I2C BAE standalone hardware testing

Dependencies:   FreescaleIAP mbed-rtos mbed

Fork of ACS_Flowchart_BAE_1 by Team Fox

ACS.cpp

Committer:
Bragadeesh153
Date:
2016-06-03
Revision:
16:cc77770d787f
Parent:
15:e09aaaccf134

File content as of revision 16:cc77770d787f:

/*------------------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------CONTROL ALGORITHM------------------------------------------------------------------------------------------*/
#include <mbed.h>
#include <math.h>

#include "pni.h" //pni header file
#include "pin_config.h"
#include "ACS.h"
#include "EPS.h"

//********************************flags******************************************//
extern uint32_t BAE_STATUS;
extern uint32_t BAE_ENABLE;
extern uint8_t ACS_INIT_STATUS;
extern uint8_t ACS_DATA_ACQ_STATUS;
extern uint8_t ACS_ATS_STATUS;
extern uint8_t ACS_MAIN_STATUS;
extern uint8_t ACS_STATUS;

extern DigitalOut ATS1_SW_ENABLE; // enable of att sens2 switch
extern DigitalOut ATS2_SW_ENABLE; // enable of att sens switch

extern uint8_t ACS_ATS_ENABLE;
extern uint8_t ACS_DATA_ACQ_ENABLE;
extern uint8_t ACS_STATE;

DigitalOut phase_TR_x(PIN27); // PHASE pin for x-torquerod
DigitalOut phase_TR_y(PIN28); // PHASE pin for y-torquerod
DigitalOut phase_TR_z(PIN86); // PHASE pin for z-torquerod

extern PwmOut PWM1; //x                         //Functions used to generate PWM signal 
extern PwmOut PWM2; //y
extern PwmOut PWM3; //z                         //PWM output comes from pins p6

int g_err_flag_TR_x=0;       // setting x-flag to zero
int g_err_flag_TR_y=0;       // setting y-flag to zero
int g_err_flag_TR_z=0;       // setting z-flag to zero

extern float data[6];
extern BAE_HK_actual actual_data;


//DigitalOut gpo1(PTC0); // enable of att sens2 switch
//DigitalOut gpo2(PTC16); // enable of att sens switch


Serial pc_acs(USBTX,USBRX); //for usb communication
//CONTROL_ALGO

float moment[3]; // Unit: Ampere*Meter^2
float b_old[3]={1.15e-5,-0.245e-5,1.98e-5};  // Unit: Tesla
int flag_firsttime=1, controlmode, alarmmode=0;



void controller (float moment[3], float b1[3], float omega1[3], float b_old[3], int &alarmmode, int &flag_firsttime, int &controlmode);
void controlmodes(float moment[3], float b[3], float db[3], float omega[3], int controlmode1, float MmntMax);
float max_array(float arr[3]);
void inverse(float mat[3][3],float inv[3][3]);

//CONTROLALGO PARAMETERS


void FCTN_ACS_CNTRLALGO(float b[3],float omega[3])
{
    
    float b1[3];
    float omega1[3];
    b1[0] = b[0]/1000000.0;
    b1[1] = b[1]/1000000.0;
    b1[2] = b[2]/1000000.0; 
    
    omega1[0] = omega[0]*3.14159/180;
    omega1[1] = omega[1]*3.14159/180;
    omega1[2] = omega[2]*3.14159/180;
    controller (moment, b1, omega1, b_old, alarmmode, flag_firsttime, controlmode);
    
}
void controller (float moment[3], float b1[3], float omega1[3], float b_old[3], int &alarmmode, int &flag_firsttime, int &controlmode)
{
    float db1[3]; // Unit: Tesla/Second
    float sampling_time=10; // Unit: Seconds. Digital Control law excuted once in 10 seconds
    float MmntMax=1.1; // Unit: Ampere*Meter^2
    float OmegaMax=1*3.1415/180.0; // Unit: Radians/Second
    float normalising_fact;
    float b1_copy[3], omega1_copy[3], db1_copy[3];
    int i;
    if(flag_firsttime==1)
        {
            for(i=0;i<3;i++)
        {
                db1[i]=0; // Unit: Tesla/Second
        }
            flag_firsttime=0;
        }
    else
    {
        for(i=0;i<3;i++)
        {
            db1[i]= (b1[i]-b_old[i])/sampling_time; // Unit: Tesla/Second
        }
    }
    
        if(max_array(omega1)<(0.8*OmegaMax) && alarmmode==1)
    {
            alarmmode=0;
    }
        else if(max_array(omega1)>OmegaMax && alarmmode==0)
    {
            alarmmode=1;
    }

    for (i=0;i<3;i++)
    {
        b1_copy[i]=b1[i];
        db1_copy[i]=db1[i];
        omega1_copy[i]=omega1[i];
    }

