mbed library sources, include can_api for nucleo-f091rc
Dependents: CanNucleoF0_example
Fork of mbed-src by
vendor/Freescale/KL25Z/hal/serial_api.c
- Committer:
- emilmont
- Date:
- 2013-06-14
- Revision:
- 10:3bc89ef62ce7
File content as of revision 10:3bc89ef62ce7:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "serial_api.h" // math.h required for floating point operations for baud rate calculation #include <math.h> #include <string.h> #include "cmsis.h" #include "pinmap.h" #include "error.h" /****************************************************************************** * INITIALIZATION ******************************************************************************/ static const PinMap PinMap_UART_TX[] = { {PTC4, UART_1, 3}, {PTA2, UART_0, 2}, {PTD5, UART_2, 3}, {PTD3, UART_2, 3}, {NC , NC , 0} }; static const PinMap PinMap_UART_RX[] = { {PTC3, UART_1, 3}, {PTA1, UART_0, 2}, {PTD4, UART_2, 3}, {PTD2, UART_2, 3}, {NC , NC , 0} }; #define UART_NUM 3 static uint32_t serial_irq_ids[UART_NUM] = {0}; static uart_irq_handler irq_handler; int stdio_uart_inited = 0; serial_t stdio_uart; void serial_init(serial_t *obj, PinName tx, PinName rx) { // determine the UART to use UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx); if ((int)uart == NC) { error("Serial pinout mapping failed"); } obj->uart = (UARTLP_Type *)uart; // enable clk switch (uart) { case UART_0: SIM->SOPT2 |= SIM_SOPT2_PLLFLLSEL_MASK | (1<<SIM_SOPT2_UART0SRC_SHIFT); SIM->SCGC5 |= SIM_SCGC5_PORTA_MASK; SIM->SCGC4 |= SIM_SCGC4_UART0_MASK; break; case UART_1: SIM->SCGC5 |= SIM_SCGC5_PORTC_MASK; SIM->SCGC4 |= SIM_SCGC4_UART1_MASK; break; case UART_2: SIM->SCGC5 |= SIM_SCGC5_PORTD_MASK; SIM->SCGC4 |= SIM_SCGC4_UART2_MASK; break; } // Disable UART before changing registers obj->uart->C2 &= ~(UART_C2_RE_MASK | UART_C2_TE_MASK); switch (uart) { case UART_0: obj->index = 0; break; case UART_1: obj->index = 1; break; case UART_2: obj->index = 2; break; } // set default baud rate and format serial_baud (obj, 9600); serial_format(obj, 8, ParityNone, 1); // pinout the chosen uart pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); // set rx/tx pins in PullUp mode pin_mode(tx, PullUp); pin_mode(rx, PullUp); obj->uart->C2 |= (UART_C2_RE_MASK | UART_C2_TE_MASK); if (uart == STDIO_UART) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } } void serial_free(serial_t *obj) { serial_irq_ids[obj->index] = 0; } // serial_baud // // set the baud rate, taking in to account the current SystemFrequency // // The LPC2300 and LPC1700 have a divider and a fractional divider to control the // baud rate. The formula is: // // Baudrate = (1 / PCLK) * 16 * DL * (1 + DivAddVal / MulVal) // where: // 1 < MulVal <= 15 // 0 <= DivAddVal < 14 // DivAddVal < MulVal // void serial_baud(serial_t *obj, int baudrate) { // save C2 state uint8_t c2_state = (obj->uart->C2 & (UART_C2_RE_MASK | UART_C2_TE_MASK)); // Disable UART before changing registers obj->uart->C2 &= ~(UART_C2_RE_MASK | UART_C2_TE_MASK); // [TODO] not hardcode this value uint32_t PCLK = (obj->uart == UART0) ? 48000000u : 24000000u; // First we check to see if the basic divide with no DivAddVal/MulVal // ratio gives us an integer result. If it does, we set DivAddVal = 0, // MulVal = 1. Otherwise, we search the valid ratio value range to find // the closest match. This could be more elegant, using search methods // and/or lookup tables, but the brute force method is not that much // slower, and is more maintainable. uint16_t DL = PCLK / (16 * baudrate); // set BDH and BDL obj->uart->BDH = (obj->uart->BDH & ~(0x1f)) | ((DL >> 8) & 0x1f); obj->uart->BDL = (obj->uart->BDL & ~(0xff)) | ((DL >> 0) & 0xff); // restore C2 state obj->uart->C2 |= c2_state; } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { uint8_t m10 = 0; // save C2 state uint8_t c2_state = (obj->uart->C2 & (UART_C2_RE_MASK | UART_C2_TE_MASK)); // Disable UART before changing registers obj->uart->C2 &= ~(UART_C2_RE_MASK | UART_C2_TE_MASK); // 8 data bits = 0 ... 