![](/media/cache/img/default_profile.jpg.50x50_q85.jpg)
FRDM K64F Metronome
pal/Test/Common/pal_rtos_test_utils.c
- Committer:
- ram54288
- Date:
- 2017-05-14
- Revision:
- 0:dbad57390bd1
File content as of revision 0:dbad57390bd1:
/* * Copyright (c) 2016 ARM Limited. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "pal_rtos_test_utils.h" #include "pal_rtos.h" #include "unity_fixture.h" #include "pal.h" threadsArgument_t threadsArg; timerArgument_t timerArgs; void palThreadFunc1(void const *argument) { palThreadID_t threadID = 10; uint32_t* threadStorage = NULL; threadsArgument_t *tmp = (threadsArgument_t*)argument; #ifdef MUTEX_UNITY_TEST palStatus_t status = PAL_SUCCESS; TEST_PRINTF("palThreadFunc1::before mutex\n"); status = pal_osMutexWait(mutex1, 100); TEST_PRINTF("palThreadFunc1::after mutex: 0x%08x\n", status); TEST_PRINTF("palThreadFunc1::after mutex (expected): 0x%08x\n", PAL_ERR_RTOS_TIMEOUT); TEST_ASSERT_EQUAL(PAL_ERR_RTOS_TIMEOUT, status); return; // for Mutex scenario, this should end here #endif //MUTEX_UNITY_TEST tmp->arg1 = 10; threadID = pal_osThreadGetId(); TEST_PRINTF("palThreadFunc1::Thread ID is %d\n", threadID); threadStorage = pal_osThreadGetLocalStore(); if (threadStorage == g_threadStorage) { TEST_PRINTF("Thread storage updated as expected\n"); } TEST_ASSERT_EQUAL(threadStorage, g_threadStorage); #ifdef MUTEX_UNITY_TEST status = pal_osMutexRelease(mutex1); TEST_ASSERT_EQUAL(PAL_SUCCESS, status); #endif //MUTEX_UNITY_TEST TEST_PRINTF("palThreadFunc1::STAAAAM\n"); } void palThreadFunc2(void const *argument) { palThreadID_t threadID = 10; threadsArgument_t *tmp = (threadsArgument_t*)argument; #ifdef MUTEX_UNITY_TEST palStatus_t status = PAL_SUCCESS; TEST_PRINTF("palThreadFunc2::before mutex\n"); status = pal_osMutexWait(mutex2, 300); TEST_PRINTF("palThreadFunc2::after mutex: 0x%08x\n", status); TEST_PRINTF("palThreadFunc2::after mutex (expected): 0x%08x\n", PAL_SUCCESS); TEST_ASSERT_EQUAL(PAL_SUCCESS, status); #endif //MUTEX_UNITY_TEST tmp->arg2 = 20; threadID = pal_osThreadGetId(); TEST_PRINTF("palThreadFunc2::Thread ID is %d\n", threadID); #ifdef MUTEX_UNITY_TEST status = pal_osMutexRelease(mutex2); TEST_ASSERT_EQUAL(PAL_SUCCESS, status); #endif //MUTEX_UNITY_TEST TEST_PRINTF("palThreadFunc2::STAAAAM\n"); } void palThreadFunc3(void const *argument) { palThreadID_t threadID = 10; threadsArgument_t *tmp = (threadsArgument_t*)argument; #ifdef SEMAPHORE_UNITY_TEST palStatus_t status = PAL_SUCCESS; uint32_t semaphoresAvailable = 10; status = pal_osSemaphoreWait(semaphore1, 200, &semaphoresAvailable); if (PAL_SUCCESS == status) { TEST_PRINTF("palThreadFunc3::semaphoresAvailable: %d\n", semaphoresAvailable); TEST_ASSERT_EQUAL(PAL_SUCCESS, status); } else if(PAL_ERR_RTOS_TIMEOUT == status) { TEST_PRINTF("palThreadFunc3::semaphoresAvailable: %d\n", semaphoresAvailable); TEST_PRINTF("palThreadFunc3::status: 0x%08x\n", status); TEST_PRINTF("palThreadFunc3::failed to get Semaphore as expected\n", status); TEST_ASSERT_EQUAL(PAL_ERR_RTOS_TIMEOUT, status); return; } pal_osDelay(6000); #endif //SEMAPHORE_UNITY_TEST tmp->arg3 = 30; threadID = pal_osThreadGetId(); TEST_PRINTF("palThreadFunc3::Thread ID is %d\n", threadID); #ifdef SEMAPHORE_UNITY_TEST status = pal_osSemaphoreRelease(semaphore1); TEST_PRINTF("palThreadFunc3::pal_osSemaphoreRelease res: 0x%08x\n", status); TEST_ASSERT_EQUAL(PAL_SUCCESS, status); #endif //SEMAPHORE_UNITY_TEST TEST_PRINTF("palThreadFunc3::STAAAAM\n"); } void palThreadFunc4(void const *argument) { palThreadID_t threadID = 10; threadsArgument_t *tmp = (threadsArgument_t*)argument; #ifdef MUTEX_UNITY_TEST palStatus_t status = PAL_SUCCESS; TEST_PRINTF("palThreadFunc4::before mutex\n"); status = pal_osMutexWait(mutex1, 200); TEST_PRINTF("palThreadFunc4::after mutex: 0x%08x\n", status); TEST_ASSERT_EQUAL(PAL_SUCCESS, status); pal_osDelay(3500); //wait 3.5 seconds to make sure that the next thread arrive to this point #endif //MUTEX_UNITY_TEST tmp->arg4 = 40; threadID = pal_osThreadGetId(); TEST_PRINTF("Thread ID is %d\n", threadID); #ifdef MUTEX_UNITY_TEST status = pal_osMutexRelease(mutex1); TEST_PRINTF("palThreadFunc4::after release mutex: 0x%08x\n", status); TEST_ASSERT_EQUAL(PAL_SUCCESS, status); #endif //MUTEX_UNITY_TEST TEST_PRINTF("palThreadFunc4::STAAAAM\n"); } void palThreadFunc5(void const *argument) { palThreadID_t threadID = 10; threadsArgument_t *tmp = (threadsArgument_t*)argument; #ifdef MUTEX_UNITY_TEST palStatus_t status = PAL_SUCCESS; TEST_PRINTF("palThreadFunc5::before mutex\n"); status = pal_osMutexWait(mutex1, 4500); TEST_PRINTF("palThreadFunc5::after mutex: 0x%08x\n", status); TEST_ASSERT_EQUAL(PAL_SUCCESS, status); #endif //MUTEX_UNITY_TEST tmp->arg5 = 50; threadID = pal_osThreadGetId(); TEST_PRINTF("Thread ID is %d\n", threadID); #ifdef MUTEX_UNITY_TEST status = pal_osMutexRelease(mutex1); TEST_PRINTF("palThreadFunc5::after release mutex: 0x%08x\n", status); TEST_ASSERT_EQUAL(PAL_SUCCESS, status); #endif //MUTEX_UNITY_TEST TEST_PRINTF("palThreadFunc5::STAAAAM\n"); } void palThreadFunc6(void const *argument) { palThreadID_t threadID = 10; threadsArgument_t *tmp = (threadsArgument_t*)argument; #ifdef SEMAPHORE_UNITY_TEST palStatus_t status = PAL_SUCCESS; uint32_t semaphoresAvailable = 10; status = pal_osSemaphoreWait(123456, 200, &semaphoresAvailable); //MUST fail, since there is no semaphore with ID=3 TEST_PRINTF("palThreadFunc6::semaphoresAvailable: %d\n", semaphoresAvailable); TEST_ASSERT_EQUAL(PAL_ERR_RTOS_PARAMETER, status); return; #endif //SEMAPHORE_UNITY_TEST tmp->arg6 = 60; threadID = pal_osThreadGetId(); TEST_PRINTF("Thread ID is %d\n", threadID); #ifdef SEMAPHORE_UNITY_TEST