I2C BAE standalone hardware testing
Dependencies: FreescaleIAP mbed-rtos mbed
Fork of ACS_Flowchart_BAE_1 by
ACS.cpp
- Committer:
- prasanthbj05
- Date:
- 2016-07-06
- Revision:
- 19:95ba0ed3370c
- Parent:
- 16:cc77770d787f
File content as of revision 19:95ba0ed3370c:
/*------------------------------------------------------------------------------------------------------------------------------------------------------ -------------------------------------------CONTROL ALGORITHM------------------------------------------------------------------------------------------*/ #include <mbed.h> #include <math.h> #include "pni.h" //pni header file #include "pin_config.h" #include "ACS.h" #include "EPS.h" //********************************flags******************************************// extern uint32_t BAE_STATUS; extern uint32_t BAE_ENABLE; extern uint8_t ACS_INIT_STATUS; extern uint8_t ACS_DATA_ACQ_STATUS; extern uint8_t ACS_ATS_STATUS; extern uint8_t ACS_MAIN_STATUS; extern uint8_t ACS_STATUS; extern DigitalOut ATS1_SW_ENABLE; // enable of att sens2 switch extern DigitalOut ATS2_SW_ENABLE; // enable of att sens switch extern uint8_t ACS_ATS_ENABLE; extern uint8_t ACS_DATA_ACQ_ENABLE; extern uint8_t ACS_STATE; DigitalOut phase_TR_x(PIN27); // PHASE pin for x-torquerod DigitalOut phase_TR_y(PIN28); // PHASE pin for y-torquerod DigitalOut phase_TR_z(PIN86); // PHASE pin for z-torquerod extern PwmOut PWM1; //x //Functions used to generate PWM signal extern PwmOut PWM2; //y extern PwmOut PWM3; //z //PWM output comes from pins p6 int g_err_flag_TR_x=0; // setting x-flag to zero int g_err_flag_TR_y=0; // setting y-flag to zero int g_err_flag_TR_z=0; // setting z-flag to zero extern float data[6]; extern BAE_HK_actual actual_data; //DigitalOut gpo1(PTC0); // enable of att sens2 switch //DigitalOut gpo2(PTC16); // enable of att sens switch Serial pc_acs(USBTX,USBRX); //for usb communication //CONTROL_ALGO float moment[3]; // Unit: Ampere*Meter^2 float b_old[3]={1.15e-5,-0.245e-5,1.98e-5}; // Unit: Tesla int flag_firsttime=1, controlmode, alarmmode=0; void controller (float moment[3], float b1[3], float omega1[3], float b_old[3], int &alarmmode, int &flag_firsttime, int &controlmode); void controlmodes(float moment[3], float b[3], float db[3], float omega[3], int controlmode1, float MmntMax); float max_array(float arr[3]); void inverse(float mat[3][3],float inv[3][3]); //CONTROLALGO PARAMETERS void FCTN_ACS_CNTRLALGO(float b[3],float omega[3]) { float b1[3]; float omega1[3]; b1[0] = b[0]/1000000.0; b1[1] = b[1]/1000000.0; b1[2] = b[2]/1000000.0; omega1[0] = omega[0]*3.14159/180; omega1[1] = omega[1]*3.14159/180; omega1[2] = omega[2]*3.14159/180; controller (moment, b1, omega1, b_old, alarmmode, flag_firsttime, controlmode); } void controller (float moment[3], float b1[3], float omega1[3], float b_old[3], int &alarmmode, int &flag_firsttime, int &controlmode) { float db1[3]; // Unit: Tesla/Second float sampling_time=10; // Unit: Seconds. Digital Control law excuted once in 10 seconds float MmntMax=1.1; // Unit: Ampere*Meter^2 float OmegaMax=1*3.1415/180.0; // Unit: Radians/Second float normalising_fact; float b1_copy[3], omega1_copy[3], db1_copy[3]; int i; if(flag_firsttime==1) { for(i=0;i<3;i++) { db1[i]=0; // Unit: Tesla/Second } flag_firsttime=0; } else { for(i=0;i<3;i++) { db1[i]= (b1[i]-b_old[i])/sampling_time; // Unit: Tesla/Second } } if(max_array(omega1)<(0.8*OmegaMax) && alarmmode==1) { alarmmode=0; } else if(max_array(omega1)>OmegaMax && alarmmode==0) { alarmmode=1; } for (i=0;i<3;i++) { b1_copy[i]=b1[i]; db1_copy[i]=db1[i]; omega1_copy[i]=omega1[i]; } if(alarmmode==0) { controlmode=0; controlmodes(moment,b1,db1,omega1,controlmode,MmntMax); for (i=0;i<3;i++) { b1[i]=b1_copy[i]; db1[i]=db1_copy[i]; omega1[i]=omega1_copy[i]; } if(max_array(moment)>MmntMax) { controlmode=1; controlmodes(moment,b1,db1,omega1,controlmode,MmntMax); for (i=0;i<3;i++) { b1[i]=b1_copy[i]; db1[i]=db1_copy[i]; omega1[i]=omega1_copy[i]; } if(max_array(moment)>MmntMax) { normalising_fact=max_array(moment)/MmntMax; for(i=0;i<3;i++) { moment[i]/=normalising_fact; // Unit: Ampere*Meter^2 } } } } else { controlmode=1; controlmodes(moment,b1,db1,omega1,controlmode,MmntMax); for (i=0;i<3;i++) { b1[i]=b1_copy[i]; db1[i]=db1_copy[i]; omega1[i]=omega1_copy[i]; } if(max_array(moment)>MmntMax) { normalising_fact=max_array(moment)/MmntMax; for(i=0;i<3;i++) { moment[i]/=normalising_fact; // Unit: Ampere*Meter^2 } } } for (i=0;i<3;i++) { b_old[i]=b1[i]; } } void inverse(float mat[3][3],float inv[3][3]) { int i,j; float det=0; for(i=0;i<3;i++) { for(j=0;j<3;j++) { inv[j][i]=(mat[(i+1)%3][(j+1)%3]*mat[(i+2)%3][(j+2)%3])-(mat[(i+2)%3][(j+1)%3]*mat[(i+1)%3][(j+2)%3]); } } det+=(mat[0][0]*inv[0][0])+(mat[0][1]*inv[1][0])+(mat[0][2]*inv[2][0]); for(i=0;i<3;i++) { for(j=0;j<3;j++) { inv[i][j]/=det; } } } float max_array(float arr[3]) { int i; float temp_max=fabs(arr[0]); for(i=1;i<3;i++) { if(fabs(arr[i])>temp_max) { temp_max=fabs(arr[i]); } } return temp_max; } void controlmodes(float moment[3], float b[3], float db[3], float omega[3], int controlmode1, float MmntMax) { float bb[3]={0,0,0}; float d[3]={0,0,0}; float Jm[3][3]={{0.2271,0.0014,-0.0026},{0.0014,0.2167,-0.004},{-0.0026,-0.004,0.2406}}; // Unit: Kilogram*Meter^2. Jm may change depending on the final satellite structure float den=0,den2; float bcopy[3]; int i, j;//temporary variables float Mu[2],z[2],dv[2],v[2],u[2],tauc[3]={0,0,0},Mmnt[3];//outputs float invJm[3][3]; float kmu2=0.07,gamma2=1.9e4,kz2=0.4e-2,kmu=0.003,gamma=5.6e4,kz=0.1e-4,kdetumble=2000000; int infflag; // Flag variable to check if the moment value is infinity or NaN if(controlmode1==0) { den=sqrt((b[0]*b[0])+(b[1]*b[1])+(b[2]*b[2])); den2=(b[0]*db[0])+(b[1]*db[1])+(b[2]*db[2]); for(i=0;i<3;i++) { db[i]=((db[i]*den*den)-(b[i]*(den2)))/(pow(den,3)); // Normalized db. Hence the unit is Second^(-1) } for(i=0;i<3;i++) { b[i]/=den; // Mormalized b. Hence no unit. } if(b[2]>0.9 || b[2]<-0.9) { kz=kz2; kmu=kmu2; gamma=gamma2; } for(i=0;i<2;i++) { Mu[i]=b[i]; v[i]=-kmu*Mu[i]; dv[i]=-kmu*db[i]; z[i]=db[i]-v[i]; u[i]=-kz*z[i]+dv[i]-(Mu[i]/gamma); } inverse(Jm,invJm); for(i=0;i<3;i++) { for(j=0;j<3;j++) { bb[i]+=omega[j]*(omega[(i+1)%3]*Jm[(i+2)%3][j]-omega[(i+2)%3]*Jm[(i+1)%3][j]); } } for(i=0;i<3;i++) { for(j=0;j<3;j++) { d[i]+=bb[j]*invJm[i][j]; } } bb[1]=u[0]-(d[1]*b[2])+(d[2]*b[1])-(omega[1]*db[2])+(omega[2]*db[1]); bb[2]=u[1]-(d[2]*b[0])+(d[0]*b[2])-(omega[2]*db[0])+(omega[0]*db[2]); bb[0]=0; for(i=0;i<3;i++) { d[i]=invJm[2][i]; invJm[1][i]=-b[2]*invJm[1][i]+b[1]*d[i]; invJm[2][i]=b[2]*invJm[0][i]-b[0]*d[i]; invJm[0][i]=b[i]; } inverse(invJm,Jm); for(i=0;i<3;i++) { for(j=0;j<3;j++) { tauc[i]+=Jm[i][j]*bb[j]; // Unit: Newton*Meter^2 } } for(i=0;i<3;i++) { bcopy[i]=b[i]*den; } for(i=0;i<3;i++) { Mmnt[i]=bcopy[(i+1)%3]*tauc[(i+2)%3]-bcopy[(i+2)%3]*tauc[(i+1)%3]; Mmnt[i]/=(den*den); // Unit: Ampere*Meter^2 } infflag=0; for (i=0; i<3 && infflag==0; i++) { if (isinf(Mmnt[i])==1 || isnan(Mmnt[i])==1) infflag=1; } if (infflag==1) { for (i=0; i<3; i++) Mmnt[i]=2*MmntMax; } } else if(controlmode1==1) { for(i=0;i<3;i++) { Mmnt[i]=-kdetumble*(b[(i+1)%3]*omega[(i+2)%3]-b[(i+2)%3]*omega[(i+1)%3]); // Unit: Ampere*Meter^2 } } for(i=0;i<3;i++) { moment[i]=Mmnt[i]; // Unit: Ampere*Meter^2 } } I2C i2c (PTC9,PTC8); //PTC9-sda,PTC8-scl for the attitude sensors and battery gauge int FCTN_ACS_INIT(); //initialization of registers happens int SENSOR_INIT(); int FCTN_ATS_DATA_ACQ(); //data is obtained int SENSOR_DATA_ACQ(); void T_OUT(); //timeout function to stop infinite loop void CONFIG_UPLOAD(); Timeout to; //Timeout variable to int toFlag; int count =0; // Time for which the BAE uC is running (in seconds) void T_OUT() { toFlag=0; //as T_OUT function gets called the while loop gets terminated } //DEFINING VARIABLES char cmd[2]; char raw_gyro[6]; char raw_mag[6]; char store,status; int16_t bit_data; float gyro_data[3], mag_data[3],combined_values[6]; float senstivity_gyro =6.5536; //senstivity is obtained from 2^15/5000dps float senstivity_mag =32.768; //senstivity is obtained from 2^15/1000microtesla float gyro_error[3]= {0,0,0}, mag_error[3]= {0,0,0}; void CONFIG_UPLOAD() { cmd[0]=RESETREQ; cmd[1]=BIT_RESREQ; i2c.write(SLAVE_ADDR,cmd,2); //When 0x01 is written in reset request register Emulates a hard power down/power up wait_ms(600); //Verify