    if(alarmmode==0)
        {
            controlmode=0;
            controlmodes(moment,b1,db1,omega1,controlmode,MmntMax);
        for (i=0;i<3;i++)
        {
            b1[i]=b1_copy[i];
            db1[i]=db1_copy[i];
            omega1[i]=omega1_copy[i];
        }
            if(max_array(moment)>MmntMax)
            {
                controlmode=1;
                controlmodes(moment,b1,db1,omega1,controlmode,MmntMax);
            for (i=0;i<3;i++)
            {
                b1[i]=b1_copy[i];
                db1[i]=db1_copy[i];
                omega1[i]=omega1_copy[i];
            }
                if(max_array(moment)>MmntMax)
                {
                    normalising_fact=max_array(moment)/MmntMax;
                    for(i=0;i<3;i++)
                {
                        moment[i]/=normalising_fact; // Unit: Ampere*Meter^2
                }
                }
            }
        }
        else
        {   
            controlmode=1;
            controlmodes(moment,b1,db1,omega1,controlmode,MmntMax);
        for (i=0;i<3;i++)
        {
            b1[i]=b1_copy[i];
            db1[i]=db1_copy[i];
            omega1[i]=omega1_copy[i];
        }
            if(max_array(moment)>MmntMax)
            {
                normalising_fact=max_array(moment)/MmntMax;
                for(i=0;i<3;i++)
            {
                    moment[i]/=normalising_fact; // Unit: Ampere*Meter^2
            }
            }
        
        }
    for (i=0;i<3;i++)
    {
        b_old[i]=b1[i];
    }
}

void inverse(float mat[3][3],float inv[3][3])
{
    int i,j;
    float det=0;
    for(i=0;i<3;i++)
    { 
        for(j=0;j<3;j++)
        {
            inv[j][i]=(mat[(i+1)%3][(j+1)%3]*mat[(i+2)%3][(j+2)%3])-(mat[(i+2)%3][(j+1)%3]*mat[(i+1)%3][(j+2)%3]);
        }
    }
    det+=(mat[0][0]*inv[0][0])+(mat[0][1]*inv[1][0])+(mat[0][2]*inv[2][0]);
    for(i=0;i<3;i++)
    {
        for(j=0;j<3;j++)
        {
            inv[i][j]/=det;
        }
    }
}

float max_array(float arr[3])
{
    int i;
    float temp_max=fabs(arr[0]);
    for(i=1;i<3;i++)
    {
        if(fabs(arr[i])>temp_max)
        {
            temp_max=fabs(arr[i]);
        }
    }
    return temp_max;
}


void controlmodes(float moment[3], float b[3], float db[3], float omega[3], int controlmode1, float MmntMax)
{
    float bb[3]={0,0,0};
    float d[3]={0,0,0};
    float Jm[3][3]={{0.2271,0.0014,-0.0026},{0.0014,0.2167,-0.004},{-0.0026,-0.004,0.2406}}; // Unit: Kilogram*Meter^2. Jm may change depending on the final satellite structure
    float den=0,den2;
    float bcopy[3];
    int i, j;//temporary variables
    float Mu[2],z[2],dv[2],v[2],u[2],tauc[3]={0,0,0},Mmnt[3];//outputs
    float invJm[3][3];
    float kmu2=0.07,gamma2=1.9e4,kz2=0.4e-2,kmu=0.003,gamma=5.6e4,kz=0.1e-4,kdetumble=2000000;
    int infflag;   // Flag variable to check if the moment value is infinity or NaN
    