status = pal_osSemaphoreRelease(123456); TEST_PRINTF("palThreadFunc6::pal_osSemaphoreRelease res: 0x%08x\n", status); TEST_ASSERT_EQUAL(PAL_ERR_RTOS_PARAMETER, status); #endif //SEMAPHORE_UNITY_TEST TEST_PRINTF("palThreadFunc6::STAAAAM\n"); } void palTimerFunc1(void const *argument) { g_timerArgs.ticksInFunc1 = pal_osKernelSysTick(); TEST_PRINTF("ticks in palTimerFunc1: 0 - %d\n", g_timerArgs.ticksInFunc1); TEST_PRINTF("Once Timer function was called\n"); } void palTimerFunc2(void const *argument) { g_timerArgs.ticksInFunc2 = pal_osKernelSysTick(); TEST_PRINTF("ticks in palTimerFunc2: 0 - %d\n", g_timerArgs.ticksInFunc2); TEST_PRINTF("Periodic Timer function was called\n"); } void palThreadFuncCustom1(void const *argument) { TEST_PRINTF("palThreadFuncCustom1 was called\n"); } void palThreadFuncCustom2(void const *argument) { TEST_PRINTF("palThreadFuncCustom2 was called\n"); } void palThreadFuncCustom3(void const *argument) { TEST_PRINTF("palThreadFuncCustom3 was called\n"); } void palThreadFuncCustom4(void const *argument) { TEST_PRINTF("palThreadFuncCustom4 was called\n"); } void palRunThreads() { palStatus_t status = PAL_SUCCESS; palThreadID_t threadID1 = NULLPTR; palThreadID_t threadID2 = NULLPTR; palThreadID_t threadID3 = NULLPTR; palThreadID_t threadID4 = NULLPTR; palThreadID_t threadID5 = NULLPTR; palThreadID_t threadID6 = NULLPTR; uint32_t *stack1 = malloc(THREAD_STACK_SIZE); uint32_t *stack2 = malloc(THREAD_STACK_SIZE); uint32_t *stack3 = malloc(THREAD_STACK_SIZE); uint32_t *stack4 = malloc(THREAD_STACK_SIZE); uint32_t *stack5 = malloc(THREAD_STACK_SIZE); uint32_t *stack6 = malloc(THREAD_STACK_SIZE); status = pal_init(NULL); TEST_ASSERT_EQUAL(PAL_SUCCESS, status); status = pal_osThreadCreate(palThreadFunc1, &g_threadsArg, PAL_osPriorityIdle, THREAD_STACK_SIZE, stack1, (palThreadLocalStore_t *)g_threadStorage, &threadID1); TEST_ASSERT_EQUAL(PAL_SUCCESS, status); status = pal_osThreadCreate(palThreadFunc2, &g_threadsArg, PAL_osPriorityLow, THREAD_STACK_SIZE, stack2, NULL, &threadID2); TEST_ASSERT_EQUAL(PAL_SUCCESS, status); status = pal_osThreadCreate(palThreadFunc3, &g_threadsArg, PAL_osPriorityNormal, THREAD_STACK_SIZE, stack3, NULL, &threadID3); TEST_ASSERT_EQUAL(PAL_SUCCESS, status); status = pal_osThreadCreate(palThreadFunc4, &g_threadsArg, PAL_osPriorityBelowNormal, THREAD_STACK_SIZE, stack4, NULL, &threadID4); TEST_ASSERT_EQUAL(PAL_SUCCESS, status); status = pal_osThreadCreate(palThreadFunc5, &g_threadsArg, PAL_osPriorityAboveNormal, THREAD_STACK_SIZE, stack5, NULL, &threadID5); TEST_ASSERT_EQUAL(PAL_SUCCESS, status); status = pal_osThreadCreate(palThreadFunc6, &g_threadsArg, PAL_osPriorityHigh, THREAD_STACK_SIZE, stack6, NULL, &threadID6); TEST_ASSERT_EQUAL(PAL_SUCCESS, status); free(stack1); free(stack2); free(stack3); free(stack4); free(stack5); free(stack6); }