Marta Avramovic
/
BMS_by_Marta
First version. No response from BMS Slave. Very sad story.
main.cpp
- Committer:
- renemagrit
- Date:
- 2020-02-24
- Revision:
- 4:759de09ebb25
- Parent:
- 1:fbc5f1a06efd
File content as of revision 4:759de09ebb25:
#include "mbed.h" #include <string> using std::string; // User defines #define FRMWRT_SGL_R 0x00 // single device write with response #define FRMWRT_SGL_NR 0x10 // single device write without response #define FRMWRT_GRP_R 0x20 // group broadcast with response #define FRMWRT_GRP_NR 0x30 // group broadcast without response #define FRMWRT_ALL_R 0x60 // general broadcast with response #define FRMWRT_ALL_NR 0x70 // general broadcast without response #define TOTALBOARDS 16 typedef unsigned char BYTE; // CRC16 for PL455 // ITU_T polynomial: x^16 + x^15 + x^2 + 1 const uint16_t crc16_table[256] = { 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441, 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41, 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840, 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241, 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40, 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841, 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40, 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41, 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641, 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040 }; /* K O N F I G U R I S I P I N O V E*/ DigitalIn bmsFault(PA_4);//PC_8); DigitalOut bmsWakeUp(PB_0);//PC_9); // - - - UART CONFIGURATION - - - Serial pc(PA_0, PA_1, 250000);//PA_9, PA_10,250000); Serial pc1(USBTX, USBRX, 9600);//PC_10, PC_11,9600); void posaljiUARTu(int length, uint8_t * data){ for(int i=0;i<length;i++) pc.putc(data[i]); //if(length > 10){ // sscanf(pBuf,"+IPD,%d,%d:%s", &linkID, &ipdLen, type); //} wait_ms(1); } void WakePL455(){ bmsWakeUp = 1; wait_ms(10); bmsWakeUp = 0; } uint16_t CRC16(BYTE *pBuf, int nLen) { uint16_t wCRC = 0; int i; for (i = 0; i < nLen; i++) { wCRC ^= (*pBuf++) & 0x00FF; wCRC = crc16_table[wCRC & 0x00FF] ^ (wCRC >> 8); } return wCRC; } int WriteFrame(BYTE bID, uint16_t& wAddr, BYTE * pData, BYTE bLen, BYTE bWriteType) { int bPktLen = 0; BYTE pFrame[32]; BYTE * pBuf = pFrame; uint16_t wCRC; if (bLen == 7 || bLen > 8) return 0; memset(pFrame, 0x7F, sizeof(pFrame)); if (wAddr > 255) { *pBuf++ = 0x88 | bWriteType | bLen; // use 16-bit address if (bWriteType == FRMWRT_SGL_R || bWriteType == FRMWRT_SGL_NR || bWriteType == FRMWRT_GRP_R || bWriteType == FRMWRT_GRP_NR)//(bWriteType != FRMWRT_ALL_NR)// || (bWriteType != FRMWRT_ALL_R)) { *pBuf++ = (bID & 0x00FF); } *pBuf++ = (wAddr & 0xFF00) >> 8; *pBuf++ = wAddr & 0x00FF; } else { *pBuf++ = 0x80 | bWriteType | bLen; // use 8-bit address if (bWriteType == FRMWRT_SGL_R || bWriteType == FRMWRT_SGL_NR || bWriteType == FRMWRT_GRP_R || bWriteType == FRMWRT_GRP_NR) { *pBuf++ = (bID & 0x00FF); } *pBuf++ = wAddr & 0x00FF; } while(bLen--) *pBuf++ = *pData++; bPktLen = pBuf - pFrame; wCRC = CRC16(pFrame, bPktLen); *pBuf++ = wCRC & 0x00FF; *pBuf++ = (wCRC & 0xFF00) >> 8; bPktLen += 2; //sciSend(scilinREG, bPktLen, pFrame); posaljiUARTu(bPktLen,pFrame); return