won't compile

stm32f30x_tim.c

Committer:
richardv
Date:
2016-11-02
Revision:
0:b079fa4ed182

File content as of revision 0:b079fa4ed182:

/**
  ******************************************************************************
  * @file    stm32f30x_tim.c
  * @author  MCD Application Team
  * @version V1.1.1
  * @date    04-April-2014
  * @brief   This file provides firmware functions to manage the following 
  *          functionalities of the TIM peripheral:
  *            + TimeBase management
  *            + Output Compare management
  *            + Input Capture management
  *            + Advanced-control timers (TIM1 and TIM8) specific features  
  *            + Interrupts, DMA and flags management
  *            + Clocks management
  *            + Synchronization management
  *            + Specific interface management
  *            + Specific remapping management      
  *              
  @verbatim
    
  ==============================================================================
                       ##### How to use this driver #####
  ==============================================================================
   [..] This driver provides functions to configure and program the TIM 
        of all stm32f30x devices.
        These functions are split in 9 groups: 
     
        (#) TIM TimeBase management: this group includes all needed functions 
            to configure the TM Timebase unit:
                 (++) Set/Get Prescaler
                 (++) Set/Get Autoreload  
                 (++) Counter modes configuration
                 (++) Set Clock division  
                 (++) Select the One Pulse mode
                 (++) Update Request Configuration
                 (++) Update Disable Configuration
                 (++) Auto-Preload Configuration 
                 (++) Enable/Disable the counter     
                   
       (#) TIM Output Compare management: this group includes all needed 
           functions to configure the Capture/Compare unit used in Output 
           compare mode: 
                 (++) Configure each channel, independently, in Output Compare mode
                 (++) Select the output compare modes
                 (++) Select the Polarities of each channel
                 (++) Set/Get the Capture/Compare register values
                 (++) Select the Output Compare Fast mode 
                 (++) Select the Output Compare Forced mode  
                 (++) Output Compare-Preload Configuration 
                 (++) Clear Output Compare Reference
                 (++) Select the OCREF Clear signal
                 (++) Enable/Disable the Capture/Compare Channels    
                    
        (#) TIM Input Capture management: this group includes all needed 
            functions to configure the Capture/Compare unit used in 
            Input Capture mode:
                 (++) Configure each channel in input capture mode
                 (++) Configure Channel1/2 in PWM Input mode
                 (++) Set the Input Capture Prescaler
                 (++) Get the Capture/Compare values      
                     
        (#) Advanced-control timers (TIM1 and TIM8) specific features
                 (++) Configures the Break input, dead time, Lock level, the OSSI,
                      the OSSR State and the AOE(automatic output enable)
                 (++) Enable/Disable the TIM peripheral Main Outputs
                 (++) Select the Commutation event
                 (++) Set/Reset the Capture Compare Preload Control bit
                               
        (#) TIM interrupts, DMA and flags management
                 (++) Enable/Disable interrupt sources
                 (++) Get flags status
                 (++) Clear flags/ Pending bits
                 (++) Enable/Disable DMA requests 
                 (++) Configure DMA burst mode
                 (++) Select CaptureCompare DMA request  
                
        (#) TIM clocks management: this group includes all needed functions 
            to configure the clock controller unit:
                 (++) Select internal/External clock
                 (++) Select the external clock mode: ETR(Mode1/Mode2), TIx or ITRx
         
        (#) TIM synchronization management: this group includes all needed 
            functions to configure the Synchronization unit:
                 (++) Select Input Trigger  
                 (++) Select Output Trigger  
                 (++) Select Master Slave Mode 
                 (++) ETR Configuration when used as external trigger   
       
        (#) TIM specific interface management, this group includes all 
            needed functions to use the specific TIM interface:
                 (++) Encoder Interface Configuration
                 (++) Select Hall Sensor   
           
        (#) TIM specific remapping management includes the Remapping 
            configuration of specific timers               
     
  @endverbatim
      
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
  *
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
  * You may not use this file except in compliance with the License.
  * You may obtain a copy of the License at:
  *
  *        http://www.st.com/software_license_agreement_liberty_v2
  *
  * Unless required by applicable law or agreed to in writing, software 
  * distributed under the License is distributed on an "AS IS" BASIS, 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  * See the License for the specific language governing permissions and
  * limitations under the License.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f30x_tim.h"
#include "stm32f30x_rcc.h"

/** @addtogroup STM32F30x_StdPeriph_Driver
  * @{
  */

/** @defgroup TIM 
  * @brief TIM driver modules
  * @{
  */

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/

/* ---------------------- TIM registers bit mask ------------------------ */
#define SMCR_ETR_MASK      ((uint16_t)0x00FF) 
#define CCMR_OFFSET        ((uint16_t)0x0018)
#define CCER_CCE_SET       ((uint16_t)0x0001)  
#define	CCER_CCNE_SET      ((uint16_t)0x0004) 
#define CCMR_OC13M_MASK    ((uint32_t)0xFFFEFF8F)
#define CCMR_OC24M_MASK    ((uint32_t)0xFEFF8FFF) 

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter);
static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter);
static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter);
static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter);

/* Private functions ---------------------------------------------------------*/

/** @defgroup TIM_Private_Functions
  * @{
  */

/** @defgroup TIM_Group1 TimeBase management functions
 *  @brief   TimeBase management functions 
 *
@verbatim   
 ===============================================================================
                   ##### TimeBase management functions #####
 ===============================================================================  
  
             
    *** TIM Driver: how to use it in Timing(Time base) Mode ***
    ============================================================ 
    [..]
    To use the Timer in Timing(Time base) mode, the following steps are mandatory:
       
    (#) Enable TIM clock using 
        RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) function               
    (#) Fill the TIM_TimeBaseInitStruct with the desired parameters.   
    (#) Call TIM_TimeBaseInit(TIMx, &TIM_TimeBaseInitStruct) to configure 
        the Time Base unit
        with the corresponding configuration        
    (#) Enable the NVIC if you need to generate the update interrupt.        
    (#) Enable the corresponding interrupt using the function 
        TIM_ITConfig(TIMx, TIM_IT_Update)      
    (#) Call the TIM_Cmd(ENABLE) function to enable the TIM counter.
    [..]                  
    (@) All other functions can be used separately to modify, if needed,
        a specific feature of the Timer. 

@endverbatim
  * @{
  */
  
/**
  * @brief  Deinitializes the TIMx peripheral registers to their default reset values.
  * @param  TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral.
  * @retval None

  */
void TIM_DeInit(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx)); 
 
  if (TIMx == TIM1)
  {
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, DISABLE);  
  } 
  else if (TIMx == TIM2) 
  {     
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, DISABLE);
  }  
  else if (TIMx == TIM3)
  { 
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, DISABLE);
  }  
  else if (TIMx == TIM4)
  { 
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, DISABLE);
  }   
  else if (TIMx == TIM6)  
  {    
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, DISABLE);
  }  
  else if (TIMx == TIM7)
  {      
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, DISABLE);
  }  
  else if (TIMx == TIM8)
  {      
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, DISABLE);  
  }    
  else if (TIMx == TIM15)
  {      
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM15, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM15, DISABLE);  
  }  
  else if (TIMx == TIM16) 
  {       
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM16, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM16, DISABLE);  
  }  
  else
  { 
    if (TIMx == TIM17) 
    {     
      RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM17, ENABLE);
      RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM17, DISABLE); 
    }   
  }
}

/**
  * @brief  Initializes the TIMx Time Base Unit peripheral according to 
  *         the specified parameters in the TIM_TimeBaseInitStruct.
  * @param  TIMx: where x can be  1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_TimeBaseInitStruct: pointer to a TIM_TimeBaseInitTypeDef structure
  *         that contains the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_TimeBaseInit(TIM_TypeDef* TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
{
  uint16_t tmpcr1 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx)); 
  assert_param(IS_TIM_COUNTER_MODE(TIM_TimeBaseInitStruct->TIM_CounterMode));
  assert_param(IS_TIM_CKD_DIV(TIM_TimeBaseInitStruct->TIM_ClockDivision));

  tmpcr1 = TIMx->CR1;  

  if((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM2) || 
     (TIMx == TIM3)|| (TIMx == TIM4)) 
  {
    /* Select the Counter Mode */
    tmpcr1 &= (uint16_t)(~(TIM_CR1_DIR | TIM_CR1_CMS));
    tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_CounterMode;
  }
 
  if((TIMx != TIM6) && (TIMx != TIM7))
  {
    /* Set the clock division */
    tmpcr1 &=  (uint16_t)(~TIM_CR1_CKD);
    tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_ClockDivision;
  }

  TIMx->CR1 = tmpcr1;

  /* Set the Autoreload value */
  TIMx->ARR = TIM_TimeBaseInitStruct->TIM_Period ;
 
  /* Set the Prescaler value */
  TIMx->PSC = TIM_TimeBaseInitStruct->TIM_Prescaler;
    
  if ((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM15) || 
      (TIMx == TIM16) || (TIMx == TIM17))  
  {
    /* Set the Repetition Counter value */
    TIMx->RCR = TIM_TimeBaseInitStruct->TIM_RepetitionCounter;
  }

  /* Generate an update event to reload the Prescaler 
     and the repetition counter(only for TIM1 and TIM8) value immediatly */
  TIMx->EGR = TIM_PSCReloadMode_Immediate;          
}

/**
  * @brief  Fills each TIM_TimeBaseInitStruct member with its default value.
  * @param  TIM_TimeBaseInitStruct : pointer to a TIM_TimeBaseInitTypeDef
  *         structure which will be initialized.
  * @retval None
  */
void TIM_TimeBaseStructInit(TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
{
  /* Set the default configuration */
  TIM_TimeBaseInitStruct->TIM_Period = 0xFFFFFFFF;
  TIM_TimeBaseInitStruct->TIM_Prescaler = 0x0000;
  TIM_TimeBaseInitStruct->TIM_ClockDivision = TIM_CKD_DIV1;
  TIM_TimeBaseInitStruct->TIM_CounterMode = TIM_CounterMode_Up;
  TIM_TimeBaseInitStruct->TIM_RepetitionCounter = 0x0000;
}

/**
  * @brief  Configures the TIMx Prescaler.
  * @param  TIMx: where x can be  1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  Prescaler: specifies the Prescaler Register value
  * @param  TIM_PSCReloadMode: specifies the TIM Prescaler Reload mode
  *          This parameter can be one of the following values:
  *            @arg TIM_PSCReloadMode_Update: The Prescaler is loaded at the update event.
  *            @arg TIM_PSCReloadMode_Immediate: The Prescaler is loaded immediatly.
  * @retval None
  */
void TIM_PrescalerConfig(TIM_TypeDef* TIMx, uint16_t Prescaler, uint16_t TIM_PSCReloadMode)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_PRESCALER_RELOAD(TIM_PSCReloadMode));
  /* Set the Prescaler value */
  TIMx->PSC = Prescaler;
  /* Set or reset the UG Bit */
  TIMx->EGR = TIM_PSCReloadMode;
}

/**
  * @brief  Specifies the TIMx Counter Mode to be used.
  * @param  TIMx: where x can be  1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_CounterMode: specifies the Counter Mode to be used
  *          This parameter can be one of the following values:
  *            @arg TIM_CounterMode_Up: TIM Up Counting Mode
  *            @arg TIM_CounterMode_Down: TIM Down Counting Mode
  *            @arg TIM_CounterMode_CenterAligned1: TIM Center Aligned Mode1
  *            @arg TIM_CounterMode_CenterAligned2: TIM Center Aligned Mode2
  *            @arg TIM_CounterMode_CenterAligned3: TIM Center Aligned Mode3
  * @retval None
  */
void TIM_CounterModeConfig(TIM_TypeDef* TIMx, uint16_t TIM_CounterMode)
{
  uint16_t tmpcr1 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_COUNTER_MODE(TIM_CounterMode));

  tmpcr1 = TIMx->CR1;

  /* Reset the CMS and DIR Bits */
  tmpcr1 &= (uint16_t)~(TIM_CR1_DIR | TIM_CR1_CMS);

  /* Set the Counter Mode */
  tmpcr1 |= TIM_CounterMode;

  /* Write to TIMx CR1 register */
  TIMx->CR1 = tmpcr1;
}

/**
  * @brief  Sets the TIMx Counter Register value
  * @param  TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral.
  * @param  Counter: specifies the Counter register new value.
  * @retval None
  */
void TIM_SetCounter(TIM_TypeDef* TIMx, uint32_t Counter)
{
  /* Check the parameters */
   assert_param(IS_TIM_ALL_PERIPH(TIMx));

  /* Set the Counter Register value */
  TIMx->CNT = Counter;
}

/**
  * @brief  Sets the TIMx Autoreload Register value
  * @param  TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral.
  * @param  Autoreload: specifies the Autoreload register new value.
  * @retval None
  */
void TIM_SetAutoreload(TIM_TypeDef* TIMx, uint32_t Autoreload)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  
  /* Set the Autoreload Register value */
  TIMx->ARR = Autoreload;
}

/**
  * @brief  Gets the TIMx Counter value.
  * @param  TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral.
  * @retval Counter Register value
  */
uint32_t TIM_GetCounter(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));

  /* Get the Counter Register value */
  return TIMx->CNT;
}

/**
  * @brief  Gets the TIMx Prescaler value.
  * @param  TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral.
  * @retval Prescaler Register value.
  */
uint16_t TIM_GetPrescaler(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));

  /* Get the Prescaler Register value */
  return TIMx->PSC;
}

/**
  * @brief  Enables or Disables the TIMx Update event.
  * @param  TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral.
  * @param  NewState: new state of the TIMx UDIS bit
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_UpdateDisableConfig(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Set the Update Disable Bit */
    TIMx->CR1 |= TIM_CR1_UDIS;
  }
  else
  {
    /* Reset the Update Disable Bit */
    TIMx->CR1 &= (uint16_t)~TIM_CR1_UDIS;
  }
}

/**
  * @brief  Configures the TIMx Update Request Interrupt source.
  * @param  TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_UpdateSource: specifies the Update source.
  *          This parameter can be one of the following values:
  *            @arg TIM_UpdateSource_Regular: Source of update is the counter
  *                 overflow/underflow or the setting of UG bit, or an update
  *                 generation through the slave mode controller.
  *            @arg TIM_UpdateSource_Global: Source of update is counter overflow/underflow.
  * @retval None
  */
void TIM_UpdateRequestConfig(TIM_TypeDef* TIMx, uint16_t TIM_UpdateSource)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_UPDATE_SOURCE(TIM_UpdateSource));

  if (TIM_UpdateSource != TIM_UpdateSource_Global)
  {
    /* Set the URS Bit */
    TIMx->CR1 |= TIM_CR1_URS;
  }
  else
  {
    /* Reset the URS Bit */
    TIMx->CR1 &= (uint16_t)~TIM_CR1_URS;
  }
}

/**
  * @brief  Sets or resets the update interrupt flag (UIF)status bit Remapping.
  *         when sets, reading TIMx_CNT register returns UIF bit instead of CNT[31]  
  * @param  TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral.
  * @param  NewState: new state of the UIFREMAP bit.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_UIFRemap(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx)); 
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Enable the TIM Counter */
    TIMx->CR1 |= TIM_CR1_UIFREMAP;
  }
  else
  {
    /* Disable the TIM Counter */
    TIMx->CR1 &= (uint16_t)~TIM_CR1_UIFREMAP;
  }  
}

