Library for getting temperature and pressure values from Bosch BMP180 barometer.
Fork of BMP180 by
BMP180.cpp
- Committer:
- eencae
- Date:
- 2015-03-14
- Revision:
- 3:0e92710a46f9
- Parent:
- 2:79d0d565c3af
File content as of revision 3:0e92710a46f9:
/** @file BMP180.cpp @brief Member functions implementations */ #include "mbed.h" #include "BMP180.h" BMP180::BMP180(PinName sdaPin, PinName sclPin) { i2c = new I2C(sdaPin,sclPin); // create new I2C instance and initialise i2c->frequency(400000); // I2C Fast Mode - 400kHz leds = new BusOut(LED4,LED3,LED2,LED1); } Measurement BMP180::readValues() { // algorithm for taking measurement is taken from datasheet int32_t UT = readUncompensatedTemperatureValue(); int32_t UP = readUncompensatedPressureValue(); // once you have the uncompensated T and P, you can calculate the true T and P // using the equations from the datasheet int32_t T = calcTrueTemperature(UT); int32_t P = calcTruePressure(UP); Measurement measurement; measurement.temperature = T*0.1; // scaled by 0.1 C measurement.pressure = P*0.01; // Put pressure in mb return measurement; } int32_t BMP180::readUncompensatedTemperatureValue() { // from algorithm in datasheet - p15 sendByteToRegister(0x2E,0xF4); wait_ms(5); // 4.5 ms delay for OSS = 1 char MSB = readByteFromRegister(0xF6); char LSB = readByteFromRegister(0xF7); // combine in 16-bit value int UT = (MSB << 8) | LSB; #ifdef DEBUG UT = 27898; // test data from datasheet printf("****DEBUG MODE****\nUT = %d\n",UT); #endif return UT; } int32_t BMP180::readUncompensatedPressureValue() { // from datasheet char byte = 0x34 + (oss << 6); sendByteToRegister(byte,0xF4); wait_ms(8); // 7.5 ms delay for OSS = 1 char MSB = readByteFromRegister(0xF6); char LSB = readByteFromRegister(0xF7); char XLSB = readByteFromRegister(0xF7); int UP = (MSB << 16 | LSB << 8 | XLSB) >> (8 - oss); #ifdef DEBUG UP = 23843; // test data from datasheet printf("UP = %d\n",UP); #endif return UP; } int32_t BMP180::calcTrueTemperature(int32_t UT) { // equations from data sheet X1 = ((UT - calibration.AC6)*calibration.AC5) >> 15; X2 = (calibration.MC << 11) / (X1 + calibration.MD); B5 = X1 + X2; int32_t T = (B5 + 8) >> 4; #ifdef DEBUG printf("****\nX1=%d\nX2=%d\nB5=%d\nT=%d\n",X1,X2,B5,T); #endif return T; } int32_t BMP180::calcTruePressure(int32_t UP) { // equations from data sheet B6 = B5 - 4000; X1 = (calibration.B2 * ((B6*B6) >> 12))>>11; X2 = (calibration.AC2*B6)>>11; X3 = X1 + X2; B3 = (((calibration.AC1*4 + X3) << oss)+2)/4; #ifdef DEBUG printf("*****\nB6=%d\nX1=%d\nX2=%d\nX3=%d\nB3=%d\n",B6,X1,X2,X3,B3); #endif X1 = (calibration.AC3*B6)>>13; X2 = (calibration.B1*((B6*B6)>>12))>>16; X3 = ((X1+X2)+2)/4; B4 = (calibration.AC4*(uint32_t)(X3+32768))>>15; #ifdef DEBUG printf("X1=%d\nX2=%d\nX3=%d\nB4=%u\n",X1,X2,X3,B4); #endif B7 = ((uint32_t)UP - B3)*(50000>>oss); #ifdef DEBUG printf("B7=%u\n",B7); #endif int32_t P; if (B7 < 0x80000000) P = (B7*2)/B4; else P = (B7/B4)*2; #ifdef DEBUG printf("P=%d\n",P); #endif X1 = (P>>8)*(P>>8); #ifdef DEBUG printf("X1=%d\n",X1); #endif X1 = (X1*3038)>>16; #ifdef DEBUG printf("X1=%d\n",X1); #endif X2 = (-7357*P)>>16; #ifdef DEBUG printf("X2=%d\n",X2); #endif P = P + (X1+X2+3791)/16; #ifdef DEBUG printf("P=%d\n",P); #endif