Tema SCPI Negru Rares-Razvan
Dependencies: BLE_API mbed nRF51822
Fork of nRF51822_TemperatureEx by
main.cpp
- Committer:
- raresnegru22
- Date:
- 2016-10-24
- Revision:
- 13:bd15c17003e7
- Parent:
- 12:7772974713ac
File content as of revision 13:bd15c17003e7:
/* Copyright (c) 2012-2014 RedBearLab Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * The application works with the BLEController iOS/Android App. * Type something from the Terminal to send * to the BLEController App or vice verse. * Read read_me.md file for more informations about the extended feature */ #include "ble/BLE.h" #include <myData.h> #include <Gap.h> #include "ble_flash.c" #include "BatteryService.h" BLE ble; #define BLE_UUID_TXRX_SERVICE 0x0000 /**< The UUID of the Nordic UART Service. */ #define BLE_UUID_TX_CHARACTERISTIC 0x0002 /**< The UUID of the TX Characteristic. */ #define BLE_UUIDS_RX_CHARACTERISTIC 0x0003 /**< The UUID of the RX Characteristic. */ #define TXRX_BUF_LEN 20 /** For radio message transmission*/ #define MyASSERT(cond , serialpc, errVal) assert_error_app((bool)cond, serialpc, (uint16_t)errVal, __LINE__, __FILE__) Serial pc(USBTX, USBRX); uint8_t batteryLevel=100; // The Nordic UART Service static const uint8_t uart_base_uuid[] = {0x71, 0x3D, 0, 0, 0x50, 0x3E, 0x4C, 0x75, 0xBA, 0x94, 0x31, 0x48, 0xF1, 0x8D, 0x94, 0x1E}; static const uint8_t uart_tx_uuid[] = {0x71, 0x3D, 0, 3, 0x50, 0x3E, 0x4C, 0x75, 0xBA, 0x94, 0x31, 0x48, 0xF1, 0x8D, 0x94, 0x1E}; static const uint8_t uart_rx_uuid[] = {0x71, 0x3D, 0, 2, 0x50, 0x3E, 0x4C, 0x75, 0xBA, 0x94, 0x31, 0x48, 0xF1, 0x8D, 0x94, 0x1E}; static const uint8_t uart_base_uuid_rev[] = {0x1E, 0x94, 0x8D, 0xF1, 0x48, 0x31, 0x94, 0xBA, 0x75, 0x4C, 0x3E, 0x50, 0, 0, 0x3D, 0x71}; static const int8_t txPower = 0x1E; BatteryService *batteryService = NULL; uint8_t txPayload[TXRX_BUF_LEN] = {0,}; uint8_t rxPayload[TXRX_BUF_LEN] = {0,}; char myBuf[TXRX_BUF_LEN]; uint16_t len; static uint8_t rx_buf[TXRX_BUF_LEN]; static uint8_t rx_len=0; static uint32_t gTimeInstant = 1; // TimerTick Resolution, in seconds bool g_bIsConnected = false; bool g_bIsAdvertising = false; bool g_bConnDisabled = false; bool g_LogActive = false; static myDataLog_t g_MyData; uint8_t g_MyDataIdx=0; // pins connected for measuring DigitalOut led(LED1); // voltage for the termic resistor AnalogIn Vin(A5); myPayload_t g_currMeasures2; // last measurements Timeout timeout_err; // timeout for buzz on error Ticker periodicActions; bool bNewSample = false; mdatetime_manager_t g_myDateTimeVar; uint8_t gBatteryValue=0; GattCharacteristic txCharacteristic (uart_tx_uuid, txPayload, 1, TXRX_BUF_LEN, GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_WRITE | GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_WRITE_WITHOUT_RESPONSE); GattCharacteristic rxCharacteristic (uart_rx_uuid, rxPayload, 1, TXRX_BUF_LEN, GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY); GattCharacteristic *uartChars[] = {&txCharacteristic, &rxCharacteristic}; GattService uartService(uart_base_uuid, uartChars, sizeof(uartChars) / sizeof(GattCharacteristic *)); void at_timeout_err() { // stop buzz } void alarm(){ //timeout_err.attach(&at_timeout_err, 2); } void sendRadioMsg(const uint8_t* buf, uint16_t length) { uint8_t retVal; retVal = ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), buf, length); //pc.printf("Err=%d\r\n",retVal); MyASSERT((retVal!