/**
  * @brief  Enables or disables TIMx peripheral Preload register on ARR.
  * @param  TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral.
  * @param  NewState: new state of the TIMx peripheral Preload register
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_ARRPreloadConfig(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Set the ARR Preload Bit */
    TIMx->CR1 |= TIM_CR1_ARPE;
  }
  else
  {
    /* Reset the ARR Preload Bit */
    TIMx->CR1 &= (uint16_t)~TIM_CR1_ARPE;
  }
}

/**
  * @brief  Selects the TIMx's One Pulse Mode.
  * @param  TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_OPMode: specifies the OPM Mode to be used.
  *          This parameter can be one of the following values:
  *            @arg TIM_OPMode_Single
  *            @arg TIM_OPMode_Repetitive
  * @retval None
  */
void TIM_SelectOnePulseMode(TIM_TypeDef* TIMx, uint16_t TIM_OPMode)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_OPM_MODE(TIM_OPMode));

  /* Reset the OPM Bit */
  TIMx->CR1 &= (uint16_t)~TIM_CR1_OPM;

  /* Configure the OPM Mode */
  TIMx->CR1 |= TIM_OPMode;
}

/**
  * @brief  Sets the TIMx Clock Division value.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17, to select the TIM peripheral.
  * @param  TIM_CKD: specifies the clock division value.
  *          This parameter can be one of the following value:
  *            @arg TIM_CKD_DIV1: TDTS = Tck_tim
  *            @arg TIM_CKD_DIV2: TDTS = 2*Tck_tim
  *            @arg TIM_CKD_DIV4: TDTS = 4*Tck_tim
  * @retval None
  */
void TIM_SetClockDivision(TIM_TypeDef* TIMx, uint16_t TIM_CKD)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
  assert_param(IS_TIM_CKD_DIV(TIM_CKD));

  /* Reset the CKD Bits */
  TIMx->CR1 &= (uint16_t)(~TIM_CR1_CKD);

  /* Set the CKD value */
  TIMx->CR1 |= TIM_CKD;
}

/**
  * @brief  Enables or disables the specified TIM peripheral.
  * @param  TIMx: where x can be 1, 2, 3, 4, 6, 7, 8, 15, 16 or 17 to select 
  *        the TIMx peripheral.
  * @param  NewState: new state of the TIMx peripheral.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_Cmd(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx)); 
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Enable the TIM Counter */
    TIMx->CR1 |= TIM_CR1_CEN;
  }
  else
  {
    /* Disable the TIM Counter */
    TIMx->CR1 &= (uint16_t)~TIM_CR1_CEN;
  }
}
/**
  * @}
  */

/** @defgroup TIM_Group2 Output Compare management functions
 *  @brief    Output Compare management functions 
 *
@verbatim   
 ===============================================================================
                ##### Output Compare management functions #####
 ===============================================================================  
       
  *** TIM Driver: how to use it in Output Compare Mode ***
  ======================================================== 
  [..] 
  To use the Timer in Output Compare mode, the following steps are mandatory:
       
       (#) Enable TIM clock using RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) function
       
       (#) Configure the TIM pins by configuring the corresponding GPIO pins
       
       (#) Configure the Time base unit as described in the first part of this driver, 
           if needed, else the Timer will run with the default configuration:
           (++) Autoreload value = 0xFFFF
           (++) Prescaler value = 0x0000
           (++) Counter mode = Up counting
           (++) Clock Division = TIM_CKD_DIV1   
       (#) Fill the TIM_OCInitStruct with the desired parameters including:
           (++) The TIM Output Compare mode: TIM_OCMode
           (++) TIM Output State: TIM_OutputState
           (++) TIM Pulse value: TIM_Pulse
           (++) TIM Output Compare Polarity : TIM_OCPolarity
       
       (#) Call TIM_OCxInit(TIMx, &TIM_OCInitStruct) to configure the desired channel with the 
           corresponding configuration
       
       (#) Call the TIM_Cmd(ENABLE) function to enable the TIM counter.
 [..]      
       (@) All other functions can be used separately to modify, if needed,
           a specific feature of the Timer. 
          
       (@) In case of PWM mode, this function is mandatory:
           TIM_OCxPreloadConfig(TIMx, TIM_OCPreload_ENABLE); 
              
       (@) If the corresponding interrupt or DMA request are needed, the user should:
                (#@) Enable the NVIC (or the DMA) to use the TIM interrupts (or DMA requests). 
                (#@) Enable the corresponding interrupt (or DMA request) using the function 
                     TIM_ITConfig(TIMx, TIM_IT_CCx) (or TIM_DMA_Cmd(TIMx, TIM_DMA_CCx))   

@endverbatim
  * @{
  */

/**
  * @brief  Initializes the TIMx Channel1 according to the specified parameters in
  *         the TIM_OCInitStruct.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17, to select the TIM peripheral.
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
  *         the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  uint32_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
   
  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx)); 
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   

  /* Disable the Channel 1: Reset the CC1E Bit */
  TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
  
  /* Get the TIMx CCER register value */
  tmpccer = TIMx->CCER;
  /* Get the TIMx CR2 register value */
  tmpcr2 =  TIMx->CR2;
  
  /* Get the TIMx CCMR1 register value */
  tmpccmrx = TIMx->CCMR1;
    
  /* Reset the Output Compare Mode Bits */
  tmpccmrx &= (uint32_t)~TIM_CCMR1_OC1M;
  tmpccmrx &= (uint32_t)~TIM_CCMR1_CC1S;
  /* Select the Output Compare Mode */
  tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
  
  /* Reset the Output Polarity level */
  tmpccer &= (uint32_t)~TIM_CCER_CC1P;
  /* Set the Output Compare Polarity */
  tmpccer |= TIM_OCInitStruct->TIM_OCPolarity;
  
  /* Set the Output State */
  tmpccer |= TIM_OCInitStruct->TIM_OutputState;
    
  if((TIMx == TIM1) || (TIMx == TIM8) || (TIMx == TIM15) || (TIMx == TIM16) || (TIMx == TIM17))
  {
    assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
    assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
    assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
    
    /* Reset the Output N Polarity level */
    tmpccer &= (uint32_t)~TIM_CCER_CC1NP;
    /* Set the Output N Polarity */
    tmpccer |= TIM_OCInitStruct->TIM_OCNPolarity;
    /* Reset the Output N State */
    tmpccer &= (uint32_t)~TIM_CCER_CC1NE;
    
    /* Set the Output N State */
    tmpccer |= TIM_OCInitStruct->TIM_OutputNState;
    /* Reset the Output Compare and Output Compare N IDLE State */
    tmpcr2 &= (uint32_t)~TIM_CR2_OIS1;
    tmpcr2 &= (uint32_t)~TIM_CR2_OIS1N;
    /* Set the Output Idle state */
    tmpcr2 |= TIM_OCInitStruct->TIM_OCIdleState;
    /* Set the Output N Idle state */
    tmpcr2 |= TIM_OCInitStruct->TIM_OCNIdleState;
  }
  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;
  
  /* Write to TIMx CCMR1 */
  TIMx->CCMR1 = tmpccmrx;
  
  /* Set the Capture Compare Register value */
  TIMx->CCR1 = TIM_OCInitStruct->TIM_Pulse;
  
  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Initializes the TIMx Channel2 according to the specified parameters 
  *         in the TIM_OCInitStruct.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM peripheral.
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
  *         the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  uint32_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
   
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx)); 
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   

  /* Disable the Channel 2: Reset the CC2E Bit */
  TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
  
  /* Get the TIMx CCER register value */  
  tmpccer = TIMx->CCER;
  /* Get the TIMx CR2 register value */
  tmpcr2 =  TIMx->CR2;
  
  /* Get the TIMx CCMR1 register value */
  tmpccmrx = TIMx->CCMR1;
    
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
  tmpccmrx &= (uint32_t)~TIM_CCMR1_OC2M;
  tmpccmrx &= (uint32_t)~TIM_CCMR1_CC2S;
  
  /* Select the Output Compare Mode */
  tmpccmrx |= (uint32_t)(TIM_OCInitStruct->TIM_OCMode << 8);
  
  /* Reset the Output Polarity level */
  tmpccer &= (uint32_t)~TIM_CCER_CC2P;
  /* Set the Output Compare Polarity */
  tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCPolarity << 4);
  
  /* Set the Output State */
  tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OutputState << 4);
    
  if((TIMx == TIM1) || (TIMx == TIM8))
  {
    assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
    assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
    assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
    
    /* Reset the Output N Polarity level */
    tmpccer &= (uint32_t)~TIM_CCER_CC2NP;
    /* Set the Output N Polarity */
    tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCNPolarity << 4);
    /* Reset the Output N State */
    tmpccer &= (uint32_t)~TIM_CCER_CC2NE;
    
    /* Set the Output N State */
    tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OutputNState << 4);
    /* Reset the Output Compare and Output Compare N IDLE State */
    tmpcr2 &= (uint32_t)~TIM_CR2_OIS2;
    tmpcr2 &= (uint32_t)~TIM_CR2_OIS2N;
    /* Set the Output Idle state */
    tmpcr2 |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCIdleState << 2);
    /* Set the Output N Idle state */
    tmpcr2 |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCNIdleState << 2);
  }
  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;
  
  /* Write to TIMx CCMR1 */
  TIMx->CCMR1 = tmpccmrx;
  
  /* Set the Capture Compare Register value */
  TIMx->CCR2 = TIM_OCInitStruct->TIM_Pulse;
  
  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Initializes the TIMx Channel3 according to the specified parameters
  *         in the TIM_OCInitStruct.
  * @param  TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
  *         the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  uint32_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
   
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx)); 
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   

  /* Disable the Channel 3: Reset the CC2E Bit */
  TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
  
  /* Get the TIMx CCER register value */
  tmpccer = TIMx->CCER;
  /* Get the TIMx CR2 register value */
  tmpcr2 =  TIMx->CR2;
  
  /* Get the TIMx CCMR2 register value */
  tmpccmrx = TIMx->CCMR2;
    
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
  tmpccmrx &= (uint32_t)~TIM_CCMR2_OC3M;
  tmpccmrx &= (uint32_t)~TIM_CCMR2_CC3S;  
  /* Select the Output Compare Mode */
  tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
  
  /* Reset the Output Polarity level */
  tmpccer &= (uint32_t)~TIM_CCER_CC3P;
  /* Set the Output Compare Polarity */
  tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCPolarity << 8);
  
  /* Set the Output State */
  tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OutputState << 8);
    
  if((TIMx == TIM1) || (TIMx == TIM8))
  {
    assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
    assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
    assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
    
    /* Reset the Output N Polarity level */
    tmpccer &= (uint32_t)~TIM_CCER_CC3NP;
    /* Set the Output N Polarity */
    tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCNPolarity << 8);
    /* Reset the Output N State */
    tmpccer &= (uint32_t)~TIM_CCER_CC3NE;
    
    /* Set the Output N State */
    tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OutputNState << 8);
    /* Reset the Output Compare and Output Compare N IDLE State */
    tmpcr2 &= (uint32_t)~TIM_CR2_OIS3;
    tmpcr2 &= (uint32_t)~TIM_CR2_OIS3N;
    /* Set the Output Idle state */
    tmpcr2 |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCIdleState << 4);
    /* Set the Output N Idle state */
    tmpcr2 |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCNIdleState << 4);
  }
  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;
  
  /* Write to TIMx CCMR2 */
  TIMx->CCMR2 = tmpccmrx;
  
  /* Set the Capture Compare Register value */
  TIMx->CCR3 = TIM_OCInitStruct->TIM_Pulse;
  
  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Initializes the TIMx Channel4 according to the specified parameters
  *         in the TIM_OCInitStruct.
  * @param  TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
  *         the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  uint32_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
   
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx)); 
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   

  /* Disable the Channel 4: Reset the CC4E Bit */
  TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
  
  /* Get the TIMx CCER register value */
  tmpccer = TIMx->CCER;
  /* Get the TIMx CR2 register value */
  tmpcr2 =  TIMx->CR2;
  
  /* Get the TIMx CCMR2 register value */
  tmpccmrx = TIMx->CCMR2;
    
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
  tmpccmrx &= (uint32_t)~TIM_CCMR2_OC4M;
  tmpccmrx &= (uint32_t)~TIM_CCMR2_CC4S;
  
  /* Select the Output Compare Mode */
  tmpccmrx |= (uint32_t)(TIM_OCInitStruct->TIM_OCMode << 8);
  
  /* Reset the Output Polarity level */
  tmpccer &= (uint32_t)~TIM_CCER_CC4P;
  /* Set the Output Compare Polarity */
  tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCPolarity << 12);
  
  /* Set the Output State */
  tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OutputState << 12);
  
  if((TIMx == TIM1) || (TIMx == TIM8))
  {
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
    /* Reset the Output Compare IDLE State */
    tmpcr2 &=(uint32_t) ~TIM_CR2_OIS4;
    /* Set the Output Idle state */
    tmpcr2 |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCIdleState << 6);
  }
  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;
  
  /* Write to TIMx CCMR2 */  
  TIMx->CCMR2 = tmpccmrx;
    
  /* Set the Capture Compare Register value */
  TIMx->CCR4 = TIM_OCInitStruct->TIM_Pulse;
  
  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Initializes the TIMx Channel5 according to the specified parameters
  *         in the TIM_OCInitStruct.
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
  *         the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_OC5Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  uint32_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
   
  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx)); 
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   

  /* Disable the Channel 5: Reset the CC5E Bit */
  TIMx->CCER &= (uint32_t)~TIM_CCER_CC5E; /* to be verified*/
  
  /* Get the TIMx CCER register value */
  tmpccer = TIMx->CCER;
  /* Get the TIMx CR2 register value */
  tmpcr2 =  TIMx->CR2;
  
  /* Get the TIMx CCMR3 register value */
  tmpccmrx = TIMx->CCMR3;
  
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
  tmpccmrx &= (uint32_t)~TIM_CCMR3_OC5M;
  
  /* Select the Output Compare Mode */
  tmpccmrx |= (uint32_t)(TIM_OCInitStruct->TIM_OCMode);
  
  /* Reset the Output Polarity level */
  tmpccer &= (uint32_t)~TIM_CCER_CC5P;
  /* Set the Output Compare Polarity */
  tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCPolarity << 16);

  /* Set the Output State */
  tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OutputState << 16);
  
  if((TIMx == TIM1) || (TIMx == TIM8))
  {
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
    /* Reset the Output Compare IDLE State */
    tmpcr2 &=(uint32_t) ~TIM_CR2_OIS5;
    /* Set the Output Idle state */
    tmpcr2 |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCIdleState << 16);
  }
  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;
  
  /* Write to TIMx CCMR2 */  
  TIMx->CCMR3 = tmpccmrx;
    
  /* Set the Capture Compare Register value */
  TIMx->CCR5 = TIM_OCInitStruct->TIM_Pulse;
  
  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Initializes the TIMx Channel6 according to the specified parameters
  *         in the TIM_OCInitStruct.
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
  *         the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_OC6Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  uint32_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
   
  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx)); 
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   

  /* Disable the Channel 5: Reset the CC5E Bit */
  TIMx->CCER &= (uint32_t)~TIM_CCER_CC6E; /* to be verified*/
  
  /* Get the TIMx CCER register value */
  tmpccer = TIMx->CCER;
  /* Get the TIMx CR2 register value */
  tmpcr2 =  TIMx->CR2;
  
  /* Get the TIMx CCMR3 register value */
  tmpccmrx = TIMx->CCMR3;
  
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
  tmpccmrx &= (uint32_t)~TIM_CCMR3_OC6M;
  
  /* Select the Output Compare Mode */
  tmpccmrx |= (uint32_t)(TIM_OCInitStruct->TIM_OCMode << 8);
  