return P; } // configure the barometer void BMP180::init() { i2c->frequency(400000); // set Fast Mode I2C frequency char data = readByteFromRegister(ID_REG); // Section 4 - datasheet if (data != 0x55) { // if correct ID not found, hang and flash error message error(); } readCalibrationData(); oss = 1; // standard power oversampling setting #ifdef DEBUG oss = 0; // used when testing data sheet example #endif } // Reads factory calibrated data void BMP180::readCalibrationData() { char eeprom[22]; readBytesFromRegister(EEPROM_REG_ADD,22,eeprom); // store calibration data in structure calibration.AC1 = (int16_t) (eeprom[0] << 8) | eeprom[1]; calibration.AC2 = (int16_t) (eeprom[2] << 8) | eeprom[3]; calibration.AC3 = (int16_t) (eeprom[4] << 8) | eeprom[5]; calibration.AC4 = (uint16_t) (eeprom[6] << 8) | eeprom[7]; calibration.AC5 = (uint16_t) (eeprom[8] << 8) | eeprom[9]; calibration.AC6 = (uint16_t) (eeprom[10] << 8) | eeprom[11]; calibration.B1 = (int16_t) (eeprom[12] << 8) | eeprom[13]; calibration.B2 = (int16_t) (eeprom[14] << 8) | eeprom[15]; calibration.MB = (int16_t) (eeprom[16] << 8) | eeprom[17]; calibration.MC = (int16_t) (eeprom[18] << 8) | eeprom[19]; calibration.MD = (int16_t) (eeprom[20] << 8) | eeprom[21]; // test data from data sheet #ifdef DEBUG calibration.AC1 = 408; calibration.AC2 = -72; calibration.AC3 = -14383; calibration.AC4 = 32741; calibration.AC5 = 32757; calibration.AC6 = 23153; calibration.B1 = 6190; calibration.B2 = 4; calibration.MB = -32768; calibration.MC = -8711; calibration.MD = 2868; printf("****EXAMPLE CALIBRATION DATA****\n"); printf("AC1=%d\nAC2=%d\nAC3=%d\nAC4=%u\nAC5=%u\nAC6=%u\nB1=%d\nB2=%d\nMB=%d\nMC=%d\nMD=%d\n", calibration.AC1,calibration.AC2,calibration.AC3,calibration.AC4,calibration.AC5,calibration.AC6, calibration.B1,calibration.B2,calibration.MB,calibration.MC,calibration.MD); #endif } // reads a byte from a specific register char BMP180::readByteFromRegister(char reg) { int nack = i2c->write(BMP180_W_ADDRESS,®,1,true); // send the register address to the slave if (nack) error(); // if we don't receive acknowledgement, flash error message char rx; nack = i2c->read(BMP180_W_ADDRESS,&rx,1); // read a byte from the register and store in buffer if (nack) error(); // if we don't receive acknowledgement, flash error message return rx; } // reads a series of bytes, starting from a specific register void BMP180::readBytesFromRegister(char reg,int numberOfBytes,char bytes[]) { int nack = i2c->write(BMP180_W_ADDRESS,®,1,true); // send the slave write address and the configuration register address if (nack) error(); // if we don't receive acknowledgement, flash error message nack = i2c->read(BMP180_W_ADDRESS,bytes,numberOfBytes); // read bytes if (nack) error(); // if we don't receive acknowledgement, flash error message } // sends a byte to a specific register void BMP180::sendByteToRegister(char byte,char reg) { char data[2]; data[0] = reg; data[1] = byte; // send the register address, followed by the data int nack = i2c->write(BMP180_W_ADDRESS,data,2); if (nack) error(); // if we don't receive acknowledgement, flash error message } void BMP180::error() { while(1) { leds->write(15); wait(0.1); leds->write(0); wait(0.1); } }