magic number cmd[0]=HOST_CTRL; //0x02 is written in HOST CONTROL register to enable upload cmd[1]=BIT_HOST_UPLD_ENB; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); cmd[0]=UPLOAD_ADDR; //0x02 is written in HOST CONTROL register to enable upload cmd[1]=0x0000; i2c.write(SLAVE_ADDR,cmd,3); wait_ms(100); cmd[0]=HOST_CTRL; //0x00 is written in HOST CONTROL register to free upload cmd[1]=0x00; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); } int SENSOR_INIT() { pc_acs.printf("Entered sensor init\n \r"); cmd[0]=RESETREQ; cmd[1]=BIT_RESREQ; i2c.write(SLAVE_ADDR,cmd,2); //When 0x01 is written in reset request register Emulates a hard power down/power up wait_ms(800); //waiting for loading configuration file stored in EEPROM cmd[0]=SENTRALSTATUS; i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,&store,1); wait_ms(100); pc_acs.printf("Sentral Status is %x\n \r",(int)store); //to check whether EEPROM is uploaded switch((int)store) { case(3): { cmd[0]=RESETREQ; cmd[1]=BIT_RESREQ; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(600); break; } case(11): { break; } default: { cmd[0]=RESETREQ; cmd[1]=BIT_RESREQ; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(600); } } cmd[0]=SENTRALSTATUS; i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,&store,1); wait_ms(100); pc_acs.printf("Sentral Status is %x\n \r",(int)store); int manual=0; if((int)store != 11) { cmd[0]=RESETREQ; cmd[1]=BIT_RESREQ; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(600); //manually upload if(manual == 0) { return 0; } } cmd[0]=HOST_CTRL; //0x01 is written in HOST CONTROL register to enable the sensors cmd[1]=BIT_RUN_ENB; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); cmd[0]=MAGRATE; //Output data rate of 100Hz is used for magnetometer cmd[1]=BIT_MAGODR; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); cmd[0]=GYRORATE; //Output data rate of 150Hz is used for gyroscope cmd[1]=BIT_GYROODR; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); cmd[0]=ACCERATE; //Output data rate of 0 Hz is used to disable accelerometer cmd[1]=0x00; wait_ms(100); i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); cmd[0]=ALGO_CTRL; //When 0x00 is written to ALGO CONTROL register we get scaled sensor values cmd[1]=0x00; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); cmd[0]=ENB_EVT; //enabling the error,gyro values and magnetometer values cmd[1]=BIT_EVT_ENB; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); pc_acs.printf("Exited sensor init successfully\n \r"); return 1; } int FCTN_ACS_INIT() { ACS_INIT_STATUS = 1; //set ACS_INIT_STATUS flag if( (ATS1_SW_ENABLE!= 0 )&&(ATS2_SW_ENABLE!= 0 ) ) { ATS2_SW_ENABLE = 1; ATS1_SW_ENABLE = 0; wait_ms(5); ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x60; } int working=0; pc_acs.printf("Attitude sensor init called \n \r"); pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS); pc_acs.printf("ATS Status & 0xC0 is %x\n\n \r",(int)(ACS_ATS_STATUS&0xC0)); pc_acs.printf("Sensor 1 condition is %d \n\n \r",(int)(( (ACS_ATS_STATUS & 0xC0) != 0xC0)&&( (ACS_ATS_STATUS & 0xC0) != 0x80))); if(( (ACS_ATS_STATUS & 0xC0) != 0xC0)&&( (ACS_ATS_STATUS & 0xC0) != 0x80)) { pc_acs.printf("Sensor 1 marked working \n \r"); working = SENSOR_INIT(); if(working ==1) { ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x60; pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS); pc_acs.printf("Attitude sensor init exitting. Init successful. Ideal case.Sensor 1\n \r"); ACS_INIT_STATUS = 0; return 1; } pc_acs.printf("Sensor 1 not working.Powering off.\n \r"); ATS1_SW_ENABLE = 1; ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0xE0; } pc_acs.printf("Sensor 1 not working. Trying Sensor 2\n \r"); if(( (ACS_ATS_STATUS & 0x0C) != 0x0C)&&( (ACS_ATS_STATUS & 0x0C) != 0x08)) { ATS2_SW_ENABLE = 0; wait_ms(5); working = SENSOR_INIT(); if(working ==1) { pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS); pc_acs.printf("Attitude sensor init exitting. Init successful. Ideal case.Sensor 2\n \r"); ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x06; ACS_INIT_STATUS = 0; return 2; } } pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS); pc_acs.printf("Sensor 2 also not working.Exit init.