    if(controlmode1==0)
    {
        den=sqrt((b[0]*b[0])+(b[1]*b[1])+(b[2]*b[2]));
        den2=(b[0]*db[0])+(b[1]*db[1])+(b[2]*db[2]);
        for(i=0;i<3;i++)
        {
            db[i]=((db[i]*den*den)-(b[i]*(den2)))/(pow(den,3)); // Normalized db. Hence the unit is Second^(-1)
        }
        for(i=0;i<3;i++)
        {
            b[i]/=den; // Mormalized b. Hence no unit.
        }
        if(b[2]>0.9 || b[2]<-0.9)
        {
            kz=kz2;
            kmu=kmu2;
            gamma=gamma2;
        }
        for(i=0;i<2;i++)
        {
            Mu[i]=b[i];
            v[i]=-kmu*Mu[i];
            dv[i]=-kmu*db[i];
            z[i]=db[i]-v[i];
            u[i]=-kz*z[i]+dv[i]-(Mu[i]/gamma);
        }
        inverse(Jm,invJm);
        for(i=0;i<3;i++)
        {
            for(j=0;j<3;j++)
            {
                bb[i]+=omega[j]*(omega[(i+1)%3]*Jm[(i+2)%3][j]-omega[(i+2)%3]*Jm[(i+1)%3][j]);
            }
        }
        for(i=0;i<3;i++)
        {
            for(j=0;j<3;j++)
            {
                d[i]+=bb[j]*invJm[i][j];
            }
        }
        bb[1]=u[0]-(d[1]*b[2])+(d[2]*b[1])-(omega[1]*db[2])+(omega[2]*db[1]);
        bb[2]=u[1]-(d[2]*b[0])+(d[0]*b[2])-(omega[2]*db[0])+(omega[0]*db[2]);
        bb[0]=0;
        for(i=0;i<3;i++)
        {
            d[i]=invJm[2][i];
            invJm[1][i]=-b[2]*invJm[1][i]+b[1]*d[i];
            invJm[2][i]=b[2]*invJm[0][i]-b[0]*d[i];
            invJm[0][i]=b[i];
        }
        inverse(invJm,Jm);
        for(i=0;i<3;i++)
        {
            for(j=0;j<3;j++)
            {
                tauc[i]+=Jm[i][j]*bb[j]; // Unit: Newton*Meter^2
            }
        }
        for(i=0;i<3;i++)
        {
            bcopy[i]=b[i]*den;
        }
        for(i=0;i<3;i++)
        {
            Mmnt[i]=bcopy[(i+1)%3]*tauc[(i+2)%3]-bcopy[(i+2)%3]*tauc[(i+1)%3];
            Mmnt[i]/=(den*den); // Unit: Ampere*Meter^2
        }
        infflag=0;
        for (i=0; i<3 && infflag==0; i++)
        {
            if (isinf(Mmnt[i])==1 || isnan(Mmnt[i])==1)
                infflag=1;
        }
        if (infflag==1)
        {
            for (i=0; i<3; i++)
                Mmnt[i]=2*MmntMax;
        }
        
    }
    else if(controlmode1==1)
    {
        for(i=0;i<3;i++)
        {
            Mmnt[i]=-kdetumble*(b[(i+1)%3]*omega[(i+2)%3]-b[(i+2)%3]*omega[(i+1)%3]); // Unit: Ampere*Meter^2
        }
    }
    for(i=0;i<3;i++)
    {
        moment[i]=Mmnt[i]; // Unit: Ampere*Meter^2
    }
}

I2C i2c (PTC9,PTC8); //PTC9-sda,PTC8-scl  for the attitude sensors and battery gauge

int FCTN_ACS_INIT(); //initialization of registers happens
int SENSOR_INIT();
int FCTN_ATS_DATA_ACQ(); //data is obtained
int SENSOR_DATA_ACQ();
void T_OUT(); //timeout function to stop infinite loop

void CONFIG_UPLOAD();
Timeout to; //Timeout variable to
int toFlag; 

int count =0; // Time for which the BAE uC is running (in seconds)
void T_OUT()
{
    toFlag=0; //as T_OUT function gets called the while loop gets terminated
}


//DEFINING VARIABLES
char cmd[2];
char raw_gyro[6];
char raw_mag[6];
char store,status;
int16_t bit_data;
float gyro_data[3], mag_data[3],combined_values[6];
float senstivity_gyro =6.5536; //senstivity is obtained from 2^15/5000dps
float senstivity_mag  =32.768; //senstivity is obtained from 2^15/1000microtesla
float gyro_error[3]= {0,0,0}, mag_error[3]= {0,0,0};

void CONFIG_UPLOAD()
{
    cmd[0]=RESETREQ;
    cmd[1]=BIT_RESREQ;
    i2c.write(SLAVE_ADDR,cmd,2); //When 0x01 is written in reset request register Emulates a hard power down/power up
    wait_ms(600);
    
    //Verify magic number
    
    cmd[0]=HOST_CTRL; //0x02 is written in HOST CONTROL register to enable upload
    cmd[1]=BIT_HOST_UPLD_ENB;
    i2c.write(SLAVE_ADDR,cmd,2);
    wait_ms(100);
    
    cmd[0]=UPLOAD_ADDR; //0x02 is written in HOST CONTROL register to enable upload
    cmd[1]=0x0000;
    i2c.write(SLAVE_ADDR,cmd,3);
    wait_ms(100);
    
    
    
    
    cmd[0]=HOST_CTRL; //0x00 is written in HOST CONTROL register to free upload
    cmd[1]=0x00;
    i2c.write(SLAVE_ADDR,cmd,2);
    wait_ms(100);
    
    
    
}

int SENSOR_INIT()
{
    
    pc_acs.printf("Entered sensor init\n \r");
    cmd[0]=RESETREQ;
    cmd[1]=BIT_RESREQ;
    i2c.write(SLAVE_ADDR,cmd,2); //When 0x01 is written in reset request register Emulates a hard power down/power up
    wait_ms(800); //waiting for loading configuration file stored in EEPROM
    cmd[0]=SENTRALSTATUS;
    i2c.write(SLAVE_ADDR,cmd,1);
    i2c.read(SLAVE_ADDR_READ,&store,1);
    wait_ms(100);
    pc_acs.printf("Sentral Status is %x\n \r",(int)store);
    
