First version. No response from BMS Slave. Very sad story.

Dependencies:   mbed

main.cpp

Committer:
renemagrit
Date:
2019-11-10
Revision:
1:fbc5f1a06efd
Parent:
0:b3d31a017887
Child:
4:759de09ebb25

File content as of revision 1:fbc5f1a06efd:

#include "mbed.h"
#include <string>
using std::string;

// User defines
#define FRMWRT_SGL_R    0x00 // single device write with response
#define FRMWRT_SGL_NR   0x10 // single device write without response
#define FRMWRT_GRP_R    0x20 // group broadcast with response
#define FRMWRT_GRP_NR   0x30 // group broadcast without response
#define FRMWRT_ALL_R    0x60 // general broadcast with response
#define FRMWRT_ALL_NR   0x70 // general broadcast without response

#define TOTALBOARDS 16
typedef unsigned char BYTE;

// CRC16 for PL455
// ITU_T polynomial: x^16 + x^15 + x^2 + 1
const uint16_t crc16_table[256] = {
    0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
    0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
    0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
    0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
    0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
    0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
    0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
    0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
    0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
    0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
    0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
    0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
    0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
    0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
    0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
    0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
    0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
    0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
    0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
    0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
    0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
    0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
    0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
    0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
    0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
    0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
    0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
    0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
    0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
    0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
    0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
    0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040
};

/* K O N F I G U R I S I    P I N O V E*/
 
DigitalIn bmsFault(PC_8);
DigitalOut bmsWakeUp(PC_9);

// - - - UART CONFIGURATION - - - 

Serial pc(PA_9, PA_10,250000);
Serial pc1(PC_10, PC_11,9600);


void posaljiUARTu(int length, uint8_t * data){
    
    for(int i=0;i<length;i++)
      pc.printf("%d",data[i]);
    
      wait_ms(1);
}

void WakePL455(){
    bmsWakeUp = 1;
    wait_us(10);
    bmsWakeUp = 0;
}
uint16_t CRC16(BYTE *pBuf, int nLen)
{
   uint16_t wCRC = 0;
    int i;

    for (i = 0; i < nLen; i++)
    {
        wCRC ^= (*pBuf++) & 0x00FF;
        wCRC = crc16_table[wCRC & 0x00FF] ^ (wCRC >> 8);
    }
    
    return wCRC;
}
int  WriteFrame(BYTE bID, uint16_t& wAddr, BYTE * pData, BYTE bLen, BYTE bWriteType)
{
    
    int    bPktLen = 0;
    BYTE   pFrame[32];
    BYTE * pBuf = pFrame;
    uint16_t   wCRC;

    if (bLen == 7 || bLen > 8)
        return 0;

    memset(pFrame, 0x7F, sizeof(pFrame));
    if (wAddr > 255)    {
        *pBuf++ = 0x88 | bWriteType | bLen; // use 16-bit address
        if (bWriteType == FRMWRT_SGL_R || bWriteType == FRMWRT_SGL_NR || bWriteType == FRMWRT_GRP_R || bWriteType == FRMWRT_GRP_NR)//(bWriteType != FRMWRT_ALL_NR)// || (bWriteType != FRMWRT_ALL_R))
        {
            *pBuf++ = (bID & 0x00FF);
        }
        *pBuf++ = (wAddr & 0xFF00) >> 8;
        *pBuf++ =  wAddr & 0x00FF;
    }
    else {
        
        *pBuf++ = 0x80 | bWriteType | bLen; // use 8-bit address
        if (bWriteType == FRMWRT_SGL_R || bWriteType == FRMWRT_SGL_NR || bWriteType == FRMWRT_GRP_R || bWriteType == FRMWRT_GRP_NR)
        {
            *pBuf++ = (bID & 0x00FF);
        }
        *pBuf++ = wAddr & 0x00FF;
    }
    
    while(bLen--)
        *pBuf++ = *pData++;

    bPktLen = pBuf - pFrame;

    wCRC = CRC16(pFrame, bPktLen);
    *pBuf++ = wCRC & 0x00FF;
    *pBuf++ = (wCRC & 0xFF00) >> 8;
    bPktLen += 2;