  /* Reset the Output Polarity level */
  tmpccer &= (uint32_t)~TIM_CCER_CC6P;
  /* Set the Output Compare Polarity */
  tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCPolarity << 20);

  /* Set the Output State */
  tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OutputState << 20);
  
  if((TIMx == TIM1) || (TIMx == TIM8))
  {
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
    /* Reset the Output Compare IDLE State */
    tmpcr2 &=(uint32_t) ~TIM_CR2_OIS6;
    /* Set the Output Idle state */
    tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 18);
  }
  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;
  
  /* Write to TIMx CCMR2 */  
  TIMx->CCMR3 = tmpccmrx;
    
  /* Set the Capture Compare Register value */
  TIMx->CCR6 = TIM_OCInitStruct->TIM_Pulse;
  
  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Selects the TIM Group Channel 5 and Channel 1, 
            OC1REFC is the logical AND of OC1REFC and OC5REF.
  * @param  TIMx: where x can be  1 or 8 to select the TIMx peripheral
  * @param  NewState: new state of the Commutation event.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_SelectGC5C1(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Set the GC5C1 Bit */
    TIMx->CCR5 |= TIM_CCR5_GC5C1;
  }
  else
  {
    /* Reset the GC5C1 Bit */
    TIMx->CCR5 &= (uint32_t)~TIM_CCR5_GC5C1;
  }
}

/**
  * @brief  Selects the TIM Group Channel 5 and Channel 2, 
            OC2REFC is the logical AND of OC2REFC and OC5REF.
  * @param  TIMx: where x can be  1 or 8 to select the TIMx peripheral
  * @param  NewState: new state of the Commutation event.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_SelectGC5C2(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Set the GC5C2 Bit */
    TIMx->CCR5 |= TIM_CCR5_GC5C2;
  }
  else
  {
    /* Reset the GC5C2 Bit */
    TIMx->CCR5 &= (uint32_t)~TIM_CCR5_GC5C2;
  }
}


/**
  * @brief  Selects the TIM Group Channel 5 and Channel 3, 
            OC3REFC is the logical AND of OC3REFC and OC5REF.
  * @param  TIMx: where x can be  1 or 8 to select the TIMx peripheral
  * @param  NewState: new state of the Commutation event.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_SelectGC5C3(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Set the GC5C3 Bit */
    TIMx->CCR5 |= TIM_CCR5_GC5C3;
  }
  else
  {
    /* Reset the GC5C3 Bit */
    TIMx->CCR5 &= (uint32_t)~TIM_CCR5_GC5C3;
  }
}

/**
  * @brief  Fills each TIM_OCInitStruct member with its default value.
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure which will
  *         be initialized.
  * @retval None
  */
void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  /* Set the default configuration */
  TIM_OCInitStruct->TIM_OCMode = TIM_OCMode_Timing;
  TIM_OCInitStruct->TIM_OutputState = TIM_OutputState_Disable;
  TIM_OCInitStruct->TIM_OutputNState = TIM_OutputNState_Disable;
  TIM_OCInitStruct->TIM_Pulse = 0x00000000;
  TIM_OCInitStruct->TIM_OCPolarity = TIM_OCPolarity_High;
  TIM_OCInitStruct->TIM_OCNPolarity = TIM_OCPolarity_High;
  TIM_OCInitStruct->TIM_OCIdleState = TIM_OCIdleState_Reset;
  TIM_OCInitStruct->TIM_OCNIdleState = TIM_OCNIdleState_Reset;
}

/**
  * @brief  Selects the TIM Output Compare Mode.
  * @note   This function disables the selected channel before changing the Output
  *         Compare Mode. If needed, user has to enable this channel using
  *         TIM_CCxCmd() and TIM_CCxNCmd() functions.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_Channel: specifies the TIM Channel
  *          This parameter can be one of the following values:
  *            @arg TIM_Channel_1: TIM Channel 1
  *            @arg TIM_Channel_2: TIM Channel 2
  *            @arg TIM_Channel_3: TIM Channel 3
  *            @arg TIM_Channel_4: TIM Channel 4
  * @param  TIM_OCMode: specifies the TIM Output Compare Mode.
  *           This parameter can be one of the following values:
  *            @arg TIM_OCMode_Timing
  *            @arg TIM_OCMode_Active
  *            @arg TIM_OCMode_Toggle
  *            @arg TIM_OCMode_PWM1
  *            @arg TIM_OCMode_PWM2
  *            @arg TIM_ForcedAction_Active
  *            @arg TIM_ForcedAction_InActive
  *            @arg TIM_OCMode_Retrigerrable_OPM1
  *            @arg TIM_OCMode_Retrigerrable_OPM2
  *            @arg TIM_OCMode_Combined_PWM1
  *            @arg TIM_OCMode_Combined_PWM2
  *            @arg TIM_OCMode_Asymmetric_PWM1
  *            @arg TIM_OCMode_Asymmetric_PWM2            
  * @retval None
  */
void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint32_t TIM_OCMode)
{
  uint32_t tmp = 0;
  uint16_t tmp1 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
  assert_param(IS_TIM_CHANNEL(TIM_Channel));
  assert_param(IS_TIM_OCM(TIM_OCMode));

  tmp = (uint32_t) TIMx;
  tmp += CCMR_OFFSET;

  tmp1 = CCER_CCE_SET << (uint16_t)TIM_Channel;

  /* Disable the Channel: Reset the CCxE Bit */
  TIMx->CCER &= (uint16_t) ~tmp1;

  if((TIM_Channel == TIM_Channel_1) ||(TIM_Channel == TIM_Channel_3))
  {
    tmp += (TIM_Channel>>1);

    /* Reset the OCxM bits in the CCMRx register */
    *(__IO uint32_t *) tmp &= CCMR_OC13M_MASK;
   
    /* Configure the OCxM bits in the CCMRx register */
    *(__IO uint32_t *) tmp |= TIM_OCMode;
  }
  else
  {
    tmp += (uint32_t)(TIM_Channel - (uint32_t)4)>> (uint32_t)1;

    /* Reset the OCxM bits in the CCMRx register */
    *(__IO uint32_t *) tmp &= CCMR_OC24M_MASK;
    
    /* Configure the OCxM bits in the CCMRx register */
    *(__IO uint32_t *) tmp |= (uint32_t)(TIM_OCMode << 8);
  }
}

/**
  * @brief  Sets the TIMx Capture Compare1 Register value
  * @param  TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  Compare1: specifies the Capture Compare1 register new value.
  * @retval None
  */
void TIM_SetCompare1(TIM_TypeDef* TIMx, uint32_t Compare1)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));

  /* Set the Capture Compare1 Register value */
  TIMx->CCR1 = Compare1;
}

/**
  * @brief  Sets the TIMx Capture Compare2 Register value
  * @param  TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM 
  *         peripheral.
  * @param  Compare2: specifies the Capture Compare2 register new value.
  * @retval None
  */
void TIM_SetCompare2(TIM_TypeDef* TIMx, uint32_t Compare2)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));

  /* Set the Capture Compare2 Register value */
  TIMx->CCR2 = Compare2;
}

/**
  * @brief  Sets the TIMx Capture Compare3 Register value
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  Compare3: specifies the Capture Compare3 register new value.
  * @retval None
  */
void TIM_SetCompare3(TIM_TypeDef* TIMx, uint32_t Compare3)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));

  /* Set the Capture Compare3 Register value */
  TIMx->CCR3 = Compare3;
}

/**
  * @brief  Sets the TIMx Capture Compare4 Register value
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  Compare4: specifies the Capture Compare4 register new value.
  * @retval None
  */
void TIM_SetCompare4(TIM_TypeDef* TIMx, uint32_t Compare4)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));

  /* Set the Capture Compare4 Register value */
  TIMx->CCR4 = Compare4;
}

/**
  * @brief  Sets the TIMx Capture Compare5 Register value
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
  * @param  Compare5: specifies the Capture Compare5 register new value.
  * @retval None
  */
void TIM_SetCompare5(TIM_TypeDef* TIMx, uint32_t Compare5)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));

  /* Set the Capture Compare5 Register value */
  TIMx->CCR5 = Compare5;
}

/**
  * @brief  Sets the TIMx Capture Compare6 Register value
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
  * @param  Compare6: specifies the Capture Compare5 register new value.
  * @retval None
  */
void TIM_SetCompare6(TIM_TypeDef* TIMx, uint32_t Compare6)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));

  /* Set the Capture Compare6 Register value */
  TIMx->CCR6 = Compare6;
}

/**
  * @brief  Forces the TIMx output 1 waveform to active or inactive level.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
  *          This parameter can be one of the following values:
  *            @arg TIM_ForcedAction_Active: Force active level on OC1REF
  *            @arg TIM_ForcedAction_InActive: Force inactive level on OC1REF.
  * @retval None
  */
void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
{
  uint32_t tmpccmr1 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
  tmpccmr1 = TIMx->CCMR1;

  /* Reset the OC1M Bits */
  tmpccmr1 &= (uint32_t)~TIM_CCMR1_OC1M;

  /* Configure The Forced output Mode */
  tmpccmr1 |= TIM_ForcedAction;

  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Forces the TIMx output 2 waveform to active or inactive level.
  * @param  TIMx: where x can be   1, 2, 3, 4, 8 or 15 to select the TIM 
  *         peripheral.
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
  *          This parameter can be one of the following values:
  *            @arg TIM_ForcedAction_Active: Force active level on OC2REF
  *            @arg TIM_ForcedAction_InActive: Force inactive level on OC2REF.
  * @retval None
  */
void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
{
  uint32_t tmpccmr1 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
  tmpccmr1 = TIMx->CCMR1;

  /* Reset the OC2M Bits */
  tmpccmr1 &= (uint32_t)~TIM_CCMR1_OC2M;

  /* Configure The Forced output Mode */
  tmpccmr1 |= ((uint32_t)TIM_ForcedAction << 8);

  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Forces the TIMx output 3 waveform to active or inactive level.
  * @param  TIMx: where x can be  1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
  *          This parameter can be one of the following values:
  *            @arg TIM_ForcedAction_Active: Force active level on OC3REF
  *            @arg TIM_ForcedAction_InActive: Force inactive level on OC3REF.
  * @retval None
  */
void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
{
  uint32_t tmpccmr2 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));

  tmpccmr2 = TIMx->CCMR2;

  /* Reset the OC1M Bits */
  tmpccmr2 &= (uint32_t)~TIM_CCMR2_OC3M;

  /* Configure The Forced output Mode */
  tmpccmr2 |= TIM_ForcedAction;

  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Forces the TIMx output 4 waveform to active or inactive level.
  * @param  TIMx: where x can be  1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
  *          This parameter can be one of the following values:
  *            @arg TIM_ForcedAction_Active: Force active level on OC4REF
  *            @arg TIM_ForcedAction_InActive: Force inactive level on OC4REF.
  * @retval None
  */
void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
{
  uint32_t tmpccmr2 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
  tmpccmr2 = TIMx->CCMR2;

  /* Reset the OC2M Bits */
  tmpccmr2 &= (uint32_t)~TIM_CCMR2_OC4M;

  /* Configure The Forced output Mode */
  tmpccmr2 |= ((uint32_t)TIM_ForcedAction << 8);

  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Forces the TIMx output 5 waveform to active or inactive level.
  * @param  TIMx: where x can be  1 or 8 to select the TIM peripheral.
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
  *          This parameter can be one of the following values:
  *            @arg TIM_ForcedAction_Active: Force active level on OC5REF
  *            @arg TIM_ForcedAction_InActive: Force inactive level on OC5REF.
  * @retval None
  */
void TIM_ForcedOC5Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
{
  uint32_t tmpccmr3 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
  tmpccmr3 = TIMx->CCMR3;

  /* Reset the OC5M Bits */
  tmpccmr3 &= (uint32_t)~TIM_CCMR3_OC5M;

  /* Configure The Forced output Mode */
  tmpccmr3 |= (uint32_t)(TIM_ForcedAction);

  /* Write to TIMx CCMR3 register */
  TIMx->CCMR3 = tmpccmr3;
}

/**
  * @brief  Forces the TIMx output 6 waveform to active or inactive level.
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
  *          This parameter can be one of the following values:
  *            @arg TIM_ForcedAction_Active: Force active level on OC5REF
  *            @arg TIM_ForcedAction_InActive: Force inactive level on OC5REF.
  * @retval None
  */
void TIM_ForcedOC6Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
{
  uint32_t tmpccmr3 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
  tmpccmr3 = TIMx->CCMR3;

  /* Reset the OC6M Bits */
  tmpccmr3 &= (uint32_t)~TIM_CCMR3_OC6M;

  /* Configure The Forced output Mode */
  tmpccmr3 |= ((uint32_t)TIM_ForcedAction << 8);

  /* Write to TIMx CCMR3 register */
  TIMx->CCMR3 = tmpccmr3;
}

/**
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR1.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
  *          This parameter can be one of the following values:
  *            @arg TIM_OCPreload_Enable
  *            @arg TIM_OCPreload_Disable
  * @retval None
  */
void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
{
  uint32_t tmpccmr1 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));

  tmpccmr1 = TIMx->CCMR1;

  /* Reset the OC1PE Bit */
  tmpccmr1 &= (uint32_t)(~TIM_CCMR1_OC1PE);

  /* Enable or Disable the Output Compare Preload feature */
  tmpccmr1 |= TIM_OCPreload;

  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR2.
  * @param  TIMx: where x can be  1, 2, 3, 4, 8 or 15 to select the TIM 
  *         peripheral.
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
  *          This parameter can be one of the following values:
  *            @arg TIM_OCPreload_Enable
  *            @arg TIM_OCPreload_Disable
  * @retval None
  */
void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
{
  uint32_t tmpccmr1 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));

  tmpccmr1 = TIMx->CCMR1;

  /* Reset the OC2PE Bit */
  tmpccmr1 &= (uint32_t)(~TIM_CCMR1_OC2PE);

  /* Enable or Disable the Output Compare Preload feature */
  tmpccmr1 |= ((uint32_t)TIM_OCPreload << 8);

  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR3.
  * @param  TIMx: where x can be  1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
  *          This parameter can be one of the following values:
  *            @arg TIM_OCPreload_Enable
  *            @arg TIM_OCPreload_Disable
  * @retval None
  */
void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
{
  uint32_t tmpccmr2 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));

  tmpccmr2 = TIMx->CCMR2;

  /* Reset the OC3PE Bit */
  tmpccmr2 &= (uint32_t)(~TIM_CCMR2_OC3PE);

  /* Enable or Disable the Output Compare Preload feature */
  tmpccmr2 |= TIM_OCPreload;

  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR4.
  * @param  TIMx: where x can be  1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
  *          This parameter can be one of the following values:
  *            @arg TIM_OCPreload_Enable
  *            @arg TIM_OCPreload_Disable
  * @retval None
  */
void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
{
  uint32_t tmpccmr2 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));

  tmpccmr2 = TIMx->CCMR2;

  /* Reset the OC4PE Bit */
  tmpccmr2 &= (uint32_t)(~TIM_CCMR2_OC4PE);

  /* Enable or Disable the Output Compare Preload feature */
  tmpccmr2 |= ((uint32_t)TIM_OCPreload << 8);

  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR5.
  * @param  TIMx: where x can be  1 or 8 to select the TIM peripheral.
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
  *          This parameter can be one of the following values:
  *            @arg TIM_OCPreload_Enable
  *            @arg TIM_OCPreload_Disable
  * @retval None
  */
void TIM_OC5PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
{
  uint32_t tmpccmr3 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));

  tmpccmr3 = TIMx->CCMR3;