\n \r"); ATS2_SW_ENABLE = 1; ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x0E; ACS_INIT_STATUS = 0; //set ACS_INIT_STATUS flag return 0; } int SENSOR_DATA_ACQ() { int mag_only=0; pc_acs.printf("Entering Sensor data acq.\n \r"); char reg; //int sentral; int event; int sensor; int error; int init; cmd[0]=EVT_STATUS; i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,&status,1); wait_ms(100); pc_acs.printf("Event Status is %x\n \r",(int)status); event = (int)status; cmd[0]=GYRO_XOUT_H; //0x22 gyro LSB of x i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,raw_gyro,6); cmd[0]=MAG_XOUT_H; //LSB of x i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,raw_mag,6); // pc_acs.printf("\nGyro Values:\n"); for(int i=0; i<3; i++) { //concatenating gyro LSB and MSB to get 16 bit signed data values bit_data= ((int16_t)raw_gyro[2*i+1]<<8)|(int16_t)raw_gyro[2*i]; gyro_data[i]=(float)bit_data; gyro_data[i]=gyro_data[i]/senstivity_gyro; gyro_data[i]+=gyro_error[i]; // pc_acs.printf("%f\t",gyro_data[i]); } // pc_acs.printf("\nMag Values:\n"); for(int i=0; i<3; i++) { //concatenating mag LSB and MSB to get 16 bit signed data values bit_data= ((int16_t)raw_mag[2*i+1]<<8)|(int16_t)raw_mag[2*i]; mag_data[i]=(float)bit_data; mag_data[i]=mag_data[i]/senstivity_mag; mag_data[i]+=mag_error[i]; //pc_acs.printf("%f\t",mag_data[i]); } for(int i=0; i<3; i++) { // data[i]=gyro_data[i]; actual_data.AngularSpeed_actual[i] = gyro_data[i]; actual_data.Bvalue_actual[i] = mag_data[i]; //data[i+3]=mag_data[i]; } //(event & 40 != 40 ) || (event & 08 != 08 ) || (event & 01 == 01 )|| (event & 02 == 02 ) if ( (event & 0x40 != 0x40 ) || (event & 0x08 != 0x08 ) || (event & 0x01 == 0x01 )|| (event & 0x02 == 0x02 )) //check for any error { cmd[0]=RESETREQ; cmd[1]=BIT_RESREQ; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(600); cmd[0]=EVT_STATUS; i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,&status,1); wait_ms(100); pc_acs.printf("Event Status after resetting is %x\n \r",(int)status); if ( (event & 0x40 != 0x40 ) || (event & 0x08 != 0x08 ) || (event & 0x01 == 0x01 )|| (event & 0x02 == 0x02 )) { // cmd[0]=SENTRALSTATUS; // i2c.write(SLAVE_ADDR,cmd,1); /// i2c.read(SLAVE_ADDR_READ,®,1); // wait_ms(100); // sentral = (int)reg; cmd[0]=SENSORSTATUS; i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,®,1); wait_ms(100); sensor = (int)reg; cmd[0]=ERROR; i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,®,1); wait_ms(100); error = (int)reg; if( error&128 == 128) { cmd[0]=MAGRATE; //Output data rate of 100Hz is used for magnetometer cmd[1]=BIT_MAGODR; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); cmd[0]=GYRORATE; //Output data rate of 150Hz is used for gyroscope cmd[1]=BIT_GYROODR; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); cmd[0]=ACCERATE; //Output data rate of 0 Hz is used to disable accelerometer cmd[1]=0x00; wait_ms(100); cmd[0]=ERROR; i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,®,1); wait_ms(100); error = (int)reg; if( error&128 == 128) { pc_acs.printf("Rate error.Exiting.\n \r"); return 1; } } if((error&16 == 16) || (error&32 == 32) || (sensor!=0)) { if( (error&1 == 1) || (sensor&1 == 1) || (sensor&16 == 16) ) { if( (error&4 == 4) || (sensor&4 == 4) || (sensor&64 == 64) ) { pc_acs.printf("error in both sensors.Exiting.\n \r"); return 1; } pc_acs.printf("error in gyro alone.Exiting.\n \r"); return 2; } pc_acs.printf("error in something else.Exiting.\n \r"); return 1; } if(((int)status & 1 == 1 )) { pc_acs.printf("error in CPU Reset.calling init.\n \r"); init = SENSOR_INIT(); if(init == 0) return 1; cmd[0]=EVT_STATUS; i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,&status,1); wait_ms(100); if(((int)status & 1 == 1 )) { pc_acs.printf("Still error in CPU Reset.Exiting.\n \r"); return 1; } pc_acs.printf("error in CPU Reset cleared.\n \r"); } if(!(((int)status & 8 == 8 )&&((int)status & 32 == 32 ))) { pc_acs.printf("Data not ready waiting...\n \r"); //POLL wait_ms(1500); cmd[0]=EVT_STATUS; i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,&status,1); wait_ms(100); if(!