    //to check whether EEPROM is uploaded
    switch((int)store) { 
        case(3): {
            cmd[0]=RESETREQ;
            cmd[1]=BIT_RESREQ;
            i2c.write(SLAVE_ADDR,cmd,2);
            wait_ms(600);
            break;
        }
        case(11): {
            break;
        }
        default: {
            cmd[0]=RESETREQ;
            cmd[1]=BIT_RESREQ;
            i2c.write(SLAVE_ADDR,cmd,2);
            wait_ms(600);
            
        }
    }
    cmd[0]=SENTRALSTATUS;
    i2c.write(SLAVE_ADDR,cmd,1);
    i2c.read(SLAVE_ADDR_READ,&store,1);
    wait_ms(100);
    pc_acs.printf("Sentral Status is %x\n \r",(int)store);
    
    int manual=0;
    if((int)store != 11)
    {

            cmd[0]=RESETREQ;
            cmd[1]=BIT_RESREQ;
            i2c.write(SLAVE_ADDR,cmd,2);
            wait_ms(600);
            
            //manually upload
            
            if(manual == 0)
            {
                return 0;
            }
                     
    }
    
        cmd[0]=HOST_CTRL; //0x01 is written in HOST CONTROL register to enable the sensors
        cmd[1]=BIT_RUN_ENB;
        i2c.write(SLAVE_ADDR,cmd,2);
        wait_ms(100);
        
        cmd[0]=MAGRATE; //Output data rate of 100Hz is used for magnetometer
        cmd[1]=BIT_MAGODR;
        i2c.write(SLAVE_ADDR,cmd,2);
        wait_ms(100);
        cmd[0]=GYRORATE; //Output data rate of 150Hz is used for gyroscope
        cmd[1]=BIT_GYROODR;
        i2c.write(SLAVE_ADDR,cmd,2);
        wait_ms(100);
        cmd[0]=ACCERATE; //Output data rate of 0 Hz is used to disable accelerometer
        cmd[1]=0x00;
        wait_ms(100);
        
        i2c.write(SLAVE_ADDR,cmd,2);
        wait_ms(100);
        cmd[0]=ALGO_CTRL; //When 0x00 is written to ALGO CONTROL register we get scaled sensor values
        cmd[1]=0x00;
        i2c.write(SLAVE_ADDR,cmd,2);
        wait_ms(100);
        cmd[0]=ENB_EVT; //enabling the error,gyro values and magnetometer values
        cmd[1]=BIT_EVT_ENB;
        i2c.write(SLAVE_ADDR,cmd,2);
        wait_ms(100);
         pc_acs.printf("Exited sensor init successfully\n \r");
        return 1;

    
}
int FCTN_ACS_INIT()
{
    ACS_INIT_STATUS = 1;     //set ACS_INIT_STATUS flag
    if( (ATS1_SW_ENABLE!= 0 )&&(ATS2_SW_ENABLE!= 0 ) )
    {
    ATS2_SW_ENABLE = 1;
    ATS1_SW_ENABLE = 0;
    wait_ms(5);
    ACS_ATS_STATUS =  (ACS_ATS_STATUS&0x0F)|0x60;
    }
    
    int working=0;

    pc_acs.printf("Attitude sensor init called \n \r");
    pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
    pc_acs.printf("ATS Status & 0xC0 is %x\n\n \r",(int)(ACS_ATS_STATUS&0xC0));
    pc_acs.printf("Sensor 1 condition is %d \n\n \r",(int)((  (ACS_ATS_STATUS & 0xC0) != 0xC0)&&(  (ACS_ATS_STATUS & 0xC0) != 0x80)));
    
    
    if((  (ACS_ATS_STATUS & 0xC0) != 0xC0)&&(  (ACS_ATS_STATUS & 0xC0) != 0x80))
    {

        pc_acs.printf("Sensor 1 marked working \n \r");
        working = SENSOR_INIT();
        if(working ==1)
            {
                ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x60;
                pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
                pc_acs.printf("Attitude sensor init exitting. Init successful. Ideal case.Sensor 1\n \r");
                ACS_INIT_STATUS = 0;
                return 1;
            }
            
            
            
            pc_acs.printf("Sensor 1 not working.Powering off.\n \r");
            ATS1_SW_ENABLE = 1;
            ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0xE0;
  
    }
    
    pc_acs.printf("Sensor 1 not working. Trying Sensor 2\n \r");
    
    if((  (ACS_ATS_STATUS & 0x0C) != 0x0C)&&(  (ACS_ATS_STATUS & 0x0C) != 0x08))
    {
                        
            
            ATS2_SW_ENABLE = 0;
            wait_ms(5);
            working = SENSOR_INIT();
            if(working ==1)
            {
                pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
                pc_acs.printf("Attitude sensor init exitting. Init successful. Ideal case.Sensor 2\n \r");
                ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x06;
                ACS_INIT_STATUS = 0;
                return 2;
            }
        