  /* Reset the OC5PE Bit */
  tmpccmr3 &= (uint32_t)(~TIM_CCMR3_OC5PE);

  /* Enable or Disable the Output Compare Preload feature */
  tmpccmr3 |= (uint32_t)(TIM_OCPreload);

  /* Write to TIMx CCMR3 register */
  TIMx->CCMR3 = tmpccmr3;
}

/**
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR6.
  * @param  TIMx: where x can be  1 or 8 to select the TIM peripheral.
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
  *          This parameter can be one of the following values:
  *            @arg TIM_OCPreload_Enable
  *            @arg TIM_OCPreload_Disable
  * @retval None
  */
void TIM_OC6PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
{
  uint32_t tmpccmr3 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));

  tmpccmr3 = TIMx->CCMR3;

  /* Reset the OC5PE Bit */
  tmpccmr3 &= (uint32_t)(~TIM_CCMR3_OC6PE);

  /* Enable or Disable the Output Compare Preload feature */
  tmpccmr3 |= ((uint32_t)TIM_OCPreload << 8);

  /* Write to TIMx CCMR3 register */
  TIMx->CCMR3 = tmpccmr3;
}

/**
  * @brief  Configures the TIMx Output Compare 1 Fast feature.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
  *          This parameter can be one of the following values:
  *            @arg TIM_OCFast_Enable: TIM output compare fast enable
  *            @arg TIM_OCFast_Disable: TIM output compare fast disable
  * @retval None
  */
void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
{
  uint32_t tmpccmr1 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
  assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));

  /* Get the TIMx CCMR1 register value */
  tmpccmr1 = TIMx->CCMR1;

  /* Reset the OC1FE Bit */
  tmpccmr1 &= (uint32_t)~TIM_CCMR1_OC1FE;

  /* Enable or Disable the Output Compare Fast Bit */
  tmpccmr1 |= TIM_OCFast;

  /* Write to TIMx CCMR1 */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Configures the TIMx Output Compare 2 Fast feature.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM 
  *         peripheral.
  * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
  *          This parameter can be one of the following values:
  *            @arg TIM_OCFast_Enable: TIM output compare fast enable
  *            @arg TIM_OCFast_Disable: TIM output compare fast disable
  * @retval None
  */
void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
{
  uint32_t tmpccmr1 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));

  /* Get the TIMx CCMR1 register value */
  tmpccmr1 = TIMx->CCMR1;

  /* Reset the OC2FE Bit */
  tmpccmr1 &= (uint32_t)(~TIM_CCMR1_OC2FE);

  /* Enable or Disable the Output Compare Fast Bit */
  tmpccmr1 |= ((uint32_t)TIM_OCFast << 8);

  /* Write to TIMx CCMR1 */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Configures the TIMx Output Compare 3 Fast feature.
  * @param  TIMx: where x can be  1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
  *          This parameter can be one of the following values:
  *            @arg TIM_OCFast_Enable: TIM output compare fast enable
  *            @arg TIM_OCFast_Disable: TIM output compare fast disable
  * @retval None
  */
void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
{
  uint32_t tmpccmr2 = 0;
  
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));

  /* Get the TIMx CCMR2 register value */
  tmpccmr2 = TIMx->CCMR2;

  /* Reset the OC3FE Bit */
  tmpccmr2 &= (uint32_t)~TIM_CCMR2_OC3FE;

  /* Enable or Disable the Output Compare Fast Bit */
  tmpccmr2 |= TIM_OCFast;

  /* Write to TIMx CCMR2 */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Configures the TIMx Output Compare 4 Fast feature.
  * @param  TIMx: where x can be  1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
  *          This parameter can be one of the following values:
  *            @arg TIM_OCFast_Enable: TIM output compare fast enable
  *            @arg TIM_OCFast_Disable: TIM output compare fast disable
  * @retval None
  */
void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
{
  uint32_t tmpccmr2 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));

  /* Get the TIMx CCMR2 register value */
  tmpccmr2 = TIMx->CCMR2;

  /* Reset the OC4FE Bit */
  tmpccmr2 &= (uint32_t)(~TIM_CCMR2_OC4FE);

  /* Enable or Disable the Output Compare Fast Bit */
  tmpccmr2 |= ((uint32_t)TIM_OCFast << 8);

  /* Write to TIMx CCMR2 */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Clears or safeguards the OCREF1 signal on an external event
  * @param  TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
  *          This parameter can be one of the following values:
  *            @arg TIM_OCClear_Enable: TIM Output clear enable
  *            @arg TIM_OCClear_Disable: TIM Output clear disable
  * @retval None
  */
void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
{
  uint32_t tmpccmr1 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));

  tmpccmr1 = TIMx->CCMR1;

  /* Reset the OC1CE Bit */
  tmpccmr1 &= (uint32_t)~TIM_CCMR1_OC1CE;

  /* Enable or Disable the Output Compare Clear Bit */
  tmpccmr1 |= TIM_OCClear;

  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Clears or safeguards the OCREF2 signal on an external event
  * @param  TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM 
  *         peripheral.
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
  *          This parameter can be one of the following values:
  *            @arg TIM_OCClear_Enable: TIM Output clear enable
  *            @arg TIM_OCClear_Disable: TIM Output clear disable
  * @retval None
  */
void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
{
  uint32_t tmpccmr1 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));

  tmpccmr1 = TIMx->CCMR1;

  /* Reset the OC2CE Bit */
  tmpccmr1 &= (uint32_t)~TIM_CCMR1_OC2CE;

  /* Enable or Disable the Output Compare Clear Bit */
  tmpccmr1 |= ((uint32_t)TIM_OCClear << 8);

  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Clears or safeguards the OCREF3 signal on an external event
  * @param  TIMx: where x can be  1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
  *          This parameter can be one of the following values:
  *            @arg TIM_OCClear_Enable: TIM Output clear enable
  *            @arg TIM_OCClear_Disable: TIM Output clear disable
  * @retval None
  */
void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
{
  uint32_t tmpccmr2 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));

  tmpccmr2 = TIMx->CCMR2;

  /* Reset the OC3CE Bit */
  tmpccmr2 &= (uint32_t)~TIM_CCMR2_OC3CE;

  /* Enable or Disable the Output Compare Clear Bit */
  tmpccmr2 |= TIM_OCClear;

  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Clears or safeguards the OCREF4 signal on an external event
  * @param  TIMx: where x can be  1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
  *          This parameter can be one of the following values:
  *            @arg TIM_OCClear_Enable: TIM Output clear enable
  *            @arg TIM_OCClear_Disable: TIM Output clear disable
  * @retval None
  */
void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
{
  uint32_t tmpccmr2 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));

  tmpccmr2 = TIMx->CCMR2;

  /* Reset the OC4CE Bit */
  tmpccmr2 &= (uint32_t)~TIM_CCMR2_OC4CE;

  /* Enable or Disable the Output Compare Clear Bit */
  tmpccmr2 |= ((uint32_t)TIM_OCClear << 8);

  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Clears or safeguards the OCREF5 signal on an external event
  * @param  TIMx: where x can be  1 or 8 to select the TIM peripheral.
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
  *          This parameter can be one of the following values:
  *            @arg TIM_OCClear_Enable: TIM Output clear enable
  *            @arg TIM_OCClear_Disable: TIM Output clear disable
  * @retval None
  */
void TIM_ClearOC5Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
{
  uint32_t tmpccmr3 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));

  tmpccmr3 = TIMx->CCMR3;

  /* Reset the OC5CE Bit */
  tmpccmr3 &= (uint32_t)~TIM_CCMR3_OC5CE;

  /* Enable or Disable the Output Compare Clear Bit */
  tmpccmr3 |= (uint32_t)(TIM_OCClear);

  /* Write to TIMx CCMR3 register */
  TIMx->CCMR3 = tmpccmr3;
}

/**
  * @brief  Clears or safeguards the OCREF6 signal on an external event
  * @param  TIMx: where x can be  1 or 8 to select the TIM peripheral.
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
  *          This parameter can be one of the following values:
  *            @arg TIM_OCClear_Enable: TIM Output clear enable
  *            @arg TIM_OCClear_Disable: TIM Output clear disable
  * @retval None
  */
void TIM_ClearOC6Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
{
  uint32_t tmpccmr3 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));

  tmpccmr3 = TIMx->CCMR3;

  /* Reset the OC5CE Bit */
  tmpccmr3 &= (uint32_t)~TIM_CCMR3_OC6CE;

  /* Enable or Disable the Output Compare Clear Bit */
  tmpccmr3 |= ((uint32_t)TIM_OCClear << 8);

  /* Write to TIMx CCMR3 register */
  TIMx->CCMR3 = tmpccmr3;
}

/**
  * @brief  Selects the OCReference Clear source.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_OCReferenceClear: specifies the OCReference Clear source.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCReferenceClear_ETRF: The internal OCreference clear input is connected to ETRF.
  *     @arg TIM_OCReferenceClear_OCREFCLR: The internal OCreference clear input is connected to OCREF_CLR input.  
  * @retval None
  */
void TIM_SelectOCREFClear(TIM_TypeDef* TIMx, uint16_t TIM_OCReferenceClear)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(TIM_OCREFERENCECECLEAR_SOURCE(TIM_OCReferenceClear));

  /* Set the TIM_OCReferenceClear source */
  TIMx->SMCR &=  (uint16_t)~((uint16_t)TIM_SMCR_OCCS);
  TIMx->SMCR |=  TIM_OCReferenceClear;
}

/**
  * @brief  Configures the TIMx channel 1 polarity.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_OCPolarity: specifies the OC1 Polarity
  *          This parameter can be one of the following values:
  *            @arg TIM_OCPolarity_High: Output Compare active high
  *            @arg TIM_OCPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
{
  uint32_t tmpccer = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));

  tmpccer = TIMx->CCER;

  /* Set or Reset the CC1P Bit */
  tmpccer &= (uint32_t)(~TIM_CCER_CC1P);
  tmpccer |= TIM_OCPolarity;

  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx Channel 1N polarity.
  * @param  TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_OCNPolarity: specifies the OC1N Polarity
  *          This parameter can be one of the following values:
  *            @arg TIM_OCNPolarity_High: Output Compare active high
  *            @arg TIM_OCNPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC1NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
{
  uint32_t tmpccer = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
   
  tmpccer = TIMx->CCER;

  /* Set or Reset the CC1NP Bit */
  tmpccer &= (uint32_t)~TIM_CCER_CC1NP;
  tmpccer |= TIM_OCNPolarity;

  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx channel 2 polarity.
  * @param  TIMx: where x can be 1, 2, 3, 4 8 or 15 to select the TIM 
  *         peripheral.
  * @param  TIM_OCPolarity: specifies the OC2 Polarity
  *          This parameter can be one of the following values:
  *            @arg TIM_OCPolarity_High: Output Compare active high
  *            @arg TIM_OCPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
{
  uint32_t tmpccer = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));

  tmpccer = TIMx->CCER;

  /* Set or Reset the CC2P Bit */
  tmpccer &= (uint32_t)(~TIM_CCER_CC2P);
  tmpccer |= ((uint32_t)TIM_OCPolarity << 4);

  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx Channel 2N polarity.
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
  * @param  TIM_OCNPolarity: specifies the OC2N Polarity
  *          This parameter can be one of the following values:
  *            @arg TIM_OCNPolarity_High: Output Compare active high
  *            @arg TIM_OCNPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC2NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
{
  uint32_t tmpccer = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
  
  tmpccer = TIMx->CCER;

  /* Set or Reset the CC2NP Bit */
  tmpccer &= (uint32_t)~TIM_CCER_CC2NP;
  tmpccer |= ((uint32_t)TIM_OCNPolarity << 4);

  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx channel 3 polarity.
  * @param  TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_OCPolarity: specifies the OC3 Polarity
  *          This parameter can be one of the following values:
  *            @arg TIM_OCPolarity_High: Output Compare active high
  *            @arg TIM_OCPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
{
  uint32_t tmpccer = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));

  tmpccer = TIMx->CCER;

  /* Set or Reset the CC3P Bit */
  tmpccer &= (uint32_t)~TIM_CCER_CC3P;
  tmpccer |= ((uint32_t)TIM_OCPolarity << 8);

  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx Channel 3N polarity.
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
  * @param  TIM_OCNPolarity: specifies the OC3N Polarity
  *          This parameter can be one of the following values:
  *            @arg TIM_OCNPolarity_High: Output Compare active high
  *            @arg TIM_OCNPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC3NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
{
  uint32_t tmpccer = 0;
 
  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
    
  tmpccer = TIMx->CCER;

  /* Set or Reset the CC3NP Bit */
  tmpccer &= (uint32_t)~TIM_CCER_CC3NP;
  tmpccer |= ((uint32_t)TIM_OCNPolarity << 8);

  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx channel 4 polarity.
  * @param  TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_OCPolarity: specifies the OC4 Polarity
  *          This parameter can be one of the following values:
  *            @arg TIM_OCPolarity_High: Output Compare active high
  *            @arg TIM_OCPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
{
  uint32_t tmpccer = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));

  tmpccer = TIMx->CCER;

  /* Set or Reset the CC4P Bit */
  tmpccer &= (uint32_t)~TIM_CCER_CC4P;
  tmpccer |= ((uint32_t)TIM_OCPolarity << 12);

  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx channel 5 polarity.
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
  * @param  TIM_OCPolarity: specifies the OC5 Polarity
  *          This parameter can be one of the following values:
  *            @arg TIM_OCPolarity_High: Output Compare active high
  *            @arg TIM_OCPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC5PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
{
  uint32_t tmpccer = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));

  tmpccer = TIMx->CCER;

  /* Set or Reset the CC5P Bit */
  tmpccer &= (uint32_t)~TIM_CCER_CC5P;
  tmpccer |= ((uint32_t)TIM_OCPolarity << 16);

  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx channel 6 polarity.
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
  * @param  TIM_OCPolarity: specifies the OC6 Polarity
  *          This parameter can be one of the following values:
  *            @arg TIM_OCPolarity_High: Output Compare active high
  *            @arg TIM_OCPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC6PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
{
  uint32_t tmpccer = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));

  tmpccer = TIMx->CCER;

  /* Set or Reset the CC6P Bit */
  tmpccer &= (uint32_t)~TIM_CCER_CC6P;
  tmpccer |= ((uint32_t)TIM_OCPolarity << 20);

  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Enables or disables the TIM Capture Compare Channel x.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_Channel: specifies the TIM Channel
  *          This parameter can be one of the following values:
  *            @arg TIM_Channel_1: TIM Channel 1
  *            @arg TIM_Channel_2: TIM Channel 2
  *            @arg TIM_Channel_3: TIM Channel 3
  *            @arg TIM_Channel_4: TIM Channel 4
  *            @arg TIM_Channel_5: TIM Channel 5
  *            @arg TIM_Channel_6: TIM Channel 6    
  * @param  TIM_CCx: specifies the TIM Channel CCxE bit new state.
  *          This parameter can be: TIM_CCx_Enable or TIM_CCx_Disable. 
  * @retval None
  */
void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx)
{
  uint32_t tmp = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx)); 
  assert_param(IS_TIM_CHANNEL(TIM_Channel));
  assert_param(IS_TIM_CCX(TIM_CCx));

  tmp = (uint32_t)CCER_CCE_SET << (uint32_t)TIM_Channel;

  /* Reset the CCxE Bit */
  TIMx->CCER &= (uint32_t)(~tmp);

  /* Set or reset the CCxE Bit */ 
  TIMx->CCER |=  ((uint32_t)TIM_CCx << (uint32_t)TIM_Channel);
}