(((int)status & 8 == 8 )&&((int)status & 32 == 32 ))) { if((int)status & 32 != 32 ) { if((int)status & 8 != 8 ) { pc_acs.printf("Both data still not ready.Exiting..\n \r"); return 1; } pc_acs.printf("Mag data only ready.Read..\n \r"); mag_only = 1; //return 2; } } } } } cmd[0]=EVT_STATUS; i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,&status,1); wait_ms(100); pc_acs.printf("Event Status is %x\n \r",(int)status); //if the 6th and 4th bit are 1 then it implies that gyro and magnetometer values are ready to take cmd[0]=GYRO_XOUT_H; //0x22 gyro LSB of x i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,raw_gyro,6); cmd[0]=MAG_XOUT_H; //LSB of x i2c.write(SLAVE_ADDR,cmd,1); i2c.read(SLAVE_ADDR_READ,raw_mag,6); // pc_acs.printf("\nGyro Values:\n"); for(int i=0; i<3; i++) { //concatenating gyro LSB and MSB to get 16 bit signed data values bit_data= ((int16_t)raw_gyro[2*i+1]<<8)|(int16_t)raw_gyro[2*i]; gyro_data[i]=(float)bit_data; gyro_data[i]=gyro_data[i]/senstivity_gyro; gyro_data[i]+=gyro_error[i]; // pc_acs.printf("%f\t",gyro_data[i]); } // pc_acs.printf("\nMag Values:\n"); for(int i=0; i<3; i++) { //concatenating mag LSB and MSB to get 16 bit signed data values bit_data= ((int16_t)raw_mag[2*i+1]<<8)|(int16_t)raw_mag[2*i]; mag_data[i]=(float)bit_data; mag_data[i]=mag_data[i]/senstivity_mag; mag_data[i]+=mag_error[i]; //pc_acs.printf("%f\t",mag_data[i]); } for(int i=0; i<3; i++) { // data[i]=gyro_data[i]; actual_data.AngularSpeed_actual[i] = gyro_data[i]; actual_data.Bvalue_actual[i] = mag_data[i]; //data[i+3]=mag_data[i]; } if(mag_only == 0) { pc_acs.printf("Reading data successful.\n \r"); return 0; } else if(mag_only == 1) { pc_acs.printf("Reading data partial success.\n \r"); return 2; } pc_acs.printf("Reading data success.\n \r"); return 0; } int FCTN_ATS_DATA_ACQ() { int acq; pc_acs.printf("DATA_ACQ called \n \r"); pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS); // 0 success //1 full failure //2 partial failure if(( (ACS_ATS_STATUS & 0xC0) == 0x40)) { acq = SENSOR_DATA_ACQ(); if(acq == 0) { ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x60; ACS_DATA_ACQ_STATUS = 0; //clear ACS_DATA_ACQ_STATUS flag for att sens 2 pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS); pc_acs.printf(" Sensor 1 data acq successful.Exit Data ACQ\n \r"); return 0; } else if(acq == 2) { ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x40; pc_acs.printf(" Sensor 1 data partial success.Exiting.\n \r"); return 2; /*if((ACS_ATS_STATUS & 0x0F == 0x00)) { pc_acs.printf(" Sensor 1 data acq partial success.Trying Sensor 2\n \r"); ATS1_SW_ENABLE = 1; ATS2_SW_ENABLE = 0; wait_ms(5); ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x20; int acq; acq = SENSOR_DATA_ACQ(); if(acq == 0) { ACS_DATA_ACQ_STATUS = 0; pc_acs.printf(" Sensor 2 data acq success.Exiting.\n \r"); return 0; } else if(acq == 2) { ACS_DATA_ACQ_STATUS = 2; pc_acs.printf(" Sensor 2 data acq partial success.Exiting.\n \r"); return 2; } else if(acq == 1) { int acq; pc_acs.printf(" Sensor 2 data acq failure.Go to sensor 1 again.\n \r"); ATS2_SW_ENABLE = 1; ATS1_SW_ENABLE = 0; wait_ms(5); acq = SENSOR_DATA_ACQ(); if(acq == 0) { pc_acs.printf(" Sensor 1 data acq success.Exiting.\n \r"); ACS_DATA_ACQ_STATUS = 0; return 0; } else if(acq == 2) { pc_acs.printf(" Sensor 1 data acq partial success.Exiting.\n \r"); ACS_DATA_ACQ_STATUS = 2; return 2; } else { pc_acs.printf(" Sensor 1 data acq failure.Exiting.\n \r"); ATS1_SW_ENABLE = 0; ACS_DATA_ACQ_STATUS = 1; return 1; } pc_acs.printf(" Sensor 1 data acq failure.Exiting.\n \r"); ATS1_SW_ENABLE = 0; ACS_DATA_ACQ_STATUS = 1; return 1; } } else { ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x40; pc_acs.printf(" Sensor 1 data partial success.Sensor 2 marked not working.Exiting.\n \r"); return 2; }*/ } else if(acq == 1) { pc_acs.printf(" Sensor 1 data acq failure.Try sensor 2.\n \r"); ATS1_SW_ENABLE = 1; ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0xE0; } } ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0xE0; if(( (ACS_ATS_STATUS & 0x0C) == 0x04)) { ATS2_SW_ENABLE = 0; wait_ms(5); acq = SENSOR_DATA_ACQ(); if(acq == 0) { pc_acs.printf(" Sensor 2 data acq success.Exiting.