        
    }
    
    pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
    pc_acs.printf("Sensor 2 also not working.Exit init.\n \r");
    
    
    
    ATS2_SW_ENABLE = 1;
    ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x0E;
    ACS_INIT_STATUS = 0; //set ACS_INIT_STATUS flag
    return 0;
}


int SENSOR_DATA_ACQ()
{
        int mag_only=0;
        pc_acs.printf("Entering Sensor data acq.\n \r");
        char reg;
        
        //int sentral;
        int event;
        int sensor;
        int error;
        
        int init;
        cmd[0]=EVT_STATUS;
        i2c.write(SLAVE_ADDR,cmd,1);
        i2c.read(SLAVE_ADDR_READ,&status,1);
        wait_ms(100);
        pc_acs.printf("Event Status is %x\n \r",(int)status);
        event = (int)status;   
        
                    cmd[0]=GYRO_XOUT_H; //0x22 gyro LSB of x 
            i2c.write(SLAVE_ADDR,cmd,1);
            i2c.read(SLAVE_ADDR_READ,raw_gyro,6);
            cmd[0]=MAG_XOUT_H; //LSB of x
            i2c.write(SLAVE_ADDR,cmd,1);
            i2c.read(SLAVE_ADDR_READ,raw_mag,6);
        //    pc_acs.printf("\nGyro Values:\n");
            for(int i=0; i<3; i++) {
                //concatenating gyro LSB and MSB to get 16 bit signed data values
                bit_data= ((int16_t)raw_gyro[2*i+1]<<8)|(int16_t)raw_gyro[2*i]; 
                gyro_data[i]=(float)bit_data;
                gyro_data[i]=gyro_data[i]/senstivity_gyro;
                gyro_data[i]+=gyro_error[i];
               // pc_acs.printf("%f\t",gyro_data[i]);
            }
       //     pc_acs.printf("\nMag Values:\n");
            for(int i=0; i<3; i++) {
                //concatenating mag LSB and MSB to get 16 bit signed data values
                bit_data= ((int16_t)raw_mag[2*i+1]<<8)|(int16_t)raw_mag[2*i];
                mag_data[i]=(float)bit_data;
                mag_data[i]=mag_data[i]/senstivity_mag;
                mag_data[i]+=mag_error[i];
                //pc_acs.printf("%f\t",mag_data[i]);
            }
            for(int i=0; i<3; i++) {
               // data[i]=gyro_data[i];
                actual_data.AngularSpeed_actual[i] = gyro_data[i];
                actual_data.Bvalue_actual[i] = mag_data[i];
                //data[i+3]=mag_data[i];
            }
            
                 

        //(event & 40 != 40 ) || (event & 08 != 08 ) || (event & 01 == 01 )|| (event & 02 == 02 )
        
        if  (  (event & 0x40 != 0x40 ) || (event & 0x08 != 0x08 ) || (event & 0x01 == 0x01 )|| (event & 0x02 == 0x02 ))    //check for any error
        {
            cmd[0]=RESETREQ;
            cmd[1]=BIT_RESREQ;
            i2c.write(SLAVE_ADDR,cmd,2);
            wait_ms(600);
            
            
            
            cmd[0]=EVT_STATUS;
            i2c.write(SLAVE_ADDR,cmd,1);
            i2c.read(SLAVE_ADDR_READ,&status,1);
            wait_ms(100);
            pc_acs.printf("Event Status after resetting is %x\n \r",(int)status);
            
            if  ( (event & 0x40 != 0x40 ) || (event & 0x08 != 0x08 ) || (event & 0x01 == 0x01 )|| (event & 0x02 == 0x02 ))         
            {
                

                
                  //  cmd[0]=SENTRALSTATUS;
                  //  i2c.write(SLAVE_ADDR,cmd,1);
                  ///  i2c.read(SLAVE_ADDR_READ,&reg,1);
                  //  wait_ms(100);
                   // sentral = (int)reg;
                    
                    cmd[0]=SENSORSTATUS;
                    i2c.write(SLAVE_ADDR,cmd,1);
                    i2c.read(SLAVE_ADDR_READ,&reg,1);
                    wait_ms(100);
                    
                    sensor = (int)reg;
                    
                    cmd[0]=ERROR;
                    i2c.write(SLAVE_ADDR,cmd,1);
                    i2c.read(SLAVE_ADDR_READ,&reg,1);
                    wait_ms(100);
                    
                    error = (int)reg;
                    
                    if( error&128 == 128)
                    {
                                cmd[0]=MAGRATE; //Output data rate of 100Hz is used for magnetometer
                                cmd[1]=BIT_MAGODR;
                                i2c.write(SLAVE_ADDR,cmd,2);
                                wait_ms(100);
                                cmd[0]=GYRORATE; //Output data rate of 150Hz is used for gyroscope
                                cmd[1]=BIT_GYROODR;
                                i2c.write(SLAVE_ADDR,cmd,2);
                                wait_ms(100);
                                cmd[0]=ACCERATE; //Output data rate of 0 Hz is used to disable accelerometer
                                cmd[1]=0x00;
                                wait_ms(100);
                                cmd[0]=ERROR;
                                i2c.write(SLAVE_ADDR,cmd,1);
                                i2c.read(SLAVE_ADDR_READ,&reg,1);
                                wait_ms(100);
                                