9 data bits = 1 if ((data_bits < 8) || (data_bits > 9)) { error("Invalid number of bits (%d) in serial format, should be 8..9\r\n", data_bits); } data_bits -= 8; uint8_t parity_enable, parity_select; switch (parity) { case ParityNone: parity_enable = 0; parity_select = 0; break; case ParityOdd : parity_enable = 1; parity_select = 1; data_bits++; break; case ParityEven: parity_enable = 1; parity_select = 0; data_bits++; break; default: error("Invalid serial parity setting\r\n"); return; } // 1 stop bits = 0, 2 stop bits = 1 if ((stop_bits != 1) && (stop_bits != 2)) { error("Invalid stop bits specified\r\n"); } stop_bits -= 1; // 9 data bits + parity if (data_bits == 2) { // only uart0 supports 10 bit communication if (obj->index != 0) { error("Invalid number of bits (9) to be used with parity\r\n"); } data_bits = 0; m10 = 1; } // data bits, parity and parity mode obj->uart->C1 = ((data_bits << 4) | (parity_enable << 1) | (parity_select << 0)); // enable 10bit mode if needed if (obj->index == 0) { obj->uart->C4 &= ~UARTLP_C4_M10_MASK; obj->uart->C4 |= (m10 << UARTLP_C4_M10_SHIFT); } // stop bits obj->uart->BDH &= ~UART_BDH_SBNS_MASK; obj->uart->BDH |= (stop_bits << UART_BDH_SBNS_SHIFT); // restore C2 state obj->uart->C2 |= c2_state; } /****************************************************************************** * INTERRUPTS HANDLING ******************************************************************************/ static inline void uart_irq(uint8_t status, uint32_t index) { if (serial_irq_ids[index] != 0) { if (status & UART_S1_TDRE_MASK) irq_handler(serial_irq_ids[index], TxIrq); if (status & UART_S1_RDRF_MASK) irq_handler(serial_irq_ids[index], RxIrq); } } void uart0_irq() { uart_irq(UART0->S1, 0); if (UART0->S1 & UART_S1_OR_MASK) UART0->S1 |= UART_S1_OR_MASK; } void uart1_irq() {uart_irq(UART1->S1, 1);} void uart2_irq() {uart_irq(UART2->S1, 2);} void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler = handler; serial_irq_ids[obj->index] = id; } void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { IRQn_Type irq_n = (IRQn_Type)0; uint32_t vector = 0; switch ((int)obj->uart) { case UART_0: irq_n=UART0_IRQn; vector = (uint32_t)&uart0_irq; break; case UART_1: irq_n=UART1_IRQn; vector = (uint32_t)&uart1_irq; break; case UART_2: irq_n=UART2_IRQn; vector = (uint32_t)&uart2_irq; break; } if (enable) { switch (irq) { case RxIrq: obj->uart->C2 |= (UART_C2_RIE_MASK); break; case TxIrq: obj->uart->C2 |= (UART_C2_TIE_MASK); break; } NVIC_SetVector(irq_n, vector); NVIC_EnableIRQ(irq_n); } else { // disable int all_disabled = 0; SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq); switch (irq) { case RxIrq: obj->uart->C2 &= ~(UART_C2_RIE_MASK); break; case TxIrq: obj->uart->C2 &= ~(UART_C2_TIE_MASK); break; } switch (other_irq) { case RxIrq: all_disabled = (obj->uart->C2 & (UART_C2_RIE_MASK)) == 0; break; case TxIrq: all_disabled = (obj->uart->C2 & (UART_C2_TIE_MASK)) == 0; break; } if (all_disabled) NVIC_DisableIRQ(irq_n); } } /****************************************************************************** * READ/WRITE ******************************************************************************/ int serial_getc(serial_t *obj) { while (!serial_readable(obj)); return obj->uart->D; } void serial_putc(serial_t *obj, int c) { while (!serial_writable(obj)); obj->uart->D = c; } int serial_readable(serial_t *obj) { // check overrun if (obj->uart->S1 & UART_S1_OR_MASK) { obj->uart->S1 |= UART_S1_OR_MASK; } return (obj->uart->S1 & UART_S1_RDRF_MASK); } int serial_writable(serial_t *obj) { // check overrun if (obj->uart->S1 & UART_S1_OR_MASK) { obj->uart->S1 |= UART_S1_OR_MASK; } return (obj->uart->S1 & UART_S1_TDRE_MASK); } void serial_clear(serial_t *obj) { } void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); }