\n \r"); ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x06; ACS_DATA_ACQ_STATUS = 0; //clear ACS_DATA_ACQ_STATUS flag for att sens 2 return 0; } else if(acq == 2) { pc_acs.printf(" Sensor 2 data acq partial success.Exiting.\n \r"); ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x04; ACS_DATA_ACQ_STATUS = 2; //clear ACS_DATA_ACQ_STATUS flag for att sens 2 return 2; } else if(acq == 1) { pc_acs.printf(" Sensor 2 data acq failure.Exiting.\n \r"); ATS2_SW_ENABLE = 1; ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x0E; //Sensor 2 also not working } } pc_acs.printf(" Reading value from sensor 1 before exiting\n \r"); ATS1_SW_ENABLE = 0; wait_ms(5); SENSOR_DATA_ACQ(); ATS1_SW_ENABLE = 1; wait_ms(5); ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x0E; pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS); pc_acs.printf(" Both sensors data acq failure.Exiting.\n \r"); ACS_DATA_ACQ_STATUS = 1; //set ACS_DATA_ACQ_STATUS flag for att sens 2 return 1; } void FCTN_ACS_GENPWM_MAIN(float Moment[3]) { printf("\n\rEntered executable PWMGEN function\n"); // entering the PWMGEN executable function float l_duty_cycle_x=0; //Duty cycle of Moment in x direction float l_current_x=0; //Current sent in x TR's float l_duty_cycle_y=0; //Duty cycle of Moment in y direction float l_current_y=0; //Current sent in y TR's float l_duty_cycle_z=0; //Duty cycle of Moment in z direction float l_current_z=0; //Current sent in z TR's for(int i = 0 ; i<3;i++) { // printf(" %f \t ",Moment[i]); // taking the moment values from control algorithm as inputs } //----------------------------- x-direction TR --------------------------------------------// float l_moment_x = Moment[0]; //Moment in x direction phase_TR_x = 1; // setting the default current direction if (l_moment_x <0) { phase_TR_x = 0; // if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high l_moment_x = abs(l_moment_x); } l_current_x = l_moment_x * TR_CONSTANT ; //Moment and Current always have the linear relationship printf("current in trx is %f \r \n",l_current_x); if( l_current_x>0 && l_current_x < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100% { l_duty_cycle_x = 3*10000000*pow(l_current_x,3)- 90216*pow(l_current_x,2) + 697.78*l_current_x - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else if (l_current_x >= 0.0016 && l_current_x < 0.0171) { l_duty_cycle_x = - 76880*pow(l_current_x,3) + 1280.8*pow(l_current_x,2) + 583.78*l_current_x + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else if(l_current_x >= 0.0171 && l_current_x < 0.1678) { l_duty_cycle_x = 275.92*pow(l_current_x,2) + 546.13*l_current_x + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else if(l_current_x==0) { printf("\n \r l_current_x====0"); l_duty_cycle_x = 0; // default value of duty cycle printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else //not necessary { g_err_flag_TR_x = 1; } //------------------------------------- y-direction TR--------------------------------------// float l_moment_y = Moment[1]; //Moment in y direction phase_TR_y = 1; // setting the default current direction if (l_moment_y <0) { phase_TR_y = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high l_moment_y = abs(l_moment_y); } l_current_y = l_moment_y * TR_CONSTANT ; //Moment and Current always have the linear relationship printf("current in try is %f \r \n",l_current_y); if( l_current_y>0 && l_current_y < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100% { l_duty_cycle_y = 3*10000000*pow(l_current_y,3)- 90216*pow(l_current_y,2) + 697.78*l_current_y - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else if (l_current_y >= 0.0016 && l_current_y < 0.0171) { l_duty_cycle_y = - 76880*pow(l_current_y,3) + 1280.8*pow(l_current_y,2) + 583.78*l_current_y + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else if(l_current_y >= 0.0171 && l_current_y < 0.1678) { l_duty_cycle_y = 275.92*pow(l_current_y,2) + 546.13*l_current_y + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else if(l_current_y==0) { printf("\n \r l_current_y====0"); l_duty_cycle_y = 0; // default value of duty cycle printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else // not necessary { g_err_flag_TR_y = 