                                error = (int)reg;
                                
                                if( error&128 == 128)
                                    {
                                        pc_acs.printf("Rate error.Exiting.\n \r");
                                        return 1;
                                    }
                                    
 
                    }
                    
                    
                    if((error&16 == 16) || (error&32 == 32) || (sensor!=0))
                     {
                                if( (error&1 == 1) || (sensor&1 == 1) || (sensor&16 == 16)  )
                                     {
                                                
                                            if( (error&4 == 4) || (sensor&4 == 4) || (sensor&64 == 64)  )
                                                  {
                                                         pc_acs.printf("error in both sensors.Exiting.\n \r");
                                                         return 1;
                                                  }
                                             pc_acs.printf("error in gyro alone.Exiting.\n \r");
                                             return 2;
                                      }      
                                        pc_acs.printf("error in something else.Exiting.\n \r");  
                                        return 1;                       
                     }
                     
                     if(((int)status & 1 == 1 ))
                     {
                         pc_acs.printf("error in CPU Reset.calling init.\n \r");
                         init = SENSOR_INIT();
                         if(init == 0)
                            return 1;
                            
                        cmd[0]=EVT_STATUS;
                        i2c.write(SLAVE_ADDR,cmd,1);
                        i2c.read(SLAVE_ADDR_READ,&status,1);
                        wait_ms(100);
                        if(((int)status & 1 == 1 ))
                        {
                            pc_acs.printf("Still error in CPU Reset.Exiting.\n \r");
                            return 1;
                        }
                        pc_acs.printf("error in CPU Reset cleared.\n \r");
                         
                      }
                      
                    if(!(((int)status & 8 == 8 )&&((int)status & 32 == 32 )))
                        {
                            pc_acs.printf("Data not ready waiting...\n \r");
                            //POLL
                            wait_ms(1500);
                            cmd[0]=EVT_STATUS;
                            i2c.write(SLAVE_ADDR,cmd,1);
                            i2c.read(SLAVE_ADDR_READ,&status,1);
                            wait_ms(100);
                            if(!(((int)status & 8 == 8 )&&((int)status & 32 == 32 )))
                            {

                                if((int)status & 32 != 32 )
                                {
                                    if((int)status & 8 != 8 )
                                    {
                                        pc_acs.printf("Both data still not ready.Exiting..\n \r");
                                        return 1;
                                    }
                                    pc_acs.printf("Mag data only ready.Read..\n \r");
                                    mag_only = 1;
                                    //return 2;
                                    
                                }
                                
                                
                            }
                            
                                             
                        }
                        
     
            }
            
            
            
                    
            
        }
        
        cmd[0]=EVT_STATUS;
        i2c.write(SLAVE_ADDR,cmd,1);
        i2c.read(SLAVE_ADDR_READ,&status,1);
        wait_ms(100);
        pc_acs.printf("Event Status is %x\n \r",(int)status);
        
        //if the 6th and 4th bit are 1 then it implies that gyro and magnetometer values are ready to take
        
            cmd[0]=GYRO_XOUT_H; //0x22 gyro LSB of x 
            i2c.write(SLAVE_ADDR,cmd,1);
            i2c.read(SLAVE_ADDR_READ,raw_gyro,6);
            cmd[0]=MAG_XOUT_H; //LSB of x
            i2c.write(SLAVE_ADDR,cmd,1);
            i2c.read(SLAVE_ADDR_READ,raw_mag,6);
        //    pc_acs.printf("\nGyro Values:\n");
            for(int i=0; i<3; i++) {
                //concatenating gyro LSB and MSB to get 16 bit signed data values
                bit_data= ((int16_t)raw_gyro[2*i+1]<<8)|(int16_t)raw_gyro[2*i]; 
                gyro_data[i]=(float)bit_data;
                gyro_data[i]=gyro_data[i]/senstivity_gyro;
                gyro_data[i]+=gyro_error[i];
               // pc_acs.printf("%f\t",gyro_data[i]);
            }
       //     pc_acs.printf("\nMag Values:\n");
            for(int i=0; i<3; i++) {
                //concatenating mag LSB and MSB to get 16 bit signed data values
                bit_data= ((int16_t)raw_mag[2*i+1]<<8)|(int16_t)raw_mag[2*i];
                mag_data[i]=(float)bit_data;
                mag_data[i]=mag_data[i]/senstivity_mag;
                mag_data[i]+=mag_error[i];
                //pc_acs.printf("%f\t",mag_data[i]);
            }
            for(int i=0; i<3; i++) {
               // data[i]=gyro_data[i];
                actual_data.AngularSpeed_actual[i] = gyro_data[i];
                actual_data.Bvalue_actual[i] = mag_data[i];
                //data[i+3]=mag_data[i];
            }
       
        if(mag_only == 0)
        {
 
          pc_acs.printf("Reading data successful.\n \r");
          return 0;
        }
        else if(mag_only == 1)
        {
                pc_acs.printf("Reading data partial success.\n \r");
                return 2;
        }
        
            pc_acs.printf("Reading data success.\n \r");
            return 0;
        