bPktLen; } int ReadFrameReq(BYTE bID, uint16_t wAddr, BYTE bByteToReturn) { BYTE bReturn = bByteToReturn - 1; if (bReturn > 127) return 0; return WriteFrame(bID, wAddr, &bReturn, 1, FRMWRT_SGL_R); } int ReadReg(BYTE bID, uint16_t wAddr, void * pData, BYTE bLen, uint32_t dwTimeOut) { int bRes = 0; BYTE bRX[8]; memset(bRX, 0, sizeof(bRX)); switch(bLen) { case 1: bRes = ReadFrameReq(bID, wAddr, 1); break; case 2: bRes = ReadFrameReq(bID, wAddr, 2); break; case 3: bRes = ReadFrameReq(bID, wAddr, 3); break; case 4: bRes = ReadFrameReq(bID, wAddr, 4); break; default: break; } return bRes; } int WriteReg(BYTE bID, uint16_t wAddr, uint64_t dwData, BYTE bLen, BYTE bWriteType) { int bRes = 0; BYTE bBuf[8] = {0, 0, 0, 0, 0, 0, 0, 0}; switch(bLen) { case 1: bBuf[0] = dwData & 0x00000000000000FF; bRes = WriteFrame(bID, wAddr, bBuf, 1, bWriteType); break; case 2: bBuf[0] = (dwData & 0x000000000000FF00) >> 8; bBuf[1] = dwData & 0x00000000000000FF; bRes = WriteFrame(bID, wAddr, bBuf, 2, bWriteType); break; case 3: bBuf[0] = (dwData & 0x0000000000FF0000) >> 16; bBuf[1] = (dwData & 0x000000000000FF00) >> 8; bBuf[2] = dwData & 0x00000000000000FF; bRes = WriteFrame(bID, wAddr, bBuf, 3, bWriteType); break; case 4: bBuf[0] = (dwData & 0x00000000FF000000) >> 24; bBuf[1] = (dwData & 0x0000000000FF0000) >> 16; bBuf[2] = (dwData & 0x000000000000FF00) >> 8; bBuf[3] = dwData & 0x00000000000000FF; bRes = WriteFrame(bID, wAddr, bBuf, 4, bWriteType); break; case 5: bBuf[0] = (dwData & 0x000000FF00000000) >> 32; bBuf[1] = (dwData & 0x00000000FF000000) >> 24; bBuf[2] = (dwData & 0x0000000000FF0000) >> 16; bBuf[3] = (dwData & 0x000000000000FF00) >> 8; bBuf[4] = dwData & 0x00000000000000FF; bRes = WriteFrame(bID, wAddr, bBuf, 5, bWriteType); break; case 6: bBuf[0] = (dwData & 0x0000FF0000000000) >> 40; bBuf[1] = (dwData & 0x000000FF00000000) >> 32; bBuf[2] = (dwData & 0x00000000FF000000) >> 24; bBuf[3] = (dwData & 0x0000000000FF0000) >> 16; bBuf[4] = (dwData & 0x000000000000FF00) >> 8; bBuf[5] = dwData & 0x00000000000000FF; bRes = WriteFrame(bID, wAddr, bBuf, 6, bWriteType); break; case 7: bBuf[0] = (dwData & 0x00FF000000000000) >> 48; bBuf[1] = (dwData & 0x0000FF0000000000) >> 40; bBuf[2] = (dwData & 0x000000FF00000000) >> 32; bBuf[3] = (dwData & 0x00000000FF000000) >> 24; bBuf[4] = (dwData & 0x0000000000FF0000) >> 16; bBuf[5] = (dwData & 0x000000000000FF00) >> 8; bBuf[6] = dwData & 0x00000000000000FF;; bRes = WriteFrame(bID, wAddr, bBuf, 7, bWriteType); break; case 8: bBuf[0] = (dwData & 0xFF00000000000000) >> 56; bBuf[1] = (dwData & 0x00FF000000000000) >> 48; bBuf[2] = (dwData & 0x0000FF0000000000) >> 40; bBuf[3] = (dwData & 0x000000FF00000000) >> 32; bBuf[4] = (dwData & 0x00000000FF000000) >> 24; bBuf[5] = (dwData & 0x0000000000FF0000) >> 16; bBuf[6] = (dwData & 0x000000000000FF00) >> 8; bBuf[7] = dwData & 0x00000000000000FF; bRes = WriteFrame(bID, wAddr, bBuf, 8, bWriteType); break; default: break; } return bRes; } BYTE recBuff[1024]; int recLen=0; int expected=0; volatile bool full = false; int rdLen=0; void callback() { // Note: you need to actually read from the serial to clear the RX interrupt //pc1.printf("* * * Uspesan