/**
  * @brief  Enables or disables the TIM Capture Compare Channel xN.
  * @param  TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_Channel: specifies the TIM Channel
  *          This parameter can be one of the following values:
  *            @arg TIM_Channel_1: TIM Channel 1
  *            @arg TIM_Channel_2: TIM Channel 2
  *            @arg TIM_Channel_3: TIM Channel 3
  * @param  TIM_CCxN: specifies the TIM Channel CCxNE bit new state.
  *          This parameter can be: TIM_CCxN_Enable or TIM_CCxN_Disable. 
  * @retval None
  */
void TIM_CCxNCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCxN)
{
  uint32_t tmp = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_COMPLEMENTARY_CHANNEL(TIM_Channel));
  assert_param(IS_TIM_CCXN(TIM_CCxN));

  tmp = (uint32_t)CCER_CCNE_SET << (uint32_t)TIM_Channel;

  /* Reset the CCxNE Bit */
  TIMx->CCER &= (uint32_t) ~tmp;

  /* Set or reset the CCxNE Bit */ 
  TIMx->CCER |=  ((uint32_t)TIM_CCxN << (uint32_t)TIM_Channel);
}
/**
  * @}
  */

/** @defgroup TIM_Group3 Input Capture management functions
 *  @brief    Input Capture management functions 
 *
@verbatim   
 ===============================================================================
               ##### Input Capture management functions #####
 ===============================================================================  
         
  *** TIM Driver: how to use it in Input Capture Mode ***
  =======================================================
  [..] 
  To use the Timer in Input Capture mode, the following steps are mandatory:
       
      (#) Enable TIM clock using RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) function
       
      (#) Configure the TIM pins by configuring the corresponding GPIO pins
       
      (#) Configure the Time base unit as described in the first part of this driver,
          if needed, else the Timer will run with the default configuration:
          (++) Autoreload value = 0xFFFF
          (++) Prescaler value = 0x0000
          (++) Counter mode = Up counting
          (++) Clock Division = TIM_CKD_DIV1
          
      (#) Fill the TIM_ICInitStruct with the desired parameters including:
          (++) TIM Channel: TIM_Channel
          (++) TIM Input Capture polarity: TIM_ICPolarity
          (++) TIM Input Capture selection: TIM_ICSelection
          (++) TIM Input Capture Prescaler: TIM_ICPrescaler
          (++) TIM Input CApture filter value: TIM_ICFilter
       
      (#) Call TIM_ICInit(TIMx, &TIM_ICInitStruct) to configure the desired channel with the 
          corresponding configuration and to measure only frequency or duty cycle of the input signal,
          or,
          Call TIM_PWMIConfig(TIMx, &TIM_ICInitStruct) to configure the desired channels with the 
          corresponding configuration and to measure the frequency and the duty cycle of the input signal
          
      (#) Enable the NVIC or the DMA to read the measured frequency. 
          
      (#) Enable the corresponding interrupt (or DMA request) to read the Captured value,
          using the function TIM_ITConfig(TIMx, TIM_IT_CCx) (or TIM_DMA_Cmd(TIMx, TIM_DMA_CCx)) 
       
      (#) Call the TIM_Cmd(ENABLE) function to enable the TIM counter.
       
      (#) Use TIM_GetCapturex(TIMx); to read the captured value.
  [..]        
      (@) All other functions can be used separately to modify, if needed,
          a specific feature of the Timer. 

@endverbatim
  * @{
  */

/**
  * @brief  Initializes the TIM peripheral according to the specified parameters
  *         in the TIM_ICInitStruct.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure that contains
  *         the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_ICInit(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
  assert_param(IS_TIM_IC_POLARITY(TIM_ICInitStruct->TIM_ICPolarity));
  assert_param(IS_TIM_IC_SELECTION(TIM_ICInitStruct->TIM_ICSelection));
  assert_param(IS_TIM_IC_PRESCALER(TIM_ICInitStruct->TIM_ICPrescaler));
  assert_param(IS_TIM_IC_FILTER(TIM_ICInitStruct->TIM_ICFilter));
  
  if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1)
  {
    /* TI1 Configuration */
    TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
               TIM_ICInitStruct->TIM_ICSelection,
               TIM_ICInitStruct->TIM_ICFilter);
    /* Set the Input Capture Prescaler value */
    TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
  }
  else if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_2)
  {
    /* TI2 Configuration */
    TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
               TIM_ICInitStruct->TIM_ICSelection,
               TIM_ICInitStruct->TIM_ICFilter);
    /* Set the Input Capture Prescaler value */
    TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
  }
  else if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_3)
  {
    /* TI3 Configuration */
    TI3_Config(TIMx,  TIM_ICInitStruct->TIM_ICPolarity,
               TIM_ICInitStruct->TIM_ICSelection,
               TIM_ICInitStruct->TIM_ICFilter);
    /* Set the Input Capture Prescaler value */
    TIM_SetIC3Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
  }
  else
  {
    /* TI4 Configuration */
    TI4_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
               TIM_ICInitStruct->TIM_ICSelection,
               TIM_ICInitStruct->TIM_ICFilter);
    /* Set the Input Capture Prescaler value */
    TIM_SetIC4Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
  }
}

/**
  * @brief  Fills each TIM_ICInitStruct member with its default value.
  * @param  TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure which will
  *         be initialized.
  * @retval None
  */
void TIM_ICStructInit(TIM_ICInitTypeDef* TIM_ICInitStruct)
{
  /* Set the default configuration */
  TIM_ICInitStruct->TIM_Channel = TIM_Channel_1;
  TIM_ICInitStruct->TIM_ICPolarity = TIM_ICPolarity_Rising;
  TIM_ICInitStruct->TIM_ICSelection = TIM_ICSelection_DirectTI;
  TIM_ICInitStruct->TIM_ICPrescaler = TIM_ICPSC_DIV1;
  TIM_ICInitStruct->TIM_ICFilter = 0x00;
}

/**
  * @brief  Configures the TIM peripheral according to the specified parameters
  *         in the TIM_ICInitStruct to measure an external PWM signal.
  * @param  TIMx: where x can be  1, 2, 3, 4, 8 or 15 to select the TIM 
  *         peripheral.
  * @param  TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure that contains
  *         the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_PWMIConfig(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct)
{
  uint16_t icoppositepolarity = TIM_ICPolarity_Rising;
  uint16_t icoppositeselection = TIM_ICSelection_DirectTI;

  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));

  /* Select the Opposite Input Polarity */
  if (TIM_ICInitStruct->TIM_ICPolarity == TIM_ICPolarity_Rising)
  {
    icoppositepolarity = TIM_ICPolarity_Falling;
  }
  else
  {
    icoppositepolarity = TIM_ICPolarity_Rising;
  }
  /* Select the Opposite Input */
  if (TIM_ICInitStruct->TIM_ICSelection == TIM_ICSelection_DirectTI)
  {
    icoppositeselection = TIM_ICSelection_IndirectTI;
  }
  else
  {
    icoppositeselection = TIM_ICSelection_DirectTI;
  }
  if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1)
  {
    /* TI1 Configuration */
    TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection,
               TIM_ICInitStruct->TIM_ICFilter);
    /* Set the Input Capture Prescaler value */
    TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
    /* TI2 Configuration */
    TI2_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter);
    /* Set the Input Capture Prescaler value */
    TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
  }
  else
  { 
    /* TI2 Configuration */
    TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection,
               TIM_ICInitStruct->TIM_ICFilter);
    /* Set the Input Capture Prescaler value */
    TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
    /* TI1 Configuration */
    TI1_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter);
    /* Set the Input Capture Prescaler value */
    TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
  }
}

/**
  * @brief  Gets the TIMx Input Capture 1 value.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral.
  * @retval Capture Compare 1 Register value.
  */
uint32_t TIM_GetCapture1(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));

  /* Get the Capture 1 Register value */
  return TIMx->CCR1;
}

/**
  * @brief  Gets the TIMx Input Capture 2 value.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM 
  *         peripheral.
  * @retval Capture Compare 2 Register value.
  */
uint32_t TIM_GetCapture2(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));

  /* Get the Capture 2 Register value */
  return TIMx->CCR2;
}

/**
  * @brief  Gets the TIMx Input Capture 3 value.
  * @param  TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @retval Capture Compare 3 Register value.
  */
uint32_t TIM_GetCapture3(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx)); 

  /* Get the Capture 3 Register value */
  return TIMx->CCR3;
}

/**
  * @brief  Gets the TIMx Input Capture 4 value.
  * @param  TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @retval Capture Compare 4 Register value.
  */
uint32_t TIM_GetCapture4(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));

  /* Get the Capture 4 Register value */
  return TIMx->CCR4;
}

/**
  * @brief  Sets the TIMx Input Capture 1 prescaler.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_ICPSC: specifies the Input Capture1 prescaler new value.
  *          This parameter can be one of the following values:
  *            @arg TIM_ICPSC_DIV1: no prescaler
  *            @arg TIM_ICPSC_DIV2: capture is done once every 2 events
  *            @arg TIM_ICPSC_DIV4: capture is done once every 4 events
  *            @arg TIM_ICPSC_DIV8: capture is done once every 8 events
  * @retval None
  */
void TIM_SetIC1Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
  assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));

  /* Reset the IC1PSC Bits */
  TIMx->CCMR1 &= (uint32_t)~TIM_CCMR1_IC1PSC;

  /* Set the IC1PSC value */
  TIMx->CCMR1 |= TIM_ICPSC;
}

/**
  * @brief  Sets the TIMx Input Capture 2 prescaler.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM 
  *         peripheral.
  * @param  TIM_ICPSC: specifies the Input Capture2 prescaler new value.
  *          This parameter can be one of the following values:
  *            @arg TIM_ICPSC_DIV1: no prescaler
  *            @arg TIM_ICPSC_DIV2: capture is done once every 2 events
  *            @arg TIM_ICPSC_DIV4: capture is done once every 4 events
  *            @arg TIM_ICPSC_DIV8: capture is done once every 8 events
  * @retval None
  */
void TIM_SetIC2Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));

  /* Reset the IC2PSC Bits */
  TIMx->CCMR1 &= (uint32_t)~TIM_CCMR1_IC2PSC;

  /* Set the IC2PSC value */
  TIMx->CCMR1 |= (uint32_t)((uint32_t)TIM_ICPSC << 8);
}

/**
  * @brief  Sets the TIMx Input Capture 3 prescaler.
  * @param  TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_ICPSC: specifies the Input Capture3 prescaler new value.
  *          This parameter can be one of the following values:
  *            @arg TIM_ICPSC_DIV1: no prescaler
  *            @arg TIM_ICPSC_DIV2: capture is done once every 2 events
  *            @arg TIM_ICPSC_DIV4: capture is done once every 4 events
  *            @arg TIM_ICPSC_DIV8: capture is done once every 8 events
  * @retval None
  */
void TIM_SetIC3Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));

  /* Reset the IC3PSC Bits */
  TIMx->CCMR2 &= (uint16_t)~TIM_CCMR2_IC3PSC;

  /* Set the IC3PSC value */
  TIMx->CCMR2 |= TIM_ICPSC;
}

/**
  * @brief  Sets the TIMx Input Capture 4 prescaler.
  * @param  TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_ICPSC: specifies the Input Capture4 prescaler new value.
  *          This parameter can be one of the following values:
  *            @arg TIM_ICPSC_DIV1: no prescaler
  *            @arg TIM_ICPSC_DIV2: capture is done once every 2 events
  *            @arg TIM_ICPSC_DIV4: capture is done once every 4 events
  *            @arg TIM_ICPSC_DIV8: capture is done once every 8 events
  * @retval None
  */
void TIM_SetIC4Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
{  
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));

  /* Reset the IC4PSC Bits */
  TIMx->CCMR2 &= (uint16_t)~TIM_CCMR2_IC4PSC;

  /* Set the IC4PSC value */
  TIMx->CCMR2 |= (uint16_t)(TIM_ICPSC << 8);
}
/**
  * @}
  */

/** @defgroup TIM_Group4 Advanced-control timers (TIM1 and TIM8) specific features
 *  @brief   Advanced-control timers (TIM1 and TIM8) specific features
 *
@verbatim   
 ===============================================================================
     ##### Advanced-control timers (TIM1 and TIM8) specific features #####
 ===============================================================================  
       
  *** TIM Driver: how to use the Break feature ***
  ================================================ 
  [..]
  After configuring the Timer channel(s) in the appropriate Output Compare mode: 
                         
       (#) Fill the TIM_BDTRInitStruct with the desired parameters for the Timer
           Break Polarity, dead time, Lock level, the OSSI/OSSR State and the 
           AOE(automatic output enable).
               
       (#) Call TIM_BDTRConfig(TIMx, &TIM_BDTRInitStruct) to configure the Timer
          
       (#) Enable the Main Output using TIM_CtrlPWMOutputs(TIM1, ENABLE) 
          
       (#) Once the break even occurs, the Timer's output signals are put in reset
           state or in a known state (according to the configuration made in
           TIM_BDTRConfig() function).

@endverbatim
  * @{
  */

/**
  * @brief  Configures the Break feature, dead time, Lock level, OSSI/OSSR State
  *         and the AOE(automatic output enable).
  * @param  TIMx: where x can be  1, 8, 15, 16 or 17 to select the TIM 
  * @param  TIM_BDTRInitStruct: pointer to a TIM_BDTRInitTypeDef structure that
  *         contains the BDTR Register configuration  information for the TIM peripheral.
  * @retval None
  */
void TIM_BDTRConfig(TIM_TypeDef* TIMx, TIM_BDTRInitTypeDef *TIM_BDTRInitStruct)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_OSSR_STATE(TIM_BDTRInitStruct->TIM_OSSRState));
  assert_param(IS_TIM_OSSI_STATE(TIM_BDTRInitStruct->TIM_OSSIState));
  assert_param(IS_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->TIM_LOCKLevel));
  assert_param(IS_TIM_BREAK_STATE(TIM_BDTRInitStruct->TIM_Break));
  assert_param(IS_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->TIM_BreakPolarity));
  assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->TIM_AutomaticOutput));

  /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
     the OSSI State, the dead time value and the Automatic Output Enable Bit */
  TIMx->BDTR = (uint32_t)TIM_BDTRInitStruct->TIM_OSSRState | TIM_BDTRInitStruct->TIM_OSSIState |
             TIM_BDTRInitStruct->TIM_LOCKLevel | TIM_BDTRInitStruct->TIM_DeadTime |
             TIM_BDTRInitStruct->TIM_Break | TIM_BDTRInitStruct->TIM_BreakPolarity |
             TIM_BDTRInitStruct->TIM_AutomaticOutput;
}

/**
  * @brief  Configures the Break1 feature.
  * @param  TIMx: where x can be  1 or 8 to select the TIM 
  * @param  TIM_Break1Polarity: specifies the Break1 polarity.
  *          This parameter can be one of the following values:
  *            @arg TIM_Break1Polarity_Low: Break1 input is active low
  *            @arg TIM_Break1Polarity_High: Break1 input is active high
  * @param  TIM_Break1Filter: specifies the Break1 filter value.
  *          This parameter must be a value between 0x00 and 0x0F
  * @retval None
  */
void TIM_Break1Config(TIM_TypeDef* TIMx, uint32_t TIM_Break1Polarity, uint8_t TIM_Break1Filter)
{   /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_TIM_BREAK1_FILTER(TIM_Break1Filter));

  /* Reset the BKP and BKF Bits */
  TIMx->BDTR &= (uint32_t)~ (TIM_BDTR_BKP | TIM_BDTR_BKF);
  /* Configure the Break1 polarity and filter */
  TIMx->BDTR |=	TIM_Break1Polarity |((uint32_t)TIM_Break1Filter << 16);
}