=0),&pc, retVal); } void disconnectionCallback(Gap::Handle_t handle, Gap::DisconnectionReason_t reason) { pc.printf("Disconnected \r\n"); g_bIsConnected = false; g_bIsAdvertising = false; pc.printf("R: %d\r",reason); if (reason != 0x16) { ble.startAdvertising(); g_bIsAdvertising = true; } } void connectionCallback(const Gap::ConnectionCallbackParams_t *params) { pc.printf("Connected \r\n"); g_bIsConnected = true; g_bIsAdvertising = false; } void connectionUpdate(connection_update_t option) { if (g_bConnDisabled == false) { switch (option) { case eStartAdvertising: { if ((g_bIsConnected == false)&&(g_bIsAdvertising == false)) { pc.printf("Start Advertising\r"); ble.startAdvertising(); g_bIsAdvertising = true; } break; } case eStopAdvertising: { if (g_bIsAdvertising == true) { pc.printf("Stop Advertising\r"); ble.stopAdvertising(); g_bIsAdvertising = false; } break; } case eDisconnect: { if (g_bIsConnected == true) { pc.printf("Close connection\r"); ble.disconnect((Gap::DisconnectionReason_t)0x12); } else if (g_bIsAdvertising == true) { pc.printf("Stop Advertising\r"); ble.stopAdvertising(); g_bIsAdvertising = false; } break; } } } } void write_data_to_flash(uint32_t *tick, myPayload_t * currMeasures) { uint8_t page_num=0; if (g_MyDataIdx==0) { //initiate connection connectionUpdate(eStartAdvertising); // time and date used to initialize the g_MyData variable memcpy(&g_MyData.startData.datetime,&g_myDateTimeVar.currentDateTime, sizeof(mdate_time_t)); memcpy(&g_MyData.startData.data,currMeasures, sizeof(myPayload_t)); } else { // it should be logged here the time difference from last record... g_MyData.myData[g_MyDataIdx-1].minutes = (uint16_t)(*tick*gTimeInstant / 60); g_MyData.myData[g_MyDataIdx-1].seconds = (*tick*gTimeInstant% 60); memcpy(&g_MyData.myData[g_MyDataIdx-1].data,currMeasures, sizeof(myPayload_t)); } *tick = 0; if (g_MyDataIdx==(MAXBUFFER-3)) { //initiate disconnection connectionUpdate(eDisconnect); } if (g_MyDataIdx == MAXBUFFER) { // write2Flash the current page num //connectionUpdate(eDisconnect); page_num=flash_currPage(); // write2Flash the current page data ble_flash_page_write(page_num, (uint32_t*)&(g_MyData), 251u); memset(&g_MyData,0,sizeof(myDataLog_t)); //pc.printf("retValWr: %d, Pg:%d, Min: %d \r\n",retVal, page_num,g_myDateTimeVar.currentDateTime.minutes); flash_go_nextPage(); } g_MyDataIdx = (g_MyDataIdx+1)%(MAXBUFFER+1); } void on_error_radioMsg() { sprintf(myBuf,"%s","WrongSyntax"); //buzz_int(&buzzer,5,3); //timeout_err.attach(&at_timeout_err, 2); sendRadioMsg((uint8_t*)&myBuf[0], 12); } void flash_page_serial_dump(uint32_t* p_curr_addr) { myDataLogShort_t