    //sciSend(scilinREG, bPktLen, pFrame);

    posaljiUARTu(bPktLen,pFrame);
    
    return bPktLen;
}


int  ReadFrameReq(BYTE bID, uint16_t wAddr, BYTE bByteToReturn)
{
    BYTE bReturn = bByteToReturn - 1;

    if (bReturn > 127)
        return 0;

    return WriteFrame(bID, wAddr, &bReturn, 1, FRMWRT_SGL_R);
}

int  ReadReg(BYTE bID, uint16_t wAddr, void * pData, BYTE bLen, uint32_t dwTimeOut)
{
    int   bRes = 0;
    BYTE  bRX[8];

    memset(bRX, 0, sizeof(bRX));
    switch(bLen)
    {
    case 1:
        bRes = ReadFrameReq(bID, wAddr, 1);
        break;
    case 2:
        bRes = ReadFrameReq(bID, wAddr, 2);
        break;
    case 3:
        bRes = ReadFrameReq(bID, wAddr, 3);
        break;
    case 4:
        bRes = ReadFrameReq(bID, wAddr, 4);
        break;
    default:
        break;
    }
    return bRes;
}
int  WriteReg(BYTE bID, uint16_t wAddr, uint64_t dwData, BYTE bLen, BYTE bWriteType)
{
    int bRes = 0;
    BYTE bBuf[8] = {0, 0, 0, 0, 0, 0, 0, 0};
    switch(bLen)
    {
    case 1:
        bBuf[0] =  dwData & 0x00000000000000FF;
        
        bRes = WriteFrame(bID, wAddr, bBuf, 1, bWriteType);
        break;
    case 2:
        bBuf[0] = (dwData & 0x000000000000FF00) >> 8;
        bBuf[1] =  dwData & 0x00000000000000FF;
       
        bRes = WriteFrame(bID, wAddr, bBuf, 2, bWriteType);
        break;
    case 3:
        bBuf[0] = (dwData & 0x0000000000FF0000) >> 16;
        bBuf[1] = (dwData & 0x000000000000FF00) >> 8;
        bBuf[2] =  dwData & 0x00000000000000FF;
        
        bRes = WriteFrame(bID, wAddr, bBuf, 3, bWriteType);
        break;
    case 4:
        bBuf[0] = (dwData & 0x00000000FF000000) >> 24;
        bBuf[1] = (dwData & 0x0000000000FF0000) >> 16;
        bBuf[2] = (dwData & 0x000000000000FF00) >> 8;
        bBuf[3] =  dwData & 0x00000000000000FF;
        
        bRes = WriteFrame(bID, wAddr, bBuf, 4, bWriteType);
        break;
    case 5:
        bBuf[0] = (dwData & 0x000000FF00000000) >> 32;
        bBuf[1] = (dwData & 0x00000000FF000000) >> 24;
        bBuf[2] = (dwData & 0x0000000000FF0000) >> 16;
        bBuf[3] = (dwData & 0x000000000000FF00) >> 8;
        bBuf[4] =  dwData & 0x00000000000000FF;
        
        bRes = WriteFrame(bID, wAddr, bBuf, 5, bWriteType);
        break;
    case 6:
        bBuf[0] = (dwData & 0x0000FF0000000000) >> 40;
        bBuf[1] = (dwData & 0x000000FF00000000) >> 32;
        bBuf[2] = (dwData & 0x00000000FF000000) >> 24;
        bBuf[3] = (dwData & 0x0000000000FF0000) >> 16;
        bBuf[4] = (dwData & 0x000000000000FF00) >> 8;
        bBuf[5] =  dwData & 0x00000000000000FF;
        
        bRes = WriteFrame(bID, wAddr, bBuf, 6, bWriteType);
        break;
    case 7:
        bBuf[0] = (dwData & 0x00FF000000000000) >> 48;
        bBuf[1] = (dwData & 0x0000FF0000000000) >> 40;
        bBuf[2] = (dwData & 0x000000FF00000000) >> 32;
        bBuf[3] = (dwData & 0x00000000FF000000) >> 24;
        bBuf[4] = (dwData & 0x0000000000FF0000) >> 16;
        bBuf[5] = (dwData & 0x000000000000FF00) >> 8;
        bBuf[6] =  dwData & 0x00000000000000FF;;
        