/**
  * @brief  Configures the Break2 feature.
  * @param  TIMx: where x can be  1 or 8 to select the TIM 
  * @param  TIM_Break2Polarity: specifies the Break2 polarity.
  *          This parameter can be one of the following values:
  *            @arg TIM_Break2Polarity_Low: Break2 input is active low
  *            @arg TIM_Break2Polarity_High: Break2 input is active high
  * @param  TIM_Break2Filter: specifies the Break2 filter value.
  *          This parameter must be a value between 0x00 and 0x0F
  * @retval None
  */
void TIM_Break2Config(TIM_TypeDef* TIMx, uint32_t TIM_Break2Polarity, uint8_t TIM_Break2Filter)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_TIM_BREAK2_FILTER(TIM_Break2Filter));

  /* Reset the BKP and BKF Bits */
  TIMx->BDTR &= (uint32_t)~ (TIM_BDTR_BK2P | TIM_BDTR_BK2F);

  /* Configure the Break1 polarity and filter */
  TIMx->BDTR |=	TIM_Break2Polarity |((uint32_t)TIM_Break2Filter << 20);
}

/**
  * @brief  Enables or disables the TIM Break1 input.
  * @param  TIMx: where x can be 1, 8, 1, 16 or 17 to select the TIMx peripheral.
  * @param  NewState: new state of the TIM Break1 input.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_Break1Cmd(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the Break1 */
    TIMx->BDTR |= TIM_BDTR_BKE;
  }
  else
  {
    /* Disable the Break1 */
    TIMx->BDTR &= (uint32_t)~TIM_BDTR_BKE;
  } 
}

/**
  * @brief  Enables or disables the TIM Break2 input.
  * @param  TIMx: where x can be 1 or 8 to select the TIMx peripheral.
  * @param  NewState: new state of the TIM Break2 input.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_Break2Cmd(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the Break1 */
    TIMx->BDTR |= TIM_BDTR_BK2E;
  }
  else
  {
    /* Disable the Break1 */
    TIMx->BDTR &= (uint32_t)~TIM_BDTR_BK2E;
  }
}

/**
  * @brief  Fills each TIM_BDTRInitStruct member with its default value.
  * @param  TIM_BDTRInitStruct: pointer to a TIM_BDTRInitTypeDef structure which
  *         will be initialized.
  * @retval None
  */
void TIM_BDTRStructInit(TIM_BDTRInitTypeDef* TIM_BDTRInitStruct)
{
  /* Set the default configuration */
  TIM_BDTRInitStruct->TIM_OSSRState = TIM_OSSRState_Disable;
  TIM_BDTRInitStruct->TIM_OSSIState = TIM_OSSIState_Disable;
  TIM_BDTRInitStruct->TIM_LOCKLevel = TIM_LOCKLevel_OFF;
  TIM_BDTRInitStruct->TIM_DeadTime = 0x00;
  TIM_BDTRInitStruct->TIM_Break = TIM_Break_Disable;
  TIM_BDTRInitStruct->TIM_BreakPolarity = TIM_BreakPolarity_Low;
  TIM_BDTRInitStruct->TIM_AutomaticOutput = TIM_AutomaticOutput_Disable;
}

/**
  * @brief  Enables or disables the TIM peripheral Main Outputs.
  * @param  TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIMx peripheral.
  * @param  NewState: new state of the TIM peripheral Main Outputs.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the TIM Main Output */
    TIMx->BDTR |= TIM_BDTR_MOE;
  }
  else
  {
    /* Disable the TIM Main Output */
    TIMx->BDTR &= (uint16_t)~TIM_BDTR_MOE;
  }  
}

/**
  * @brief  Selects the TIM peripheral Commutation event.
  * @param  TIMx: where x can be  1, 8, 15, 16 or 17 to select the TIMx peripheral
  * @param  NewState: new state of the Commutation event.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_SelectCOM(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Set the COM Bit */
    TIMx->CR2 |= TIM_CR2_CCUS;
  }
  else
  {
    /* Reset the COM Bit */
    TIMx->CR2 &= (uint16_t)~TIM_CR2_CCUS;
  }
}

/**
  * @brief  Sets or Resets the TIM peripheral Capture Compare Preload Control bit.
  * @param  TIMx: where x can be  1 or 8 to select the TIMx peripheral
  * @param  NewState: new state of the Capture Compare Preload Control bit
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_CCPreloadControl(TIM_TypeDef* TIMx, FunctionalState NewState)
{ 
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Set the CCPC Bit */
    TIMx->CR2 |= TIM_CR2_CCPC;
  }
  else
  {
    /* Reset the CCPC Bit */
    TIMx->CR2 &= (uint16_t)~TIM_CR2_CCPC;
  }
}
/**
  * @}
  */

/** @defgroup TIM_Group5 Interrupts DMA and flags management functions
 *  @brief    Interrupts, DMA and flags management functions 
 *
@verbatim   
 ===============================================================================
         ##### Interrupts, DMA and flags management functions #####
 ===============================================================================  

@endverbatim
  * @{
  */

/**
  * @brief  Enables or disables the specified TIM interrupts.
  * @param  TIMx: where x can be 1, 2, 3, 4, 6, 7, 8, 15, 16 or 17 to select the TIMx peripheral.
  * @param  TIM_IT: specifies the TIM interrupts sources to be enabled or disabled.
  *          This parameter can be any combination of the following values:
  *            @arg TIM_IT_Update: TIM update Interrupt source
  *            @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
  *            @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
  *            @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
  *            @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
  *            @arg TIM_IT_COM: TIM Commutation Interrupt source
  *            @arg TIM_IT_Trigger: TIM Trigger Interrupt source
  *            @arg TIM_IT_Break: TIM Break Interrupt source
  *  
  * @note   For TIM6 and TIM7 only the parameter TIM_IT_Update can be used
  * @note   For TIM9 and TIM12 only one of the following parameters can be used: TIM_IT_Update,
  *          TIM_IT_CC1, TIM_IT_CC2 or TIM_IT_Trigger. 
  * @note   For TIM10, TIM11, TIM13 and TIM14 only one of the following parameters can
  *          be used: TIM_IT_Update or TIM_IT_CC1   
  * @note   TIM_IT_COM and TIM_IT_Break can be used only with TIM1 and TIM8 
  *        
  * @param  NewState: new state of the TIM interrupts.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_ITConfig(TIM_TypeDef* TIMx, uint16_t TIM_IT, FunctionalState NewState)
{  
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_IT(TIM_IT));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Enable the Interrupt sources */
    TIMx->DIER |= TIM_IT;
  }
  else
  {
    /* Disable the Interrupt sources */
    TIMx->DIER &= (uint16_t)~TIM_IT;
  }
}

/**
  * @brief  Configures the TIMx event to be generate by software.
  * @param  TIMx: where x can be 1, 2, 3, 4, 6, 7, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_EventSource: specifies the event source.
  *          This parameter can be one or more of the following values:	   
  *            @arg TIM_EventSource_Update: Timer update Event source
  *            @arg TIM_EventSource_CC1: Timer Capture Compare 1 Event source
  *            @arg TIM_EventSource_CC2: Timer Capture Compare 2 Event source
  *            @arg TIM_EventSource_CC3: Timer Capture Compare 3 Event source
  *            @arg TIM_EventSource_CC4: Timer Capture Compare 4 Event source
  *            @arg TIM_EventSource_COM: Timer COM event source  
  *            @arg TIM_EventSource_Trigger: Timer Trigger Event source
  *            @arg TIM_EventSource_Break: Timer Break event source
  * 
  * @note   TIM6 and TIM7 can only generate an update event. 
  * @note   TIM_EventSource_COM and TIM_EventSource_Break are used only with TIM1 and TIM8.
  *        
  * @retval None
  */
void TIM_GenerateEvent(TIM_TypeDef* TIMx, uint16_t TIM_EventSource)
{ 
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_EVENT_SOURCE(TIM_EventSource));
 
  /* Set the event sources */
  TIMx->EGR = TIM_EventSource;
}

/**
  * @brief  Checks whether the specified TIM flag is set or not.
  * @param  TIMx: where x can be 1, 2, 3, 4, 6, 7, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_FLAG: specifies the flag to check.
  *          This parameter can be one of the following values:
  *            @arg TIM_FLAG_Update: TIM update Flag
  *            @arg TIM_FLAG_CC1: TIM Capture Compare 1 Flag
  *            @arg TIM_FLAG_CC2: TIM Capture Compare 2 Flag
  *            @arg TIM_FLAG_CC3: TIM Capture Compare 3 Flag
  *            @arg TIM_FLAG_CC4: TIM Capture Compare 4 Flag
  *            @arg TIM_FLAG_CC5: TIM Capture Compare 5 Flag
  *            @arg TIM_FLAG_CC6: TIM Capture Compare 6 Flag  
  *            @arg TIM_FLAG_COM: TIM Commutation Flag
  *            @arg TIM_FLAG_Trigger: TIM Trigger Flag
  *            @arg TIM_FLAG_Break: TIM Break Flag
  *            @arg TIM_FLAG_CC1OF: TIM Capture Compare 1 over capture Flag
  *            @arg TIM_FLAG_CC2OF: TIM Capture Compare 2 over capture Flag
  *            @arg TIM_FLAG_CC3OF: TIM Capture Compare 3 over capture Flag
  *            @arg TIM_FLAG_CC4OF: TIM Capture Compare 4 over capture Flag
  *
  * @note   TIM6 and TIM7 can have only one update flag. 
  * @note   TIM_FLAG_COM and TIM_FLAG_Break are used only with TIM1 and TIM8.    
  *
  * @retval The new state of TIM_FLAG (SET or RESET).
  */
FlagStatus TIM_GetFlagStatus(TIM_TypeDef* TIMx, uint32_t TIM_FLAG)
{ 
  ITStatus bitstatus = RESET;  
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_GET_FLAG(TIM_FLAG));

  
  if ((TIMx->SR & TIM_FLAG) != RESET)
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  return bitstatus;
}

/**
  * @brief  Clears the TIMx's pending flags.
  * @param  TIMx: where x can be 1, 2, 3, 4, 6, 7, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_FLAG: specifies the flag bit to clear.
  *          This parameter can be any combination of the following values:
  *            @arg TIM_FLAG_Update: TIM update Flag
  *            @arg TIM_FLAG_CC1: TIM Capture Compare 1 Flag
  *            @arg TIM_FLAG_CC2: TIM Capture Compare 2 Flag
  *            @arg TIM_FLAG_CC3: TIM Capture Compare 3 Flag
  *            @arg TIM_FLAG_CC4: TIM Capture Compare 4 Flag
  *            @arg TIM_FLAG_CC5: TIM Capture Compare 5 Flag
  *            @arg TIM_FLAG_CC6: TIM Capture Compare 6 Flag               
  *            @arg TIM_FLAG_COM: TIM Commutation Flag
  *            @arg TIM_FLAG_Trigger: TIM Trigger Flag
  *            @arg TIM_FLAG_Break: TIM Break Flag
  *            @arg TIM_FLAG_CC1OF: TIM Capture Compare 1 over capture Flag
  *            @arg TIM_FLAG_CC2OF: TIM Capture Compare 2 over capture Flag
  *            @arg TIM_FLAG_CC3OF: TIM Capture Compare 3 over capture Flag
  *            @arg TIM_FLAG_CC4OF: TIM Capture Compare 4 over capture Flag
  *
  * @note   TIM6 and TIM7 can have only one update flag. 
  * @note   TIM_FLAG_COM and TIM_FLAG_Break are used only with TIM1 and TIM8.
  *    
  * @retval None
  */
void TIM_ClearFlag(TIM_TypeDef* TIMx, uint16_t TIM_FLAG)
{  
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
   
  /* Clear the flags */
  TIMx->SR = (uint16_t)~TIM_FLAG;
}

/**
  * @brief  Checks whether the TIM interrupt has occurred or not.
  * @param  TIMx: where x can be 1, 2, 3, 4, 6, 7, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_IT: specifies the TIM interrupt source to check.
  *          This parameter can be one of the following values:
  *            @arg TIM_IT_Update: TIM update Interrupt source
  *            @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
  *            @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
  *            @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
  *            @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
  *            @arg TIM_IT_COM: TIM Commutation Interrupt source
  *            @arg TIM_IT_Trigger: TIM Trigger Interrupt source
  *            @arg TIM_IT_Break: TIM Break Interrupt source
  *
  * @note   TIM6 and TIM7 can generate only an update interrupt.
  * @note   TIM_IT_COM and TIM_IT_Break are used only with TIM1 and TIM8.
  *     
  * @retval The new state of the TIM_IT(SET or RESET).
  */
ITStatus TIM_GetITStatus(TIM_TypeDef* TIMx, uint16_t TIM_IT)
{
  ITStatus bitstatus = RESET;  
  uint16_t itstatus = 0x0, itenable = 0x0;
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_GET_IT(TIM_IT));
   
  itstatus = TIMx->SR & TIM_IT;
  
  itenable = TIMx->DIER & TIM_IT;
  if ((itstatus != (uint16_t)RESET) && (itenable != (uint16_t)RESET))
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  return bitstatus;
}

/**
  * @brief  Clears the TIMx's interrupt pending bits.
  * @param  TIMx: where x can be 1, 2, 3, 4, 6, 7, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_IT: specifies the pending bit to clear.
  *          This parameter can be any combination of the following values:
  *            @arg TIM_IT_Update: TIM1 update Interrupt source
  *            @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
  *            @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
  *            @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
  *            @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
  *            @arg TIM_IT_COM: TIM Commutation Interrupt source
  *            @arg TIM_IT_Trigger: TIM Trigger Interrupt source
  *            @arg TIM_IT_Break: TIM Break Interrupt source
  *
  * @note   TIM6 and TIM7 can generate only an update interrupt.
  * @note   TIM_IT_COM and TIM_IT_Break are used only with TIM1 and TIM8.
  *      
  * @retval None
  */
void TIM_ClearITPendingBit(TIM_TypeDef* TIMx, uint16_t TIM_IT)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));

  /* Clear the IT pending Bit */
  TIMx->SR = (uint16_t)~TIM_IT;
}

/**
  * @brief  Configures the TIMx's DMA interface.
  * @param  TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_DMABase: DMA Base address.
  *          This parameter can be one of the following values:
  *            @arg TIM_DMABase_CR1  
  *            @arg TIM_DMABase_CR2
  *            @arg TIM_DMABase_SMCR
  *            @arg TIM_DMABase_DIER
  *            @arg TIM1_DMABase_SR
  *            @arg TIM_DMABase_EGR
  *            @arg TIM_DMABase_CCMR1
  *            @arg TIM_DMABase_CCMR2
  *            @arg TIM_DMABase_CCER
  *            @arg TIM_DMABase_CNT   
  *            @arg TIM_DMABase_PSC   
  *            @arg TIM_DMABase_ARR
  *            @arg TIM_DMABase_RCR
  *            @arg TIM_DMABase_CCR1
  *            @arg TIM_DMABase_CCR2
  *            @arg TIM_DMABase_CCR3  
  *            @arg TIM_DMABase_CCR4
  *            @arg TIM_DMABase_BDTR
  *            @arg TIM_DMABase_DCR
  * @param  TIM_DMABurstLength: DMA Burst length. This parameter can be one value
  *         between: TIM_DMABurstLength_1Transfer and TIM_DMABurstLength_18Transfers.
  * @retval None
  */
void TIM_DMAConfig(TIM_TypeDef* TIMx, uint16_t TIM_DMABase, uint16_t TIM_DMABurstLength)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
  assert_param(IS_TIM_DMA_BASE(TIM_DMABase)); 
  assert_param(IS_TIM_DMA_LENGTH(TIM_DMABurstLength));

