96
roger_wee 2:359f1f075c72 97 //get magdata
roger_wee 2:359f1f075c72 98 compass.readMagData(magdata);
roger_wee 2:359f1f075c72 99 heading = compass.getHeading();
roger_wee 2:359f1f075c72 100
roger_wee 0:ce3ac53af6e4 101 Now = t.read_us();
roger_wee 0:ce3ac53af6e4 102 deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
roger_wee 0:ce3ac53af6e4 103 sampleFreq = 1/deltat;
roger_wee 0:ce3ac53af6e4 104 lastUpdate = Now;
roger_wee 0:ce3ac53af6e4 105
roger_wee 0:ce3ac53af6e4 106 sum += deltat;
roger_wee 0:ce3ac53af6e4 107 sumCount++;
roger_wee 0:ce3ac53af6e4 108
roger_wee 0:ce3ac53af6e4 109 if(lastUpdate - firstUpdate > 10000000.0f) {
roger_wee 0:ce3ac53af6e4 110 beta = 0.04; // decrease filter gain after stabilized
roger_wee 0:ce3ac53af6e4 111 zeta = 0.015; // increasey bias drift gain after stabilized
roger_wee 0:ce3ac53af6e4 112 }
roger_wee 0:ce3ac53af6e4 113
roger_wee 0:ce3ac53af6e4 114 //Convert gyro rate as rad/s
roger_wee 0:ce3ac53af6e4 115 gx *= PI/180.0f;
roger_wee 0:ce3ac53af6e4 116 gy *= PI/180.0f;
roger_wee 0:ce3ac53af6e4 117 gz *= PI/180.0f;
roger_wee 0:ce3ac53af6e4 118
roger_wee 0:ce3ac53af6e4 119
roger_wee 0:ce3ac53af6e4 120 // Pass gyro rate as rad/s
roger_wee 2:359f1f075c72 121 mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx, gy, gz, magdata[0], magdata[1], magdata[2]);
roger_wee 0:ce3ac53af6e4 122
roger_wee 0:ce3ac53af6e4 123 // Serial print and/or display at 0.5 s rate independent of data rates
roger_wee 0:ce3ac53af6e4 124 delt_t = t.read_ms() - count;
roger_wee 0:ce3ac53af6e4 125 if (delt_t > 0) { // update LCD once per half-second independent of read rate
roger_wee 0:ce3ac53af6e4 126
roger_wee 0:ce3ac53af6e4 127 // pc.printf("ax = %f", 1000*ax);
roger_wee 0:ce3ac53af6e4 128 // pc.printf(" ay = %f", 1000*ay);
roger_wee 0:ce3ac53af6e4 129 // pc.printf(" az = %f mg\n\r", 1000*az);
roger_wee 0:ce3ac53af6e4 130
roger_wee 0:ce3ac53af6e4 131 // pc.printf("gx = %f", gx);
roger_wee 0:ce3ac53af6e4 132 // pc.printf(" gy = %f", gy);
roger_wee 0:ce3ac53af6e4 133 // pc.printf(" gz = %f deg/s\n\r", gz);
roger_wee 0:ce3ac53af6e4 134
roger_wee 0:ce3ac53af6e4 135 // pc.printf(" temperature = %f C\n\r", temperature);
roger_wee 0:ce3ac53af6e4 136
roger_wee 0:ce3ac53af6e4 137 // pc.printf("q0 = %f\n\r", q[0]);
roger_wee 0:ce3ac53af6e4 138 // pc.printf("q1 = %f\n\r", q[1]);
roger_wee 0:ce3ac53af6e4 139 // pc.printf("q2 = %f\n\r", q[2]);
roger_wee 0:ce3ac53af6e4 140 // pc.printf("q3 = %f\n\r", q[3]);
roger_wee 0:ce3ac53af6e4 141
roger_wee 0:ce3ac53af6e4 142 // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
roger_wee 0:ce3ac53af6e4 143 // In this coordinate system, the positive z-axis is down toward Earth.
roger_wee 0:ce3ac53af6e4 144 // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
roger_wee 0:ce3ac53af6e4 145 // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
roger_wee 0:ce3ac53af6e4 146 // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
roger_wee 0:ce3ac53af6e4 147 // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
roger_wee 0:ce3ac53af6e4 148 // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
roger_wee 0:ce3ac53af6e4 149 // applied in the correct order which for this configuration is yaw, pitch, and then roll.