initialData; mdate_time_t * pdate; myDataL_t dataOut[2]; uint8_t i; p_curr_addr += 2; // skip the magic number and the word count memcpy((uint32_t*)&initialData, p_curr_addr, 6*sizeof(uint32_t)); pdate = &initialData.startData.datetime; pc.printf("20%2d_%2d_%2d H:%2d P:%4x\r",pdate->year, pdate->month, pdate->day, pdate->hours, p_curr_addr); pc.printf("%2d:%2d;%3d;%3d;%3d;\r",pdate->minutes, pdate->seconds, initialData.startData.data.x, initialData.startData.data.y, initialData.startData.data.z); pc.printf("%2d:%2d;%3d;%3d;%3d;%3d\r",initialData.myData.minutes, initialData.myData.seconds, initialData.myData.data.x, initialData.myData.data.y, initialData.myData.data.z,initialData.myData.data.temp); p_curr_addr += 6; for (i=0; i<49; i++) { memcpy((uint32_t*)&dataOut, p_curr_addr, 5*sizeof(uint32_t)); pc.printf("%2d:%2d;%3d;%3d;%3d;%3d\r",dataOut[0].minutes, dataOut[0].seconds, dataOut[0].data.x, dataOut[0].data.y, dataOut[0].data.z,dataOut[0].data.temp); pc.printf("%2d:%2d;%3d;%3d;%3d;%3d\r",dataOut[1].minutes, dataOut[1].seconds, dataOut[1].data.x, dataOut[1].data.y, dataOut[1].data.z,dataOut[1].data.temp); p_curr_addr += 5; } } int sign(int nr){ int retVal=0; if (nr>0) retVal=1; else if (nr<0) retVal=-1; return retVal; } float read_real_value(void){ uint32_t wrk,reg0,reg1,reg2; reg0 = NRF_ADC->ENABLE; // save register value reg1 = NRF_ADC->CONFIG; // save register value reg2 = NRF_ADC->RESULT; // save register value NRF_ADC->ENABLE = ADC_ENABLE_ENABLE_Enabled; NRF_ADC->CONFIG = (ADC_CONFIG_RES_10bit << ADC_CONFIG_RES_Pos) | (ADC_CONFIG_INPSEL_SupplyOneThirdPrescaling << ADC_CONFIG_INPSEL_Pos) | (ADC_CONFIG_REFSEL_VBG << ADC_CONFIG_REFSEL_Pos) | (ADC_CONFIG_PSEL_Disabled << ADC_CONFIG_PSEL_Pos) | (ADC_CONFIG_EXTREFSEL_None << ADC_CONFIG_EXTREFSEL_Pos); NRF_ADC->EVENTS_END = 0; NRF_ADC->TASKS_START = 1; while (!NRF_ADC->EVENTS_END) {;} wrk = NRF_ADC->RESULT; // 10 bit result NRF_ADC->ENABLE = reg0; // recover register value NRF_ADC->CONFIG = reg1; // recover register value NRF_ADC->RESULT = reg2; // recover register value NRF_ADC->EVENTS_END = 0; return ((float)wrk / 1024 * 1.2 * 3.0); } uint8_t read100(void) { float wrk_vdd, v0p= 2.7 ,v100p= 3.3; wrk_vdd = read_real_value(); /*if (wrk_vdd <= v0p){ return 0; } else if (wrk_vdd >= v100p){ led = 0; return 100; } */ led = 1; wrk_vdd = (wrk_vdd - v0p) / (v100p - v0p); return (uint8_t)(wrk_vdd * 100); } void update_measurements() { uint32_t resistance; int32_t tempValue; // use Vin.read() o read the voltage from the AI5 pin // fell free to the fill code in this function .... //Let us consider the input voltage ranges from 0-3.3v.That means that the 0 voltage input from AI5 means the temperature of the resistor //is -55 degrees,and a 3v3 input in AI5 means that the termistor is at 125 degrees. //The number of values that can be inputed from 0 to 3v3 is 180 values. //That means that each 0.018V increase on the input means that the temperature rised with 1 degree,and every decrease //of 0.018V means that the temperature went down with 1 degree Celsius. //Let us now read the voltage from the AI5 pin resistance=Vin.read(); //Based on my calculations,if the voltage is under 1.01V,the temperature is negative.With that in mind //We will separate negative from positive values. if(resistance<=1.01) { if(resistance<0.018) { tempValue=-55; } tempValue=-55+resistance/0.018; } tempValue=0+resistance/0.018; // print on the bluetooth communication the value of Temperature computed in Celsius degrees sprintf(myBuf,"T:%3d.%2d;%d;\r", tempValue/100,tempValue%100,resistance); len = 20; sendRadioMsg((uint8_t *)myBuf, len); } void at_eachInstant() { static uint32_t tick=0; //const uint8_t sizeB= 3*sizeof(uint16_t); //static myPayload_t prevMeasures2=(myPayload_t) { 0, 0, 0, 0}; // update time update_time(&g_myDateTimeVar, gTimeInstant); //sendRadioMsg("Tick\r", 5); batteryService->updateBatteryLevel(read100()); //update measurements if (g_bIsConnected==true){ update_measurements(); } if (g_LogActive==true){ // if there are changes in data save //g_currMeasures2.temp = Temp.read_u16(); //if (memcmp(&prevMeasures2, &g_currMeasures2, sizeB)!=0) if (bNewSample == true) //if (update_measurements()==1) { bNewSample = false; write_data_to_flash(&tick, &g_currMeasures2); //memcpy(&prevMeasures2,&g_currMeasures2,sizeB); // //write_data_to_flash(&tick, &g_currMeasures2); } tick++; } } // Radio commands decode void decode(uint8_t * buffer, uint16_t length) { switch (buffer[0]) { case 'r': {// Read Operations switch (buffer[1]) { case '0': { // display all inputs sprintf(myBuf,"Id1:%d,%d,%d,%d\r\n", g_currMeasures2.x,g_currMeasures2.y,g_currMeasures2.z,g_currMeasures2.temp); len = 20; break; } case '1': { sprintf(myBuf,"Id2:%d,%d,%d\r\n", g_currMeasures2.x,g_currMeasures2.y,g_currMeasures2.z); len = 20; break; } case '2': { sprintf(myBuf,"V:%2.3f\r\n", read_real_value()); len = 11; break; } case '3': { sprintf(myBuf,"T = %3d\r\n", g_currMeasures2.temp); len = 10; break; } case '4':{ // sprintf(myBuf,"F1=%2d\r\n",FILTER_COEF1); len = 7; break; } case '5':{ //sprintf(myBuf,"Acc=%2d\r\n",gAccAmp); len = 8; break; } default: { sprintf(myBuf,"Nothing \r\n"); len = 10; break; } } sendRadioMsg((uint8_t *)myBuf, len); break; } case 'l': {// toogle led led = ! led; if (led==0) { sprintf(myBuf,"%s","ON"); len = 2; } else { sprintf(myBuf,"%s","OFF"); len = 3; } sendRadioMsg((uint8_t *)myBuf, len); break; } case 'i':{ // Insert data values switch (buffer[1]){ case 'f':{ memcpy(myBuf,&buffer[2],2); //FILTER_COEF1=atoi(myBuf); // TODO check if it is a number break; } case 'a':{ memcpy(myBuf,&buffer[2],2); //gAccAmp = atoi(myBuf); break; } default: { // on_error_radioMsg(); // notify on radio } } break; } case 'd': case 't': {// date /time operations switch (buffer[1]) { case 'i': { // date insert uint8_t i; uint8_t * pdata = &g_myDateTimeVar.newDateTime.year; // to insert data if (buffer[0]=='t') { sprintf(myBuf," TimeInserted"); pdata +=3; } else {sprintf(myBuf," DateInserted");} len= 14; for (i=0;i<3;i++){ memcpy(myBuf,&buffer[2+2*i],2); *pdata=atoi(myBuf); // TODO check if it is a number pdata= pdata+1; } g_myDateTimeVar.updateDateTime = true; sendRadioMsg((uint8_t *)myBuf, len); break; } case 'g': { // time/date get uint8_t * pdata1 = &g_myDateTimeVar.currentDateTime.year; // to get data if (buffer[0]=='t') { pdata1 +=3; sprintf(myBuf,"H:%2d:%2d:%2d",*pdata1,*(pdata1+1),*(pdata1+2)); len = 11; }else { sprintf(myBuf,"D:20%2d:%2d:%2d",*pdata1,*(pdata1+1),*(pdata1+2)); len = 13; } sendRadioMsg((uint8_t *)myBuf, len); break; } default: MyASSERT(true,&pc, buffer[1]); // notify on serial interface on_error_radioMsg(); // notify on radio } break; } case 'f': {// file operations switch (buffer[1]) { case '1': { sprintf(myBuf,"g_idx=%2d Page=%3d",g_MyDataIdx, flash_currPage()); len = 18; sendRadioMsg((uint8_t *)myBuf, len); break; } case '2': { // start measuring sprintf(myBuf,"Start Meas"); len = 12; sendRadioMsg((uint8_t *)myBuf, len); g_LogActive = true; break; } case '3': { // stop measuring //measureSampling.detach(); sprintf(myBuf,"Stop Meas"); len = 11; sendRadioMsg((uint8_t *)myBuf, len); g_LogActive = false; ble_flash_page_write(flash_currPage(), (uint32_t*)&(g_MyData), 251u); memset(&g_MyData,0,sizeof(myDataLog_t)); flash_go_nextPage(); break; } case '4':{ break; } case '5':{ // read one measure break; } default: { // error } } break; } default: { MyASSERT(true,&pc, buffer[1]); // notify on serial interface on_error_radioMsg(); // notify on radio; } } } // decode serial command that starts with x static void decode_s(uint8_t * buffer, uint16_t length) { uint8_t page_nr; char myBuf[5]; uint32_t * p_curr_addr; switch (buffer[0]) { case 'f': { // info about selected flash page if ((buffer[1]<='9')&&(buffer[1]>='0')) { memcpy(myBuf,&buffer[1],3); page_nr= atoi(myBuf); uint8_t p_word_count; pc.printf("buffer[1]: %c \r\n",buffer[1]); p_curr_addr= (uint32_t *)((uint16_t)BLE_FLASH_PAGE_SIZE * (flash_currPage() - page_nr)); pc.printf("page_addr: %x, pgNr = %d \r\n",p_curr_addr,(flash_currPage() - page_nr)); p_curr_addr += 1; pc.printf("page_addr: %x \r\n",p_curr_addr); p_word_count = (uint8_t)(*(p_curr_addr)); pc.printf("nr_of_words: %d \r\n",p_word_count); flash_page_serial_dump((p_curr_addr-1)); } break; } case 'd': { // full dump uint16_t page0; pc.printf("Full dump \r\n"); page0 = flash_currPage(); for (page_nr=0; page_nr<=(MAX_PAGE_NUM-MIN_PAGE_NUM); page_nr++) { if ((page0-page_nr)< MIN_PAGE_NUM) { page0 = MAX_PAGE_NUM + page_nr; } p_curr_addr= (uint32_t *)((uint16_t)BLE_FLASH_PAGE_SIZE * (page0-page_nr)); flash_page_serial_dump(p_curr_addr); } break; } case 'g': { pc.printf("g_MyDataIdx= %d\r", g_MyDataIdx); break; } case 'c': { switch (buffer[1]) { case 'a': { connectionUpdate(eStartAdvertising); break; } case 'c' : { connectionUpdate(eDisconnect); break; } case 's' : { connectionUpdate(eStopAdvertising); break; } default: pc.printf("Not recognized cmd !