}



int FCTN_ATS_DATA_ACQ()
{
    
    int acq;
    
    pc_acs.printf("DATA_ACQ  called \n \r");
    pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
    
    // 0 success //1 full failure //2 partial failure

    
    
    if(( (ACS_ATS_STATUS & 0xC0) == 0x40))
    {

        acq = SENSOR_DATA_ACQ();
        if(acq == 0)
            {
                
                 ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x60;
                 
                 ACS_DATA_ACQ_STATUS = 0;        //clear ACS_DATA_ACQ_STATUS flag for att sens 2
                 pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
                 pc_acs.printf(" Sensor 1 data acq successful.Exit Data ACQ\n \r");
                 return 0;
            }
        else if(acq == 2)
            {
                    ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x40;
                    pc_acs.printf(" Sensor 1 data partial success.Exiting.\n \r");
                    return 2;
                    
                    /*if((ACS_ATS_STATUS & 0x0F == 0x00))
                        {
                            pc_acs.printf(" Sensor 1 data acq partial success.Trying Sensor 2\n \r");
                            ATS1_SW_ENABLE = 1;
                            ATS2_SW_ENABLE = 0;
                            wait_ms(5);
                            ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x20;
                            
                            int acq;
                            acq = SENSOR_DATA_ACQ();
                            
                            if(acq == 0)
                                {
                                ACS_DATA_ACQ_STATUS = 0;
                                 pc_acs.printf(" Sensor 2 data acq success.Exiting.\n \r");
                                return 0;
                                
                                }
                            else if(acq == 2)
                                {
                                ACS_DATA_ACQ_STATUS = 2;
                                pc_acs.printf(" Sensor 2 data acq partial success.Exiting.\n \r");
                                return 2;
                                }
                            
                            else if(acq == 1)
                                {
                                    
                                        int acq;
                                        pc_acs.printf(" Sensor 2 data acq failure.Go to sensor 1 again.\n \r");
                                        ATS2_SW_ENABLE = 1;
                                        ATS1_SW_ENABLE = 0;
                                        wait_ms(5);
                                        acq = SENSOR_DATA_ACQ();
                                        if(acq == 0)
                                            {   
                                                pc_acs.printf(" Sensor 1 data acq success.Exiting.\n \r");
                                                ACS_DATA_ACQ_STATUS = 0;
                                                return 0;
                                            }
                                        else if(acq == 2)
                                            {
                                                pc_acs.printf(" Sensor 1 data acq partial success.Exiting.\n \r");
                                                ACS_DATA_ACQ_STATUS = 2;
                                                return 2;
                                            }
                                        else
                                            {
                                                pc_acs.printf(" Sensor 1 data acq failure.Exiting.\n \r");
                                                ATS1_SW_ENABLE = 0;
                                                ACS_DATA_ACQ_STATUS = 1;
                                                return 1;
                                            }
                                            
                                                pc_acs.printf(" Sensor 1 data acq failure.Exiting.\n \r");
                                                ATS1_SW_ENABLE = 0;
                                                ACS_DATA_ACQ_STATUS = 1;
                                                return 1;
        
                                }
                        
                        }
                        
                        else
                        {
                            ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0x40;
                            pc_acs.printf(" Sensor 1 data partial success.Sensor 2 marked not working.Exiting.\n \r");
                            return 2;
                            
                            
                        }*/

            }
            
        else if(acq == 1)
            {
                 pc_acs.printf(" Sensor 1 data acq failure.Try sensor 2.\n \r");
                 ATS1_SW_ENABLE = 1;
                 ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0xE0;
            }
            

  
    }
    
        
        
                               
        ACS_ATS_STATUS = (ACS_ATS_STATUS&0x0F)|0xE0;
    
      
    if(( (ACS_ATS_STATUS & 0x0C) == 0x04))
    {
        ATS2_SW_ENABLE = 0;
        wait_ms(5); 
        
        acq = SENSOR_DATA_ACQ();
        if(acq == 0)
            {
                 pc_acs.printf(" Sensor 2 data acq success.Exiting.\n \r");
                 ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x06;
                 ACS_DATA_ACQ_STATUS = 0;        //clear ACS_DATA_ACQ_STATUS flag for att sens 2
                 return 0;
            }
        else if(acq == 2)
            {
                 
                 pc_acs.printf(" Sensor 2 data acq partial success.Exiting.\n \r");
                 