  /* Set the DMA Base and the DMA Burst Length */
  TIMx->DCR = TIM_DMABase | TIM_DMABurstLength;
}

/**
  * @brief  Enables or disables the TIMx's DMA Requests.
  * @param  TIMx: where x can be 1, 2, 3, 4, 6, 7, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_DMASource: specifies the DMA Request sources.
  *          This parameter can be any combination of the following values:
  *            @arg TIM_DMA_Update: TIM update Interrupt source
  *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
  *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
  *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
  *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
  *            @arg TIM_DMA_COM: TIM Commutation DMA source
  *            @arg TIM_DMA_Trigger: TIM Trigger DMA source
  * @param  NewState: new state of the DMA Request sources.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_DMACmd(TIM_TypeDef* TIMx, uint16_t TIM_DMASource, FunctionalState NewState)
{ 
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_DMA_SOURCE(TIM_DMASource));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Enable the DMA sources */
    TIMx->DIER |= TIM_DMASource; 
  }
  else
  {
    /* Disable the DMA sources */
    TIMx->DIER &= (uint16_t)~TIM_DMASource;
  }
}

/**
  * @brief  Selects the TIMx peripheral Capture Compare DMA source.
  * @param  TIMx: where x can be  1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  NewState: new state of the Capture Compare DMA source
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_SelectCCDMA(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Set the CCDS Bit */
    TIMx->CR2 |= TIM_CR2_CCDS;
  }
  else
  {
    /* Reset the CCDS Bit */
    TIMx->CR2 &= (uint16_t)~TIM_CR2_CCDS;
  }
}
/**
  * @}
  */

/** @defgroup TIM_Group6 Clocks management functions
 *  @brief    Clocks management functions
 *
@verbatim   
 ===============================================================================
                   ##### Clocks management functions #####
 ===============================================================================  

@endverbatim
  * @{
  */

/**
  * @brief  Configures the TIMx internal Clock
  * @param  TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM 
  *         peripheral.
  * @retval None
  */
void TIM_InternalClockConfig(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));

  /* Disable slave mode to clock the prescaler directly with the internal clock */
  TIMx->SMCR &=  (uint16_t)~TIM_SMCR_SMS;
}

/**
  * @brief  Configures the TIMx Internal Trigger as External Clock
  * @param  TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM 
  *         peripheral.
  * @param  TIM_InputTriggerSource: Trigger source.
  *          This parameter can be one of the following values:
  *            @arg TIM_TS_ITR0: Internal Trigger 0
  *            @arg TIM_TS_ITR1: Internal Trigger 1
  *            @arg TIM_TS_ITR2: Internal Trigger 2
  *            @arg TIM_TS_ITR3: Internal Trigger 3
  * @retval None
  */
void TIM_ITRxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_TIM_INTERNAL_TRIGGER_SELECTION(TIM_InputTriggerSource));

  /* Select the Internal Trigger */
  TIM_SelectInputTrigger(TIMx, TIM_InputTriggerSource);

  /* Select the External clock mode1 */
  TIMx->SMCR |= TIM_SlaveMode_External1;
}

/**
  * @brief  Configures the TIMx Trigger as External Clock
  * @param  TIMx: where x can be 1, 2, 3, 4, 8 or 15  
  *         to select the TIM peripheral.
  * @param  TIM_TIxExternalCLKSource: Trigger source.
  *          This parameter can be one of the following values:
  *            @arg TIM_TIxExternalCLK1Source_TI1ED: TI1 Edge Detector
  *            @arg TIM_TIxExternalCLK1Source_TI1: Filtered Timer Input 1
  *            @arg TIM_TIxExternalCLK1Source_TI2: Filtered Timer Input 2
  * @param  TIM_ICPolarity: specifies the TIx Polarity.
  *          This parameter can be one of the following values:
  *            @arg TIM_ICPolarity_Rising
  *            @arg TIM_ICPolarity_Falling
  * @param  ICFilter: specifies the filter value.
  *          This parameter must be a value between 0x0 and 0xF.
  * @retval None
  */
void TIM_TIxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_TIxExternalCLKSource,
                                uint16_t TIM_ICPolarity, uint16_t ICFilter)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_TIM_IC_POLARITY(TIM_ICPolarity));
  assert_param(IS_TIM_IC_FILTER(ICFilter));

  /* Configure the Timer Input Clock Source */
  if (TIM_TIxExternalCLKSource == TIM_TIxExternalCLK1Source_TI2)
  {
    TI2_Config(TIMx, TIM_ICPolarity, TIM_ICSelection_DirectTI, ICFilter);
  }
  else
  {
    TI1_Config(TIMx, TIM_ICPolarity, TIM_ICSelection_DirectTI, ICFilter);
  }
  /* Select the Trigger source */
  TIM_SelectInputTrigger(TIMx, TIM_TIxExternalCLKSource);
  /* Select the External clock mode1 */
  TIMx->SMCR |= TIM_SlaveMode_External1;
}

/**
  * @brief  Configures the External clock Mode1
  * @param  TIMx: where x can be  1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_ExtTRGPrescaler: The external Trigger Prescaler.
  *          This parameter can be one of the following values:
  *            @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
  *            @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
  *            @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
  *            @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
  * @param  TIM_ExtTRGPolarity: The external Trigger Polarity.
  *          This parameter can be one of the following values:
  *            @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
  *            @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
  * @param  ExtTRGFilter: External Trigger Filter.
  *          This parameter must be a value between 0x00 and 0x0F
  * @retval None
  */
void TIM_ETRClockMode1Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler,
                            uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter)
{
  uint16_t tmpsmcr = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
  assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
  assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
  /* Configure the ETR Clock source */
  TIM_ETRConfig(TIMx, TIM_ExtTRGPrescaler, TIM_ExtTRGPolarity, ExtTRGFilter);
  
  /* Get the TIMx SMCR register value */
  tmpsmcr = TIMx->SMCR;

  /* Reset the SMS Bits */
  tmpsmcr &= (uint16_t)~TIM_SMCR_SMS;

  /* Select the External clock mode1 */
  tmpsmcr |= TIM_SlaveMode_External1;

  /* Select the Trigger selection : ETRF */
  tmpsmcr &= (uint16_t)~TIM_SMCR_TS;
  tmpsmcr |= TIM_TS_ETRF;

  /* Write to TIMx SMCR */
  TIMx->SMCR = tmpsmcr;
}

/**
  * @brief  Configures the External clock Mode2
  * @param  TIMx: where x can be  1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_ExtTRGPrescaler: The external Trigger Prescaler.
  *          This parameter can be one of the following values:
  *            @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
  *            @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
  *            @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
  *            @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
  * @param  TIM_ExtTRGPolarity: The external Trigger Polarity.
  *          This parameter can be one of the following values:
  *            @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
  *            @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
  * @param  ExtTRGFilter: External Trigger Filter.
  *          This parameter must be a value between 0x00 and 0x0F
  * @retval None
  */
void TIM_ETRClockMode2Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, 
                             uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
  assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
  assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));

  /* Configure the ETR Clock source */
  TIM_ETRConfig(TIMx, TIM_ExtTRGPrescaler, TIM_ExtTRGPolarity, ExtTRGFilter);

  /* Enable the External clock mode2 */
  TIMx->SMCR |= TIM_SMCR_ECE;
}
/**
  * @}
  */

/** @defgroup TIM_Group7 Synchronization management functions
 *  @brief    Synchronization management functions 
 *
@verbatim   
 ===============================================================================
                 ##### Synchronization management functions #####
 ===============================================================================  
                         
  *** TIM Driver: how to use it in synchronization Mode ***
  ========================================================= 
  [..] Case of two/several Timers
       
       (#) Configure the Master Timers using the following functions:
           (++) void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource); 
           (++) void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_MasterSlaveMode);  
       (#) Configure the Slave Timers using the following functions: 
           (++) void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource);  
           (++) void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode); 
          
  [..] Case of Timers and external trigger(ETR pin)
           
       (#) Configure the External trigger using this function:
           (++) void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity,
                                   uint16_t ExtTRGFilter);
       (#) Configure the Slave Timers using the following functions: 
           (++) void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource);  
           (++) void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode); 

@endverbatim
  * @{
  */

/**
  * @brief  Selects the Input Trigger source
  * @param  TIMx: where x can be  1, 2, 3, 4, 8 or 15  
  *         to select the TIM peripheral.
  * @param  TIM_InputTriggerSource: The Input Trigger source.
  *          This parameter can be one of the following values:
  *            @arg TIM_TS_ITR0: Internal Trigger 0
  *            @arg TIM_TS_ITR1: Internal Trigger 1
  *            @arg TIM_TS_ITR2: Internal Trigger 2
  *            @arg TIM_TS_ITR3: Internal Trigger 3
  *            @arg TIM_TS_TI1F_ED: TI1 Edge Detector
  *            @arg TIM_TS_TI1FP1: Filtered Timer Input 1
  *            @arg TIM_TS_TI2FP2: Filtered Timer Input 2
  *            @arg TIM_TS_ETRF: External Trigger input
  * @retval None
  */
void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource)
{
  uint16_t tmpsmcr = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx)); 
  assert_param(IS_TIM_TRIGGER_SELECTION(TIM_InputTriggerSource));

  /* Get the TIMx SMCR register value */
  tmpsmcr = TIMx->SMCR;

  /* Reset the TS Bits */
  tmpsmcr &= (uint16_t)~TIM_SMCR_TS;

  /* Set the Input Trigger source */
  tmpsmcr |= TIM_InputTriggerSource;

  /* Write to TIMx SMCR */
  TIMx->SMCR = tmpsmcr;
}

/**
  * @brief  Selects the TIMx Trigger Output Mode.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 6, 7, 8 or 15 to select the TIM peripheral.
  *     
  * @param  TIM_TRGOSource: specifies the Trigger Output source.
  *   This parameter can be one of the following values:
  *
  *  - For all TIMx
  *            @arg TIM_TRGOSource_Reset:  The UG bit in the TIM_EGR register is used as the trigger output(TRGO)
  *            @arg TIM_TRGOSource_Enable: The Counter Enable CEN is used as the trigger output(TRGO)
  *            @arg TIM_TRGOSource_Update: The update event is selected as the trigger output(TRGO)
  *
  *  - For all TIMx except TIM6 and TIM7
  *            @arg TIM_TRGOSource_OC1: The trigger output sends a positive pulse when the CC1IF flag
  *                                     is to be set, as soon as a capture or compare match occurs(TRGO)
  *            @arg TIM_TRGOSource_OC1Ref: OC1REF signal is used as the trigger output(TRGO)
  *            @arg TIM_TRGOSource_OC2Ref: OC2REF signal is used as the trigger output(TRGO)
  *            @arg TIM_TRGOSource_OC3Ref: OC3REF signal is used as the trigger output(TRGO)
  *            @arg TIM_TRGOSource_OC4Ref: OC4REF signal is used as the trigger output(TRGO)
  *
  * @retval None
  */
void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST7_PERIPH(TIMx));
  assert_param(IS_TIM_TRGO_SOURCE(TIM_TRGOSource));

  /* Reset the MMS Bits */
  TIMx->CR2 &= (uint16_t)~TIM_CR2_MMS;
  /* Select the TRGO source */
  TIMx->CR2 |=  TIM_TRGOSource;
}

/**
  * @brief  Selects the TIMx Trigger Output Mode2 (TRGO2).
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
  *     
  * @param  TIM_TRGO2Source: specifies the Trigger Output source.
  *   This parameter can be one of the following values:
  *
  *  - For all TIMx
  *            @arg TIM_TRGOSource_Reset:  The UG bit in the TIM_EGR register is used as the trigger output(TRGO2)
  *            @arg TIM_TRGOSource_Enable: The Counter Enable CEN is used as the trigger output(TRGO2)
  *            @arg TIM_TRGOSource_Update: The update event is selected as the trigger output(TRGO2)
  *            @arg TIM_TRGOSource_OC1: The trigger output sends a positive pulse when the CC1IF flag
  *                                     is to be set, as soon as a capture or compare match occurs(TRGO2)
  *            @arg TIM_TRGOSource_OC1Ref: OC1REF signal is used as the trigger output(TRGO2)
  *            @arg TIM_TRGOSource_OC2Ref: OC2REF signal is used as the trigger output(TRGO2)
  *            @arg TIM_TRGOSource_OC3Ref: OC3REF signal is used as the trigger output(TRGO2)
  *            @arg TIM_TRGOSource_OC4Ref: OC4REF signal is used as the trigger output(TRGO2)
  *            @arg TIM_TRGO2Source_OC4Ref_RisingFalling: OC4Ref Rising and Falling are used as the trigger output(TRGO2)
  *            @arg TIM_TRGO2Source_OC6Ref_RisingFalling: OC6Ref Rising and Falling are used as the trigger output(TRGO2)
  *            @arg TIM_TRGO2Source_OC4RefRising_OC6RefRising: OC4Ref Rising and OC6Ref Rising  are used as the trigger output(TRGO2)
  *            @arg TIM_TRGO2Source_OC4RefRising_OC6RefFalling: OC4Ref Rising and OC6Ref Falling are used as the trigger output(TRGO2)
  *            @arg TIM_TRGO2Source_OC5RefRising_OC6RefRising: OC5Ref Rising and OC6Ref Rising are used as the trigger output(TRGO2)
  *            @arg TIM_TRGO2Source_OC5RefRising_OC6RefFalling: OC5Ref Rising and OC6Ref Falling are used as the trigger output(TRGO2)
  *
  * @retval None
  */
void TIM_SelectOutputTrigger2(TIM_TypeDef* TIMx, uint32_t TIM_TRGO2Source)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_TIM_TRGO2_SOURCE(TIM_TRGO2Source));

  /* Reset the MMS Bits */
  TIMx->CR2 &= (uint32_t)~TIM_CR2_MMS2;
  /* Select the TRGO source */
  TIMx->CR2 |=  TIM_TRGO2Source;
}

/**
  * @brief  Selects the TIMx Slave Mode.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM peripheral.
  * @param  TIM_SlaveMode: specifies the Timer Slave Mode.
  *          This parameter can be one of the following values:
  *            @arg TIM_SlaveMode_Reset: Rising edge of the selected trigger signal(TRGI) reinitialize 
  *                                      the counter and triggers an update of the registers
  *            @arg TIM_SlaveMode_Gated:     The counter clock is enabled when the trigger signal (TRGI) is high
  *            @arg TIM_SlaveMode_Trigger:   The counter starts at a rising edge of the trigger TRGI
  *            @arg TIM_SlaveMode_External1: Rising edges of the selected trigger (TRGI) clock the counter
  *            @arg TIM_SlaveMode_Combined_ResetTrigger: Rising edge of the selected trigger input (TRGI)
  *                                                      reinitializes the counter, generates an update 
  *                                                      of the registers and starts the counter.
  * @retval None
  */
void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint32_t TIM_SlaveMode)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_TIM_SLAVE_MODE(TIM_SlaveMode));

  /* Reset the SMS Bits */
  TIMx->SMCR &= (uint32_t)~TIM_SMCR_SMS;

  /* Select the Slave Mode */
  TIMx->SMCR |= (uint32_t)TIM_SlaveMode;
}

/**
  * @brief  Sets or Resets the TIMx Master/Slave Mode.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM peripheral.
  * @param  TIM_MasterSlaveMode: specifies the Timer Master Slave Mode.
  *          This parameter can be one of the following values:
  *            @arg TIM_MasterSlaveMode_Enable: synchronization between the current timer
  *                                             and its slaves (through TRGO)
  *            @arg TIM_MasterSlaveMode_Disable: No action
  * @retval None
  */
void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_MasterSlaveMode)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_TIM_MSM_STATE(TIM_MasterSlaveMode));