\r"); } break; } default: { // nothing } } } void WrittenHandler(const GattWriteCallbackParams *Handler) { uint8_t buf[TXRX_BUF_LEN+1]= {'R',':',0}; uint16_t bytesRead; if (Handler->handle == txCharacteristic.getValueAttribute().getHandle()) { ble.readCharacteristicValue(txCharacteristic.getValueAttribute().getHandle(), &buf[2], &bytesRead); memset(txPayload, 0, TXRX_BUF_LEN); memcpy(txPayload, &buf[2], bytesRead); if (txPayload[0] == 'x') { decode(&txPayload[1],bytesRead); } //echo back bytesRead+=2; sendRadioMsg(buf, bytesRead); // print on PC monitor buf[bytesRead]='\r'; pc.printf("%s",buf); } } void uartCB(void) { while(pc.readable()) { rx_buf[rx_len++] = pc.getc(); if(rx_len>=20 || rx_buf[rx_len-1]=='\0' || rx_buf[rx_len-1]=='\n') { ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), rx_buf, rx_len); if ((rx_buf[0]=='x')) { decode_s(&rx_buf[1],(rx_len-1)); // serial decode } rx_len= 0; break; } } } void button() { uint8_t buf[TXRX_BUF_LEN+1]; buf[0]='B'; buf[1]='U'; buf[2]='T'; buf[3]='N'; ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), buf, 4); g_bConnDisabled = !g_bConnDisabled; led = !led; if (g_bConnDisabled == true){ if (g_bIsConnected == true){ ble.disconnect((Gap::DisconnectionReason_t)0x12); g_bIsConnected = false; } else if (g_bIsAdvertising == true) { ble.stopAdvertising(); g_bIsAdvertising = false; } } else { connectionUpdate(eStartAdvertising); } } void g_varInit() { g_myDateTimeVar.updateDateTime = true; /* retreive latest date, time and page flash available */ search_latest_in_flash(&g_myDateTimeVar.newDateTime); } int main(void) { ble.init(); g_varInit(); ble.onDisconnection(disconnectionCallback); ble.onConnection(connectionCallback); ble.onDataWritten(WrittenHandler); //event.rise(&button); //event.rise(&accInt1); pc.baud(19200); pc.printf("SimpleChat Init \r\n"); //mma1 = Adafruit_MMA8451(); //mma2 = Adafruit_MMA8451(); //init_Acc(); pc.attach( uartCB , pc.RxIrq); // setup advertising ble.accumulateAdvertisingPayload(GapAdvertisingData::BREDR_NOT_SUPPORTED); ble.setAdvertisingType(GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED); ble.accumulateAdvertisingPayload(GapAdvertisingData::SHORTENED_LOCAL_NAME, (const uint8_t *)"BleTp", sizeof("BleTp") - 1); ble.accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LIST_128BIT_SERVICE_IDS, (const uint8_t *)uart_base_uuid_rev, sizeof(uart_base_uuid)); //ble.accumulateAdvertisingPayload(GapAdvertisingData::TX_POWER_LEVEL,(const uint8_t *)txPower, sizeof(txPower)); ble.setTxPower(txPower); // 100ms; in multiples of 0.625ms. ble.setAdvertisingInterval(320); /* // activate radio notifications - usefull for flashwrite void (*ptrFunc)(bool); ptrFunc = ble_flash_on_radio_active_evt; //needed for flash write //ble.onRadioNotification(ptrFunc); */ ble.addService(uartService); batteryService = new BatteryService(ble, batteryLevel); ble.startAdvertising(); pc.printf("Advertising Start \r\n"); periodicActions.attach(&at_eachInstant,gTimeInstant); gBatteryValue = read100(); while(1) { ble.waitForEvent(); } }