PRIJEM! * * *\n"); while(pc.readable()){ //pc1.printf("jepse"); //pc1.printf("%d\n", pc.getc()); recBuff[recLen++]=pc.getc(); if(expected==0) expected = recBuff[0]+4; if(expected==recLen){ full=true; rdLen=expected; expected=0; recLen=0; } } } void waitFrame(){ while(!full); full=false; for(int i = 0;i<rdLen;i++){ pc1.printf("%X ",recBuff[i]); } pc1.printf("\n\n- - - VOLTAGE - - -\n"); for(int i = 1; i < recBuff[0] - 1; i += 2){ int voltage = recBuff[i+1]; voltage |= (recBuff[i]) << 8; double vol = ((double)voltage)/65536.0 * 5.0; pc1.printf("CELL[%d] = %.6f V\n",(recBuff[0] - 1)/2 -(i-1)/2,vol); } pc1.printf("\n"); } int main() { uint32_t wTemp = 0; pc.attach(&callback); /* pc.printf("Ulaz u fju \n"); WriteReg(0, 10, 0, 1, FRMWRT_ALL_NR); WriteReg(0, 16, 0x10E0, 2, FRMWRT_ALL_NR); //AKO JE PODATAK 2B onda treba da SPOJIM PODADTAK U PORUCI ehhehehehe!!!!!!!!!!!!!! pc.printf("Done \n"); */ pc1.printf("INICIJALIZACIJA START \n"); WakePL455(); // Wake all devices // The wake tone will awaken any device that is already in shutdown and the pwrdown will shutdown any device // that is already awake. The least number of times to sequence wake and pwrdown will be half the number of // boards to cover the worst case combination of boards already awake or shutdown. for(int nDev_ID = 0; nDev_ID < TOTALBOARDS>>1; nDev_ID++) { WriteReg(nDev_ID, 0x12, 0x40, 1, FRMWRT_ALL_NR); // send out broadcast pwrdown command wait_ms(5); //~5ms WakePL455(); wait_ms(5); //~5ms } // Mask Customer Checksum Fault bit WriteReg(0, 107, 0x8000, 2, FRMWRT_ALL_NR); // clear all fault summary flags // Clear all faults WriteReg(0, 82, 0xFFC0, 2, FRMWRT_ALL_NR); // clear all fault summary flags WriteReg(0, 81, 0x38, 1, FRMWRT_ALL_NR); // clear fault flags in the system status register // Auto-address all boards (section 1.2.2) WriteReg(0, 14, 0x19, 1, FRMWRT_ALL_NR); // set auto-address mode on all boards WriteReg(0, 12, 0x08, 1, FRMWRT_ALL_NR); // enter auto address mode on all boards, the next write to this ID will be its address // Set addresses for all boards in daisy-chain (section 1.2.3) for (int nDev_ID = 0; nDev_ID < TOTALBOARDS; nDev_ID++) { WriteReg(nDev_ID, 10, nDev_ID, 1, FRMWRT_ALL_NR); // send address to each board } // Enable all communication interfaces on all boards in the stack (section 1.2.1) //default 250k bound WriteReg(0, 16, 0x10F8, 2, FRMWRT_ALL_NR); // set communications baud rate and enable all interfaces on all boards in stack pc1.printf("INICIJALIZACIJA END \n"); pc1.printf("Response? \n"); for (int nDev_ID = TOTALBOARDS - 1; nDev_ID >= 0; --nDev_ID) { // read device ID to see if there is a response ReadReg(nDev_ID, 10, &wTemp, 1, 0); // 0ms timeout wait_ms(10); } wait(1); // Clear all faults (section 1.2.7) WriteReg(0, 82, 0xFFC0, 2, FRMWRT_ALL_NR); // clear all fault summary flags WriteReg(0, 81, 0x38, 1, FRMWRT_ALL_NR); // clear fault flags in the system status register wait_ms(10); // Configure AFE (section 2.2.1) int nDev_ID = 0; WriteReg(nDev_ID, 60, 0x00, 1, FRMWRT_SGL_NR); // set 0 mux delay WriteReg(nDev_ID, 61, 0x00, 1, FRMWRT_SGL_NR); // set 0 initial delay // Configure voltage and internal sample period (section 