        bRes = WriteFrame(bID, wAddr, bBuf, 7, bWriteType);
        break;
    case 8:
        bBuf[0] = (dwData & 0xFF00000000000000) >> 56;
        bBuf[1] = (dwData & 0x00FF000000000000) >> 48;
        bBuf[2] = (dwData & 0x0000FF0000000000) >> 40;
        bBuf[3] = (dwData & 0x000000FF00000000) >> 32;
        bBuf[4] = (dwData & 0x00000000FF000000) >> 24;
        bBuf[5] = (dwData & 0x0000000000FF0000) >> 16;
        bBuf[6] = (dwData & 0x000000000000FF00) >> 8;
        bBuf[7] =  dwData & 0x00000000000000FF;
        
        bRes = WriteFrame(bID, wAddr, bBuf, 8, bWriteType);
        break;
    default:
        break;
    }
    return bRes;
}

void callback() {
    // Note: you need to actually read from the serial to clear the RX interrupt
    pc1.printf("* * *    Uspesan PRIJEM!     * * *\n");
    pc1.printf("%c\n", pc.getc());
}
 
int main() {
    uint32_t  wTemp = 0;
    pc.attach(&callback);
   /* pc.printf("Ulaz u fju \n");
    WriteReg(0, 10, 0, 1, FRMWRT_ALL_NR); 
    WriteReg(0, 16, 0x10E0, 2, FRMWRT_ALL_NR); //AKO JE PODATAK 2B onda treba da SPOJIM PODADTAK U PORUCI ehhehehehe!!!!!!!!!!!!!!
    pc.printf("Done \n");
    */
    pc1.printf("INICIJALIZACIJA START \n");
    int nSent = 0;
    
    WakePL455();
    
    // Wake all devices
    // The wake tone will awaken any device that is already in shutdown and the pwrdown will shutdown any device
    // that is already awake. The least number of times to sequence wake and pwrdown will be half the number of
    // boards to cover the worst case combination of boards already awake or shutdown.
    for(int nDev_ID = 0; nDev_ID < TOTALBOARDS>>1; nDev_ID++) {
        nSent = WriteReg(nDev_ID, 12, 0x40, 1, FRMWRT_ALL_NR);  // send out broadcast pwrdown command
        wait_ms(5); //~5ms
        WakePL455();
        wait_ms(5); //~5ms
    }
    // Mask Customer Checksum Fault bit
    nSent = WriteReg(0, 107, 0x8000, 2, FRMWRT_ALL_NR); // clear all fault summary flags

    // Clear all faults
    nSent = WriteReg(0, 82, 0xFFC0, 2, FRMWRT_ALL_NR);      // clear all fault summary flags
    nSent = WriteReg(0, 81, 0x38, 1, FRMWRT_ALL_NR); // clear fault flags in the system status register

    // Auto-address all boards (section 1.2.2)
    nSent = WriteReg(0, 14, 0x19, 1, FRMWRT_ALL_NR); // set auto-address mode on all boards
    nSent = WriteReg(0, 12, 0x08, 1, FRMWRT_ALL_NR); // enter auto address mode on all boards, the next write to this ID will be its address

    // Set addresses for all boards in daisy-chain (section 1.2.3)
    for (int nDev_ID = 0; nDev_ID < TOTALBOARDS; nDev_ID++)
    {
        nSent = WriteReg(nDev_ID, 10, nDev_ID, 1, FRMWRT_ALL_NR); // send address to each board
    }

    // Enable all communication interfaces on all boards in the stack (section 1.2.1)
    nSent = WriteReg(0, 16, 0x10F8, 2, FRMWRT_ALL_NR);  // set communications baud rate and enable all interfaces on all boards in stack

    pc1.printf("INICIJALIZACIJA END \n");
    
    pc1.printf("Response? \n");

    /*for (int nDev_ID = TOTALBOARDS - 1; nDev_ID >= 0; --nDev_ID)
    {
        // read device ID to see if there is a response
        ReadReg(nDev_ID, 10, &wTemp, 1, 0); // 0ms timeout
        wait_ms(1);
    }*/
    wait(1);
    
    while (1) {
        pc1.printf("Main Code \n");
        wait(2);
        
        if(bmsFault)
            pc1.printf("- - - GRESKA FAULT! - - -\n");
    }
}