  /* Reset the MSM Bit */
  TIMx->SMCR &= (uint16_t)~TIM_SMCR_MSM;
  
  /* Set or Reset the MSM Bit */
  TIMx->SMCR |= TIM_MasterSlaveMode;
}

/**
  * @brief  Configures the TIMx External Trigger (ETR).
  * @param  TIMx: where x can be  1, 2, 3, 4 or 8 to select the TIM peripheral.
  * @param  TIM_ExtTRGPrescaler: The external Trigger Prescaler.
  *          This parameter can be one of the following values:
  *            @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
  *            @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
  *            @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
  *            @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
  * @param  TIM_ExtTRGPolarity: The external Trigger Polarity.
  *          This parameter can be one of the following values:
  *            @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
  *            @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
  * @param  ExtTRGFilter: External Trigger Filter.
  *          This parameter must be a value between 0x00 and 0x0F
  * @retval None
  */
void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler,
                   uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter)
{
  uint16_t tmpsmcr = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
  assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
  assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));

  tmpsmcr = TIMx->SMCR;

  /* Reset the ETR Bits */
  tmpsmcr &= SMCR_ETR_MASK;

  /* Set the Prescaler, the Filter value and the Polarity */
  tmpsmcr |= (uint16_t)(TIM_ExtTRGPrescaler | (uint16_t)(TIM_ExtTRGPolarity | (uint16_t)(ExtTRGFilter << (uint16_t)8)));

  /* Write to TIMx SMCR */
  TIMx->SMCR = tmpsmcr;
}
/**
  * @}
  */

/** @defgroup TIM_Group8 Specific interface management functions
 *  @brief    Specific interface management functions 
 *
@verbatim   
 ===============================================================================
              ##### Specific interface management functions #####
 ===============================================================================  

@endverbatim
  * @{
  */

/**
  * @brief  Configures the TIMx Encoder Interface.
  * @param  TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM 
  *         peripheral.
  * @param  TIM_EncoderMode: specifies the TIMx Encoder Mode.
  *          This parameter can be one of the following values:
  *            @arg TIM_EncoderMode_TI1: Counter counts on TI1FP1 edge depending on TI2FP2 level.
  *            @arg TIM_EncoderMode_TI2: Counter counts on TI2FP2 edge depending on TI1FP1 level.
  *            @arg TIM_EncoderMode_TI12: Counter counts on both TI1FP1 and TI2FP2 edges depending
  *                                       on the level of the other input.
  * @param  TIM_IC1Polarity: specifies the IC1 Polarity
  *          This parameter can be one of the following values:
  *            @arg TIM_ICPolarity_Falling: IC Falling edge.
  *            @arg TIM_ICPolarity_Rising: IC Rising edge.
  * @param  TIM_IC2Polarity: specifies the IC2 Polarity
  *          This parameter can be one of the following values:
  *            @arg TIM_ICPolarity_Falling: IC Falling edge.
  *            @arg TIM_ICPolarity_Rising: IC Rising edge.
  * @retval None
  */
void TIM_EncoderInterfaceConfig(TIM_TypeDef* TIMx, uint16_t TIM_EncoderMode,
                                uint16_t TIM_IC1Polarity, uint16_t TIM_IC2Polarity)
{
  uint16_t tmpsmcr = 0;
  uint16_t tmpccmr1 = 0;
  uint16_t tmpccer = 0;
    
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_ENCODER_MODE(TIM_EncoderMode));
  assert_param(IS_TIM_IC_POLARITY(TIM_IC1Polarity));
  assert_param(IS_TIM_IC_POLARITY(TIM_IC2Polarity));

  /* Get the TIMx SMCR register value */
  tmpsmcr = TIMx->SMCR;

  /* Get the TIMx CCMR1 register value */
  tmpccmr1 = TIMx->CCMR1;

  /* Get the TIMx CCER register value */
  tmpccer = TIMx->CCER;

  /* Set the encoder Mode */
  tmpsmcr &= (uint16_t)~TIM_SMCR_SMS;
  tmpsmcr |= TIM_EncoderMode;

  /* Select the Capture Compare 1 and the Capture Compare 2 as input */
  tmpccmr1 &= ((uint16_t)~TIM_CCMR1_CC1S) & ((uint16_t)~TIM_CCMR1_CC2S);
  tmpccmr1 |= TIM_CCMR1_CC1S_0 | TIM_CCMR1_CC2S_0;

  /* Set the TI1 and the TI2 Polarities */
  tmpccer &= ((uint16_t)~TIM_CCER_CC1P) & ((uint16_t)~TIM_CCER_CC2P);
  tmpccer |= (uint16_t)(TIM_IC1Polarity | (uint16_t)(TIM_IC2Polarity << (uint16_t)4));

  /* Write to TIMx SMCR */
  TIMx->SMCR = tmpsmcr;

  /* Write to TIMx CCMR1 */
  TIMx->CCMR1 = tmpccmr1;

  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Enables or disables the TIMx's Hall sensor interface.
  * @param  TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM 
  *         peripheral.
  * @param  NewState: new state of the TIMx Hall sensor interface.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_SelectHallSensor(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Set the TI1S Bit */
    TIMx->CR2 |= TIM_CR2_TI1S;
  }
  else
  {
    /* Reset the TI1S Bit */
    TIMx->CR2 &= (uint16_t)~TIM_CR2_TI1S;
  }
}
/**
  * @}
  */

/** @defgroup TIM_Group9 Specific remapping management function
 *  @brief   Specific remapping management function
 *
@verbatim   
 ===============================================================================
               ##### Specific remapping management function #####
 ===============================================================================  

@endverbatim
  * @{
  */

/**
  * @brief  Configures the TIM16 Remapping input Capabilities.
  * @param TIMx: where x can be 1, 8 or 16 to select the TIM peripheral.
  * @param TIM_Remap: specifies the TIM input reampping source.
  *   This parameter can be one of the following values:
  *            @arg TIM16_GPIO: TIM16 Channel 1 is connected to GPIO.
  *            @arg TIM16_RTC_CLK: TIM16 Channel 1 is connected to RTC input clock.
  *            @arg TIM16_HSE_DIV32: TIM16 Channel 1 is connected to HSE/32 clock.  
  *            @arg TIM16_MCO: TIM16 Channel 1 is connected to MCO clock. 
  *            @arg TIM1_ADC1_AWDG1: TIM1 ETR is connected to ADC1 AWDG1.
  *            @arg TIM1_ADC1_AWDG2: TIM1 ETR is connected to ADC1 AWDG2.
  *            @arg TIM1_ADC1_AWDG3: TIM1 ETR is connected to ADC1 AWDG3.  
  *            @arg TIM1_ADC4_AWDG1: TIM1 ETR is connected to ADC4 AWDG1.
  *            @arg TIM1_ADC4_AWDG2: TIM1 ETR is connected to ADC4 AWDG2.
  *            @arg TIM1_ADC4_AWDG3: TIM1 ETR is connected to ADC4 AWDG3. 
  *            @arg TIM8_ADC2_AWDG1: TIM8 ETR is connected to ADC2 AWDG1.
  *            @arg TIM8_ADC2_AWDG2: TIM8 ETR is connected to ADC2 AWDG2.
  *            @arg TIM8_ADC2_AWDG3: TIM8 ETR is connected to ADC2 AWDG3.
  *            @arg TIM8_ADC4_AWDG1: TIM8 ETR is connected to ADC4 AWDG1.
  *            @arg TIM8_ADC4_AWDG2: TIM8 ETR is connected to ADC4 AWDG2.
  *            @arg TIM8_ADC4_AWDG3: TIM8 ETR is connected to ADC4 AWDG3.  
  * @retval : None
  */
void TIM_RemapConfig(TIM_TypeDef* TIMx, uint16_t TIM_Remap)
{
 /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_REMAP(TIM_Remap));

  /* Set the Timer remapping configuration */
  TIMx->OR =  TIM_Remap;
}
/**
  * @}
  */

/**
  * @brief  Configure the TI1 as Input.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13 or 14 
  *         to select the TIM peripheral.
  * @param  TIM_ICPolarity : The Input Polarity.
  *          This parameter can be one of the following values:
  *            @arg TIM_ICPolarity_Rising
  *            @arg TIM_ICPolarity_Falling
  *            @arg TIM_ICPolarity_BothEdge  
  * @param  TIM_ICSelection: specifies the input to be used.
  *          This parameter can be one of the following values:
  *            @arg TIM_ICSelection_DirectTI: TIM Input 1 is selected to be connected to IC1.
  *            @arg TIM_ICSelection_IndirectTI: TIM Input 1 is selected to be connected to IC2.
  *            @arg TIM_ICSelection_TRC: TIM Input 1 is selected to be connected to TRC.
  * @param  TIM_ICFilter: Specifies the Input Capture Filter.
  *          This parameter must be a value between 0x00 and 0x0F.
  * @retval None
  */
static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter)
{
  uint32_t tmpccmr1 = 0, tmpccer = 0;

  /* Disable the Channel 1: Reset the CC1E Bit */
  TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
  tmpccmr1 = TIMx->CCMR1;
  tmpccer = TIMx->CCER;

  /* Select the Input and set the filter */
  tmpccmr1 &= ((uint32_t)~TIM_CCMR1_CC1S) & ((uint32_t)~TIM_CCMR1_IC1F);
  tmpccmr1 |= (uint32_t)(TIM_ICSelection | (uint32_t)((uint32_t)TIM_ICFilter << 4));

  /* Select the Polarity and set the CC1E Bit */
  tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
  tmpccer |= (uint32_t)(TIM_ICPolarity | (uint32_t)TIM_CCER_CC1E);

  /* Write to TIMx CCMR1 and CCER registers */
  TIMx->CCMR1 = tmpccmr1;
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configure the TI2 as Input.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
  *         peripheral.
  * @param  TIM_ICPolarity : The Input Polarity.
  *          This parameter can be one of the following values:
  *            @arg TIM_ICPolarity_Rising
  *            @arg TIM_ICPolarity_Falling
  *            @arg TIM_ICPolarity_BothEdge   
  * @param  TIM_ICSelection: specifies the input to be used.
  *          This parameter can be one of the following values:
  *            @arg TIM_ICSelection_DirectTI: TIM Input 2 is selected to be connected to IC2.
  *            @arg TIM_ICSelection_IndirectTI: TIM Input 2 is selected to be connected to IC1.
  *            @arg TIM_ICSelection_TRC: TIM Input 2 is selected to be connected to TRC.
  * @param  TIM_ICFilter: Specifies the Input Capture Filter.
  *          This parameter must be a value between 0x00 and 0x0F.
  * @retval None
  */
static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter)
{
  uint32_t tmpccmr1 = 0, tmpccer = 0, tmp = 0;

  /* Disable the Channel 2: Reset the CC2E Bit */
  TIMx->CCER &= (uint16_t)~TIM_CCER_CC2E;
  tmpccmr1 = TIMx->CCMR1;
  tmpccer = TIMx->CCER;
  tmp = (uint16_t)(TIM_ICPolarity << 4);

  /* Select the Input and set the filter */
  tmpccmr1 &= ((uint32_t)~TIM_CCMR1_CC2S) & ((uint32_t)~TIM_CCMR1_IC2F);
  tmpccmr1 |= (uint32_t)((uint32_t)TIM_ICFilter << 12);
  tmpccmr1 |= (uint32_t)((uint32_t)TIM_ICSelection << 8);

  /* Select the Polarity and set the CC2E Bit */
  tmpccer &= (uint16_t)~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
  tmpccer |=  (uint16_t)(tmp | (uint16_t)TIM_CCER_CC2E);

  /* Write to TIMx CCMR1 and CCER registers */
  TIMx->CCMR1 = tmpccmr1 ;
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configure the TI3 as Input.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_ICPolarity : The Input Polarity.
  *          This parameter can be one of the following values:
  *            @arg TIM_ICPolarity_Rising
  *            @arg TIM_ICPolarity_Falling
  *            @arg TIM_ICPolarity_BothEdge         
  * @param  TIM_ICSelection: specifies the input to be used.
  *          This parameter can be one of the following values:
  *            @arg TIM_ICSelection_DirectTI: TIM Input 3 is selected to be connected to IC3.
  *            @arg TIM_ICSelection_IndirectTI: TIM Input 3 is selected to be connected to IC4.
  *            @arg TIM_ICSelection_TRC: TIM Input 3 is selected to be connected to TRC.
  * @param  TIM_ICFilter: Specifies the Input Capture Filter.
  *          This parameter must be a value between 0x00 and 0x0F.
  * @retval None
  */
static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter)
{
  uint16_t tmpccmr2 = 0, tmpccer = 0, tmp = 0;

  /* Disable the Channel 3: Reset the CC3E Bit */
  TIMx->CCER &= (uint16_t)~TIM_CCER_CC3E;
  tmpccmr2 = TIMx->CCMR2;
  tmpccer = TIMx->CCER;
  tmp = (uint16_t)(TIM_ICPolarity << 8);

  /* Select the Input and set the filter */
  tmpccmr2 &= ((uint16_t)~TIM_CCMR1_CC1S) & ((uint16_t)~TIM_CCMR2_IC3F);
  tmpccmr2 |= (uint16_t)(TIM_ICSelection | (uint16_t)(TIM_ICFilter << (uint16_t)4));

  /* Select the Polarity and set the CC3E Bit */
  tmpccer &= (uint16_t)~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
  tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC3E);

  /* Write to TIMx CCMR2 and CCER registers */
  TIMx->CCMR2 = tmpccmr2;
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configure the TI4 as Input.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_ICPolarity : The Input Polarity.
  *          This parameter can be one of the following values:
  *            @arg TIM_ICPolarity_Rising
  *            @arg TIM_ICPolarity_Falling
  *            @arg TIM_ICPolarity_BothEdge     
  * @param  TIM_ICSelection: specifies the input to be used.
  *          This parameter can be one of the following values:
  *            @arg TIM_ICSelection_DirectTI: TIM Input 4 is selected to be connected to IC4.
  *            @arg TIM_ICSelection_IndirectTI: TIM Input 4 is selected to be connected to IC3.
  *            @arg TIM_ICSelection_TRC: TIM Input 4 is selected to be connected to TRC.
  * @param  TIM_ICFilter: Specifies the Input Capture Filter.
  *          This parameter must be a value between 0x00 and 0x0F.
  * @retval None
  */
static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter)
{
  uint16_t tmpccmr2 = 0, tmpccer = 0, tmp = 0;

  /* Disable the Channel 4: Reset the CC4E Bit */
  TIMx->CCER &= (uint16_t)~TIM_CCER_CC4E;
  tmpccmr2 = TIMx->CCMR2;
  tmpccer = TIMx->CCER;
  tmp = (uint16_t)(TIM_ICPolarity << 12);

  /* Select the Input and set the filter */
  tmpccmr2 &= ((uint16_t)~TIM_CCMR1_CC2S) & ((uint16_t)~TIM_CCMR1_IC2F);
  tmpccmr2 |= (uint16_t)(TIM_ICSelection << 8);
  tmpccmr2 |= (uint16_t)(TIM_ICFilter << 12);

  /* Select the Polarity and set the CC4E Bit */
  tmpccer &= (uint16_t)~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
  tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC4E);

  /* Write to TIMx CCMR2 and CCER registers */
  TIMx->CCMR2 = tmpccmr2;
  TIMx->CCER = tmpccer ;
}

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/