2.2.2) nDev_ID = 0; WriteReg(nDev_ID, 62, 0xCC, 1, FRMWRT_SGL_NR); // set 99.92us ADC sampling period // Configure the oversampling rate (section 2.2.3) nDev_ID = 0; WriteReg(nDev_ID, 7, 0x00, 1, FRMWRT_SGL_NR); // set no oversampling period // Select number of cells and channels to sample (section 2.2.5.1) nDev_ID = 0; //(nDev_ID, 13, 0x10, 1, FRMWRT_SGL_NR); // set number of cells to 16 //WriteReg(nDev_ID, 3, 0xFFFF03C0, 4, FRMWRT_SGL_NR); // select all cell, AUX channels 0 and 1, and internal digital die and internal analog die temperatures // Select identical number of cells and channels on all modules simultaneously (section 2.2.5.2) //WriteReg(0, 13, 0x10, 1, FRMWRT_ALL_NR); // set number of cells to 16 //WriteReg(0, 3, 0xFFFF03C0, 4, FRMWRT_ALL_NR); // select all cell, AUX channels 0 and 1, and internal digital die and internal analog die temperatures // WriteReg(0, 13, 0x07, 1, FRMWRT_ALL_NR); // set number of cells to 8 //moze bey ove gornje fje koja nema nikakav efekat WriteReg(0, 3, 0xFFFF00C0, 4, FRMWRT_ALL_NR); // select all cell channels 1-8, AUX channels 0 and 1, and internal digital die and internal analog die temperatures // Set cell over-voltage and cell under-voltage thresholds on a single board (section 2.2.6.1) nDev_ID = 0; WriteReg(nDev_ID, 144, 0xD1EC, 2, FRMWRT_SGL_NR); // set OV threshold = 4.1000V WriteReg(nDev_ID, 142, 0x6148, 2, FRMWRT_SGL_NR); // set UV threshold = 1.9000V // Set cell over-voltage and cell under-voltage thresholds on all boards simultaneously (section 2.2.6.2) WriteReg(0, 144, 0xD1EC, 2, FRMWRT_ALL_NR); // set OV threshold = 4.1000V WriteReg(0, 142, 0x6148, 2, FRMWRT_ALL_NR); // set UV threshold = 1.9000V //-------------22.2.2020. waitFrame(); //*************************************************************************************************************************** // Send broadcast request to all boards to sample and send results (section 3.2) //WriteReg(0, 2, 0x02, 1, FRMWRT_ALL_NR); // send sync sample command //nSent = WaitRespFrame(bFrame, 81, 0); // 24 bytes data (x3) + packet header (x3) + CRC (x3), 0ms timeout // Send broadcast request to all boards to sample and store results (section 3.3.1) //WriteReg(0, 2, 0x00, 1, FRMWRT_ALL_NR); // send sync sample command // Read sampled data from boards (section 3.3.2) // 24 bytes - still configured for 8 AFE channels plus 2 AUX channels plus internal digital and analog die // temperatures (see code for section 2.2.5.2) nDev_ID = 0; //waitFrame(); WriteReg(nDev_ID, 2, 0x20, 1, FRMWRT_SGL_R); // send read sampled values command //nSent = WaitRespFrame(bFrame, 27, 0); // 24 bytes data + packet header + CRC, 0ms timeout waitFrame(); // Send sample request to single board to sample and send results (section 4.2) nDev_ID = 0; //WriteReg(nDev_ID, 2, 0x01, 1, FRMWRT_SGL_R); // send sync sample command //nSent = WaitRespFrame(bFrame, 27, 0); // 24 bytes data + packet header + CRC, 0ms timeout //waitFrame(); while (1) { pc1.printf("Main Code \n"); wait(2); nDev_ID = 0; WriteReg(nDev_ID, 2, 0x20, 1, FRMWRT_SGL_R); // send read sampled values command waitFrame(); if(bmsFault) pc1.printf("- - - GRESKA FAULT! - - -\n"); } }