1; } //----------------------------------------------- z-direction TR -------------------------// float l_moment_z = Moment[2]; //Moment in z direction phase_TR_z = 1; // setting the default current direction if (l_moment_z <0) { phase_TR_z = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high l_moment_z = abs(l_moment_z); } l_current_z = l_moment_z * TR_CONSTANT ; //Moment and Current always have the linear relationship printf("current in trz is %f \r \n",l_current_z); if( l_current_z>0 && l_current_z < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100% { l_duty_cycle_z = 3*10000000*pow(l_current_z,3)- 90216*pow(l_current_z,2) + 697.78*l_current_z - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else if (l_current_z >= 0.0016 && l_current_z < 0.0171) { l_duty_cycle_z = - 76880*pow(l_current_z,3) + 1280.8*pow(l_current_z,2) + 583.78*l_current_z + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else if(l_current_z >= 0.0171 && l_current_z < 0.1678) { l_duty_cycle_z = 275.92*pow(l_current_z,2) + 546.13*l_current_z + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else if(l_current_z==0) { printf("\n \r l_current_z====0"); l_duty_cycle_z = 0; // default value of duty cycle printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else // not necessary { g_err_flag_TR_z = 1; } //-----------------------------------------exiting the function-----------------------------------// printf("\n\rExited executable PWMGEN function\n\r"); // stating the successful exit of TR function } /*void FCTN_ACS_GENPWM_MAIN(float Moment[3]) { printf("\n\rEntered executable PWMGEN function\n"); // entering the PWMGEN executable function float l_duty_cycle_x=0; //Duty cycle of Moment in x direction float l_current_x=0; //Current sent in x TR's float l_duty_cycle_y=0; //Duty cycle of Moment in y direction float l_current_y=0; //Current sent in y TR's float l_duty_cycle_z=0; //Duty cycle of Moment in z direction float l_current_z=0; //Current sent in z TR's for(int i = 0 ; i<3;i++) { printf("pwm %f \t ",Moment[i]); // taking the moment values from control algorithm as inputs } //----------------------------- x-direction TR --------------------------------------------// float l_moment_x = Moment[0]; //Moment in x direction phase_TR_x = 1; // setting the default current direction if (l_moment_x <0) { phase_TR_x = 0; // if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high l_moment_x = abs(l_moment_x); } l_current_x = l_moment_x * TR_CONSTANT ; //Moment and Current always have the linear relationship pc_acs.printf("current in trx is %f \r \n",l_current_x); if( l_current_x>0 && l_current_x < 0.006 ) //Current and Duty cycle have the linear relationship between 1% and 100% { l_duty_cycle_x = 6*1000000*pow(l_current_x,4) - 377291*pow(l_current_x,3) + 4689.6*pow(l_current_x,2) + 149.19*l_current_x - 0.0008; // calculating upto 0.1% dutycycle by polynomial interpolation pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else if( l_current_x >= 0.006 && l_current_x < 0.0116) { l_duty_cycle_x = 1*100000000*pow(l_current_x,4) - 5*1000000*pow(l_current_x,3) + 62603*pow(l_current_x,2) - 199.29*l_current_x + 0.7648;// calculating upto 1% dutycycle by polynomial interpolation pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else if (l_current_x >= 0.0116 && l_current_x < 0.0624) { l_duty_cycle_x = 212444*pow(l_current_x,4) - 33244*pow(l_current_x,3) + 1778.4*pow(l_current_x,2) + 120.91*l_current_x + 0.3878; // calculating upto 10% dutycycle by polynomial interpolation pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else if(l_current_x >= 0.0624 && l_current_x < 0.555) { l_duty_cycle_x = 331.15*pow(l_current_x,4) - 368.09*pow(l_current_x,3) + 140.43*pow(l_current_x,2) + 158.59*l_current_x + 0.0338; // calculating upto 100% dutycycle by polynomial interpolation pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else if(l_current_x==0) { printf("\n \r l_current_x====0"); l_duty_cycle_x = 0; // default value of duty cycle pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; } else //not necessary { g_err_flag_TR_x = 1; } //------------------------------------- y-direction TR--------------------------------------// float