roger_wee 0:ce3ac53af6e4 150 // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
roger_wee 0:ce3ac53af6e4 151 yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
roger_wee 0:ce3ac53af6e4 152 pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
roger_wee 0:ce3ac53af6e4 153 roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
roger_wee 2:359f1f075c72 154
roger_wee 0:ce3ac53af6e4 155 pitch *= 180.0f / PI;
roger_wee 0:ce3ac53af6e4 156 yaw *= 180.0f / PI;
roger_wee 0:ce3ac53af6e4 157 roll *= 180.0f / PI;
roger_wee 0:ce3ac53af6e4 158
roger_wee 0:ce3ac53af6e4 159 // pc.printf("Yaw, Pitch, Roll: \n\r");
roger_wee 0:ce3ac53af6e4 160 // pc.printf("%f", yaw);
roger_wee 0:ce3ac53af6e4 161 // pc.printf(", ");
roger_wee 0:ce3ac53af6e4 162 // pc.printf("%f", pitch);
roger_wee 0:ce3ac53af6e4 163 // pc.printf(", ");
roger_wee 0:ce3ac53af6e4 164 // pc.printf("%f\n\r", roll);
roger_wee 0:ce3ac53af6e4 165 // pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");
roger_wee 0:ce3ac53af6e4 166
roger_wee 0:ce3ac53af6e4 167 //pc.printf("average rate = %f\n\r", (float) sumCount/sum);
roger_wee 0:ce3ac53af6e4 168
roger_wee 0:ce3ac53af6e4 169 //myled= !myled;
roger_wee 0:ce3ac53af6e4 170 count = t.read_ms();
roger_wee 0:ce3ac53af6e4 171 sum = 0;
roger_wee 0:ce3ac53af6e4 172 sumCount = 0;
roger_wee 0:ce3ac53af6e4 173 }
roger_wee 0:ce3ac53af6e4 174 }
roger_wee 0:ce3ac53af6e4 175
roger_wee 0:ce3ac53af6e4 176 void IMUUpdate(MPU6050 &mpu6050)
roger_wee 0:ce3ac53af6e4 177 {
roger_wee 0:ce3ac53af6e4 178 // If data ready bit set, all data registers have new data
roger_wee 0:ce3ac53af6e4 179 if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt
roger_wee 0:ce3ac53af6e4 180 mpu6050.readAccelData(accelCount); // Read the x/y/z adc values
roger_wee 0:ce3ac53af6e4 181 mpu6050.getAres();
roger_wee 0:ce3ac53af6e4 182
roger_wee 0:ce3ac53af6e4 183 // Now we'll calculate the accleration value into actual g's
roger_wee 0:ce3ac53af6e4 184 ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
roger_wee 0:ce3ac53af6e4 185 ay = (float)accelCount[1]*aRes - accelBias[1];
roger_wee 0:ce3ac53af6e4 186 az = (float)accelCount[2]*aRes - accelBias[2];
roger_wee 0:ce3ac53af6e4 187
roger_wee 0:ce3ac53af6e4 188 mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values
roger_wee 0:ce3ac53af6e4 189 mpu6050.getGres();
roger_wee 0:ce3ac53af6e4 190
roger_wee 0:ce3ac53af6e4 191 // Calculate the gyro value into actual degrees per second
roger_wee 0:ce3ac53af6e4 192 gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set
roger_wee 0:ce3ac53af6e4 193 gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
roger_wee 0:ce3ac53af6e4 194 gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
roger_wee 0:ce3ac53af6e4 195
roger_wee 0:ce3ac53af6e4 196 tempCount = mpu6050.readTempData(); // Read the x/y/z adc values
roger_wee 0:ce3ac53af6e4 197 temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
roger_wee 0:ce3ac53af6e4 198 }
roger_wee 0:ce3ac53af6e4 199
roger_wee 0:ce3ac53af6e4 200 Now = t.read_us();
roger_wee 0:ce3ac53af6e4 201 deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
roger_wee 0:ce3ac53af6e4 202 lastUpdate = Now;
roger_wee 0:ce3ac53af6e4 203
roger_wee 0:ce3ac53af6e4 204 sum += deltat;
roger_wee 0:ce3ac53af6e4 205 sumCount++;
roger_wee 0:ce3ac53af6e4 206
roger_wee 0:ce3ac53af6e4 207 if(lastUpdate - firstUpdate > 10000000.0f) {
roger_wee 0:ce3ac53af6e4 208 beta = 0.04; // decrease filter gain after stabilized
roger_wee 0:ce3ac53af6e4 209 zeta = 0.015; // increasey bias drift gain after stabilized
roger_wee 0:ce3ac53af6e4 210 }
roger_wee 0:ce3ac53af6e4 211
roger_wee 0:ce3ac53af6e4 212 // Pass gyro rate as rad/s
roger_wee 0:ce3ac53af6e4 213 mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
roger_wee 0:ce3ac53af6e4 214
roger_wee 0:ce3ac53af6e4 215 // Serial print and/or display at 0.5 s rate independent of data rates
roger_wee 0:ce3ac53af6e4 216 delt_t = t.read_ms() - count;
roger_wee 0:ce3ac53af6e4 217
roger_wee 0:ce3ac53af6e4 218 // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
roger_wee 0:ce3ac53af6e4 219 // In this coordinate system, the positive z-axis is down toward Earth.
roger_wee 0:ce3ac53af6e4 220 // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
roger_wee 0:ce3ac53af6e4 221 // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
roger_wee 0:ce3ac53af6e4 222 // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
roger_wee 0:ce3ac53af6e4 223 // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
roger_wee 0:ce3ac53af6e4 224 // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
roger_wee 0:ce3ac53af6e4 225 // applied in the correct order which for this configuration is yaw, pitch, and then roll.
roger_wee 0:ce3ac53af6e4 226 // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
roger_wee 0:ce3ac53af6e4 227 yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
roger_wee 0:ce3ac53af6e4 228 pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
roger_wee 0:ce3ac53af6e4 229 roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
roger_wee 0:ce3ac53af6e4 230 pitch *= 180.0f / PI;
roger_wee 0:ce3ac53af6e4 231 yaw *= 180.0f / PI;
roger_wee 0:ce3ac53af6e4 232 roll *= 180.0f / PI;
roger_wee 0:ce3ac53af6e4 233
roger_wee 0:ce3ac53af6e4 234 //update timer for filter
roger_wee 0:ce3ac53af6e4 235 count = t.read_ms();
roger_wee 0:ce3ac53af6e4 236 sum = 0;
roger_wee 0:ce3ac53af6e4 237 sumCount = 0;
roger_wee 0:ce3ac53af6e4 238
roger_wee 0:ce3ac53af6e4 239 }
roger_wee 0:ce3ac53af6e4 240
roger_wee 0:ce3ac53af6e4 241