Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of ST_I2S by
drivers/I2S.cpp
- Committer:
- Davide Aliprandi
- Date:
- 2016-12-21
- Revision:
- 4:21603d68bcf7
- Parent:
- 0:752e74bf5ef1
- Child:
- 9:c4c2240e06d6
File content as of revision 4:21603d68bcf7:
#include "drivers/I2S.h" #include "platform/critical.h" #include "platform/mbed_assert.h" #if DEVICE_I2S namespace mbed { /* betzw - WAS #if TRANSACTION_QUEUE_SIZE_I2S CircularBuffer<Transaction<I2S>, TRANSACTION_QUEUE_SIZE_I2S> I2S::_transaction_buffer; #endif */ I2S* I2S::_owner = NULL; SingletonPtr<PlatformMutex> I2S::_mutex; // intentional class level lock! rtos::Thread I2S::I2sBhHandler::_i2s_bh_daemon; events::EventQueue I2S::I2sBhHandler::_i2s_bh_queue; void I2S::lock() { #ifdef NDEBUG _mutex->lock(); // intentional class level lock! #else osStatus ret = _mutex->lock(); // intentional class level lock! MBED_ASSERT(ret == osOK); #endif } void I2S::unlock() { #ifdef NDEBUG _mutex->unlock(); // intentional class level lock! #else osStatus ret = _mutex->unlock(); // intentional class level lock! MBED_ASSERT(ret == osOK); #endif } I2S::I2S(PinName dpin, PinName clk, PinName wsel, PinName fdpin, PinName mck) : _i2s(), _irq_tx(this), _irq_rx(this), _priority(MEDIUM), _dbits(16), _fbits(16), _polarity(0), _protocol(PHILIPS), _mode(MASTER_TX), _circular(false), _hz(44100) { lock(); /* Init instance */ i2s_init(&_i2s, dpin, clk, wsel, fdpin, mck, _mode); acquire(); #if TRANSACTION_QUEUE_SIZE_I2S /* Init bottom half daemon */ I2sBhHandler::init(); #endif unlock(); } int I2S::format(int dbits, int fbits, int polarity) { lock(); if (i2s_active(&_i2s)) { unlock(); return -1; } _dbits = dbits; _fbits = fbits; _polarity = polarity; I2S::_owner = NULL; // Not that elegant, but works. rmeyer acquire(); unlock(); return 0; } int I2S::audio_frequency(unsigned int hz) { lock(); if (i2s_active(&_i2s)) { unlock(); return -1; } _hz = hz; I2S::_owner = NULL; // Not that elegant, but works. rmeyer acquire(); unlock(); return 0; } int I2S::set_protocol(i2s_bitorder_t protocol) { lock(); if (i2s_active(&_i2s)) { unlock(); return -1; } _protocol = protocol; I2S::_owner = NULL; // Not that elegant, but works. rmeyer acquire(); unlock(); return 0; } int I2S::set_mode(i2s_mode_t mode, bool circular) { lock(); if (i2s_active(&_i2s)) { unlock(); return -1; } _mode = mode; _circular = circular; I2S::_owner = NULL; // Not that elegant, but works. rmeyer acquire(); unlock(); return 0; } void I2S::abort_transfer() { lock(); i2s_abort_asynch(&_i2s); #if TRANSACTION_QUEUE_SIZE_I2S dequeue_transaction(); #endif unlock(); } void I2S::clear_transfer_buffer() { #if TRANSACTION_QUEUE_SIZE_I2S lock(); _transaction_buffer.reset(); unlock(); #endif } void I2S::abort_all_transfers() { lock(); clear_transfer_buffer(); abort_transfer(); unlock(); } int I2S::get_transfer_status() { lock(); if (i2s_active(&_i2s)) { unlock(); return -1; } unlock(); return 0; } unsigned int I2S::get_module() { return i2s_get_module(&_i2s); } int I2S::set_dma_priority(i2s_dma_prio_t prio) { lock(); if (i2s_active(&_i2s)) { unlock(); return -1; } _priority = prio; unlock(); return 0; } int I2S::queue_transfer(const void *tx_buffer, int tx_length, void *rx_buffer, int rx_length, const event_callback_t& callback, int event) { // betzw: MUST be called with lock held! #if TRANSACTION_QUEUE_SIZE_I2S transaction_t t; t.tx_buffer = const_cast<void *>(tx_buffer); t.tx_length = tx_length; t.rx_buffer = rx_buffer; t.rx_length = rx_length; t.event = event; t.callback = callback; t.width = 16; Transaction<I2S> transaction(this, t); core_util_critical_section_enter(); if (_transaction_buffer.full()) { core_util_critical_section_enter(); return -1; // the buffer is full } else { _transaction_buffer.push(transaction); core_util_critical_section_exit(); // betzw - seems to be redundant - WAS: dequeue_transaction(); return 0; } #else return -1; #endif } // ignore the fact there are multiple physical i2s's, and always update if it wasn't us last void I2S::acquire() { // betzw: MUST be called with lock held! if (_owner != this) { i2s_format(&_i2s, _dbits, _fbits, _polarity); i2s_audio_frequency(&_i2s, _hz); i2s_set_protocol(&_i2s, _protocol); i2s_set_mode(&_i2s, _mode); _owner = this; } } void I2S::start_transfer(const void *tx_buffer, int tx_length, void *rx_buffer, int rx_length, const event_callback_t& callback, int event) { // betzw: MUST be called with lock held! acquire(); _callback = callback; _irq_tx.callback(&I2S::irq_handler_asynch_tx); _irq_rx.callback(&I2S::irq_handler_asynch_rx); i2s_transfer(&_i2s, const_cast<void *>(tx_buffer), tx_length, rx_buffer, rx_length, _circular, _priority, _irq_tx.entry(), _irq_rx.entry(), event); } #if TRANSACTION_QUEUE_SIZE_I2S void I2S::start_transaction(transaction_t *data) { // betzw: MUST be called with lock held! start_transfer(data->tx_buffer, data->tx_length, data->rx_buffer, data->rx_length, data->callback, data->event); } void I2S::dequeue_transaction() { lock(); if (!i2s_active(&_i2s)) { Transaction<I2S> t; if (_transaction_buffer.pop(t)) { I2S* obj = t.get_object(); transaction_t* data = t.get_transaction(); MBED_ASSERT(obj == this); // betzw: what if 'obj' is NOT equal to 'this'? obj->start_transaction(data); } } unlock(); } #endif void I2S::irq_handler_asynch_rx(void) { int event = i2s_irq_handler_asynch(&_i2s, I2S_RX_EVENT); if (_callback && (event & I2S_EVENT_ALL)) { I2sBhHandler::i2s_defer_function(_callback, event & I2S_EVENT_ALL); } #if TRANSACTION_QUEUE_SIZE_I2S if (event & I2S_EVENT_INTERNAL_TRANSFER_COMPLETE) { I2sBhHandler::i2s_defer_function(Callback<void()>(this, &I2S::dequeue_transaction)); } #endif } void I2S::irq_handler_asynch_tx(void) { int event = i2s_irq_handler_asynch(&_i2s, I2S_TX_EVENT); if (_callback && (event & I2S_EVENT_ALL)) { I2sBhHandler::i2s_defer_function(_callback, event & I2S_EVENT_ALL); } #if TRANSACTION_QUEUE_SIZE_I2S if (event & I2S_EVENT_INTERNAL_TRANSFER_COMPLETE) { I2sBhHandler::i2s_defer_function(Callback<void()>(this, &I2S::dequeue_transaction)); } #endif } float I2S::compute_real_frequency(I2S *dev_i2s) { uint32_t i2sclk = 0U, i2sdiv = 2U, i2sodd = 0U, packetlength = 1U, tmp = 0U; I2S_HandleTypeDef *hi2s; /* Get the I2S handle. */ hi2s = i2s_get_handle(&(dev_i2s->_i2s)); /* Check the frame length (For the Prescaler computing). */ if (hi2s->Init.DataFormat != I2S_DATAFORMAT_16B) { /* Packet length is 32 bits */ packetlength = 2U; } /* Get I2S source Clock frequency. */ i2sclk = I2S_GetInputClock(hi2s); /* Compute the Real divider depending on the MCLK output state, with a floating point. */ if (hi2s->Init.MCLKOutput == I2S_MCLKOUTPUT_ENABLE) { /* MCLK output is enabled. */ tmp = (uint32_t)(((((i2sclk / 256U) * 10U) / hi2s->Init.AudioFreq)) + 5U); } else { /* MCLK output is disabled. */ tmp = (uint32_t)(((((i2sclk / (32U * packetlength)) * 10U) / hi2s->Init.AudioFreq)) + 5U); } /* Remove the flatting point. */ tmp = tmp / 10U; /* Check the parity of the divider. */ i2sodd = (uint32_t)(tmp & (uint32_t)1U); /* Compute the i2sdiv prescaler. */ i2sdiv = (uint32_t)((tmp - i2sodd) / 2U); /* Test if the divider is 1 or 0 or greater than 0xFF. */ if ((i2sdiv < 2U) || (i2sdiv > 0xFFU)) { /* Set the default values. */ i2sdiv = 2U; i2sodd = 0U; } /* Compute the I2S frequencies. */ uint32_t format_factor = (hi2s->Init.DataFormat == I2S_DATAFORMAT_16B ? 16 : 32); uint32_t mclk_factor = (hi2s->Init.MCLKOutput == I2S_MCLKOUTPUT_ENABLE ? (format_factor == 16 ? 8 : 4) : 1); float f = i2sclk / (2 * format_factor * ((2 * i2sdiv) + i2sodd) * mclk_factor); return f; } /** Computes the two-div-plus-odd factor of a given I2S objects * on a desired frequency. * * @param dev_i2s reference to the I2S object. * @frequency the desired frequency. * @return the computed two-div-plus-odd factor. */ float I2S::compute_magic_factor(I2S *dev_i2s, float f) { uint32_t i2sclk = 0U, i2sdiv = 2U, i2sodd = 0U, packetlength = 1U, tmp = 0U; I2S_HandleTypeDef *hi2s; /* Get the I2S handle. */ hi2s = i2s_get_handle(&(dev_i2s->_i2s)); /* Get I2S source Clock frequency. */ i2sclk = I2S_GetInputClock(hi2s); /* Compute the I2S frequencies. */ uint32_t format_factor = (hi2s->Init.DataFormat == I2S_DATAFORMAT_16B ? 16 : 32); uint32_t mclk_factor = (hi2s->Init.MCLKOutput == I2S_MCLKOUTPUT_ENABLE ? (format_factor == 16 ? 8 : 4) : 1); float mf = i2sclk / (2 * format_factor * f * mclk_factor); return mf; } float I2S::compute_desired_frequency(I2S *dev_i2s, float mf) { uint32_t i2sclk = 0U, i2sdiv = 2U, i2sodd = 0U, packetlength = 1U, tmp = 0U; I2S_HandleTypeDef *hi2s; /* Get the I2S handle. */ hi2s = i2s_get_handle(&(dev_i2s->_i2s)); /* Get I2S source Clock frequency. */ i2sclk = I2S_GetInputClock(hi2s); /* Compute the I2S frequencies. */ uint32_t format_factor = (hi2s->Init.DataFormat == I2S_DATAFORMAT_16B ? 16 : 32); uint32_t mclk_factor = (hi2s->Init.MCLKOutput == I2S_MCLKOUTPUT_ENABLE ? (format_factor == 16 ? 8 : 4) : 1); float f = i2sclk / (2 * format_factor * mf * mclk_factor); return f; } int I2S::harmonize(I2S *dev_i2s_1, I2S *dev_i2s_2) { if (dev_i2s_1->_hz == dev_i2s_2->_hz) return 0; /* Compute the real frequencies. */ float f1 = compute_real_frequency(dev_i2s_1); float f2 = compute_real_frequency(dev_i2s_2); //printf("REAL: %f %f\r\n", f1, f2); /* Compute the desired frequencies so that they are multiple one of the other. */ float q; if (f1 < f2) q = f2 / f1; else q = f1 / f2; float r = q - (uint32_t) q; if (r > 0) { if (f1 < f2) { float mf = compute_magic_factor(dev_i2s_1, f2 / 2); r = mf - (uint32_t) mf; if (r > 0) { if (f2 > dev_i2s_2->_hz) f1 = compute_desired_frequency(dev_i2s_1, ((uint32_t) mf) + 1); else f1 = compute_desired_frequency(dev_i2s_1, ((uint32_t) mf) - 1); f2 = 2 * f1; } else f1 = f2 / 2; } else { float mf = compute_magic_factor(dev_i2s_2, f1 / 2); r = mf - (uint32_t) mf; if (r > 0) { if (f1 > dev_i2s_1->_hz) f2 = compute_desired_frequency(dev_i2s_2, ((uint32_t) mf) + 1); else f2 = compute_desired_frequency(dev_i2s_2, ((uint32_t) mf) - 1); f1 = 2 * f2; } else f2 = f1 / 2; } } //printf("DESIRED: %f %f\r\n", f1, f2); /* Set the desired frequencies. */ dev_i2s_1->audio_frequency(f1); dev_i2s_2->audio_frequency(f2); return 0; } } // namespace mbed #endif