l_moment_y = Moment[1]; //Moment in y direction phase_TR_y = 1; // setting the default current direction if (l_moment_y <0) { phase_TR_y = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high l_moment_y = abs(l_moment_y); } l_current_y = l_moment_y * TR_CONSTANT ; //Moment and Current always have the linear relationship pc_acs.printf("current in try is %f \r \n",l_current_y); if( l_current_y>0 && l_current_y < 0.006 )//Current and Duty cycle have the linear relationship between 1% and 100% { l_duty_cycle_y = 6*1000000*pow(l_current_y,4) - 377291*pow(l_current_y,3) + 4689.6*pow(l_current_y,2) + 149.19*l_current_y - 0.0008; // calculating upto 0.1% dutycycle by polynomial interpolation pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else if( l_current_y >= 0.006 && l_current_y < 0.0116) { l_duty_cycle_y = 1*100000000*pow(l_current_y,4) - 5*1000000*pow(l_current_y,3) + 62603*pow(l_current_y,2) - 199.29*l_current_y + 0.7648;// calculating upto 1% dutycycle by polynomial interpolation pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else if (l_current_y >= 0.0116&& l_current_y < 0.0624) { l_duty_cycle_y = 212444*pow(l_current_y,4) - 33244*pow(l_current_y,3) + 1778.4*pow(l_current_y,2) + 120.91*l_current_y + 0.3878;// calculating upto 10% dutycycle by polynomial interpolation pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else if(l_current_y >= 0.0624 && l_current_y < 0.555) { l_duty_cycle_y = 331.15*pow(l_current_y,4) - 368.09*pow(l_current_y,3) + 140.43*pow(l_current_y,2) + 158.59*l_current_y + 0.0338;// calculating upto 100% dutycycle by polynomial interpolation pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else if(l_current_y==0) { printf("\n \r l_current_y====0"); l_duty_cycle_y = 0; // default value of duty cycle pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y); PWM2.period(TIME_PERIOD); PWM2 = l_duty_cycle_y/100 ; } else // not necessary { g_err_flag_TR_y = 1; } //----------------------------------------------- z-direction TR -------------------------// float l_moment_z = Moment[2]; //Moment in z direction phase_TR_z = 1; // setting the default current direction if (l_moment_z <0) { phase_TR_z = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high l_moment_z = abs(l_moment_z); } l_current_z = l_moment_z * TR_CONSTANT ; //Moment and Current always have the linear relationship pc_acs.printf("current in trz is %f \r \n",l_current_z); if( l_current_z>0 && l_current_z < 0.006 )//Current and Duty cycle have the linear relationship between 1% and 100% { l_duty_cycle_z = 6*1000000*pow(l_current_z,4) - 377291*pow(l_current_z,3) + 4689.6*pow(l_current_z,2) + 149.19*l_current_z - 0.0008;// calculating upto 0.1% dutycycle by polynomial interpolation pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else if( l_current_z >= 0.006 && l_current_z < 0.0116) { l_duty_cycle_z = 1*100000000*pow(l_current_z,4) - 5*1000000*pow(l_current_z,3) + 62603*pow(l_current_z,2) - 199.29*l_current_z + 0.7648;// calculating upto 1% dutycycle by polynomial interpolation pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else if (l_current_z >= 0.0116 && l_current_z < 0.0624) { l_duty_cycle_z = 212444*pow(l_current_z,4) - 33244*pow(l_current_z,3) + 1778.4*pow(l_current_z,2) + 120.91*l_current_z + 0.3878;// calculating upto 10% dutycycle by polynomial interpolation pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else if(l_current_z >= 0.0624 && l_current_z < 0.555) { l_duty_cycle_z = 331.15*pow(l_current_z,4) - 368.09*pow(l_current_z,3) + 140.43*pow(l_current_z,2) + 158.59*l_current_z + 0.0338;// calculating upto 100% dutycycle by polynomial interpolation pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else if(l_current_z==0) { printf("\n \r l_current_z====0"); l_duty_cycle_z = 0; // default value of duty cycle pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z); PWM3.period(TIME_PERIOD); PWM3 = l_duty_cycle_z/100 ; } else // not necessary { g_err_flag_TR_z = 1; } //-----------------------------------------exiting the function-----------------------------------// printf("\n\rExited executable PWMGEN function\n\r"); // stating the successful exit of TR function }*/