                 ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x04;
                 ACS_DATA_ACQ_STATUS = 2;        //clear ACS_DATA_ACQ_STATUS flag for att sens 2
                 return 2;

            }
            
            else if(acq == 1)
            {
                pc_acs.printf(" Sensor 2 data acq failure.Exiting.\n \r");
                ATS2_SW_ENABLE = 1;
                 ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x0E;
                //Sensor 2 also not working
            }
            
            
            

       
    }
    
        pc_acs.printf(" Reading value from sensor 1 before exiting\n \r");
        ATS1_SW_ENABLE = 0;
        wait_ms(5);
        SENSOR_DATA_ACQ();
        ATS1_SW_ENABLE = 1;
        wait_ms(5);
    
         ACS_ATS_STATUS = (ACS_ATS_STATUS&0xF0)|0x0E;
         
    pc_acs.printf("ATS Status is %x\n\n \r",(int)ACS_ATS_STATUS);
    pc_acs.printf(" Both sensors data acq failure.Exiting.\n \r");
    
    ACS_DATA_ACQ_STATUS = 1;        //set ACS_DATA_ACQ_STATUS flag for att sens 2
    return 1;
}

void FCTN_ACS_GENPWM_MAIN(float Moment[3])
{
    printf("\n\rEntered executable PWMGEN function\n"); // entering the PWMGEN executable function
    
    float l_duty_cycle_x=0;    //Duty cycle of Moment in x direction
    float l_current_x=0;       //Current sent in x TR's
    float l_duty_cycle_y=0;    //Duty cycle of Moment in y direction
    float l_current_y=0;       //Current sent in y TR's
    float l_duty_cycle_z=0;    //Duty cycle of Moment in z direction
    float l_current_z=0;       //Current sent in z TR's
 
    
    for(int i = 0 ; i<3;i++)
    {
     //   printf(" %f \t ",Moment[i]);  // taking the moment values from control algorithm as inputs
    }
    
    //-----------------------------  x-direction TR  --------------------------------------------//
    
    
    float l_moment_x = Moment[0];         //Moment in x direction
    
    phase_TR_x = 1;  // setting the default current direction
    if (l_moment_x <0)
    {
        phase_TR_x = 0;    // if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high 
        l_moment_x = abs(l_moment_x);
    }
    
    l_current_x = l_moment_x * TR_CONSTANT ;        //Moment and Current always have the linear relationship
    printf("current in trx is %f \r \n",l_current_x);
    if( l_current_x>0 && l_current_x < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100%
    {
        l_duty_cycle_x =  3*10000000*pow(l_current_x,3)- 90216*pow(l_current_x,2) + 697.78*l_current_x - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation 
        printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;
    }
    else if (l_current_x >= 0.0016 && l_current_x < 0.0171)
    {
        l_duty_cycle_x = - 76880*pow(l_current_x,3) + 1280.8*pow(l_current_x,2) + 583.78*l_current_x + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation
        printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;            
    }
    else if(l_current_x >= 0.0171 && l_current_x < 0.1678)
    {
        l_duty_cycle_x =  275.92*pow(l_current_x,2) + 546.13*l_current_x + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation
        printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;            
    }
    else if(l_current_x==0)
    {
        printf("\n \r l_current_x====0");
        l_duty_cycle_x = 0;      // default value of duty cycle
        printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;            
    }
    else                                           //not necessary
    {
        g_err_flag_TR_x = 1;
    } 
         
    //------------------------------------- y-direction TR--------------------------------------//
    
     
    float l_moment_y = Moment[1];         //Moment in y direction
    
    phase_TR_y = 1;  // setting the default current direction
    if (l_moment_y <0)
    {
        phase_TR_y = 0;   //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high  
        l_moment_y = abs(l_moment_y);
    }
    
    
    l_current_y = l_moment_y * TR_CONSTANT ;        //Moment and Current always have the linear relationship
    printf("current in try is %f \r \n",l_current_y);
    if( l_current_y>0 && l_current_y < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100%
    {
        l_duty_cycle_y =  3*10000000*pow(l_current_y,3)- 90216*pow(l_current_y,2) + 697.78*l_current_y - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation 
        printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;
    }
    else if (l_current_y >= 0.0016 && l_current_y < 0.0171)
    {
        l_duty_cycle_y = - 76880*pow(l_current_y,3) + 1280.8*pow(l_current_y,2) + 583.78*l_current_y + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation
        printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;            
    }
    else if(l_current_y >= 0.0171 && l_current_y < 0.1678)
    {
        l_duty_cycle_y =  275.92*pow(l_current_y,2) + 546.13*l_current_y + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation
        printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;            
    }        
    else if(l_current_y==0)
    {
        printf("\n \r l_current_y====0");
        l_duty_cycle_y = 0; // default value of duty cycle
        printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;            
    }
    else                               // not necessary
    {
      g_err_flag_TR_y = 1;
    } 
             
    //----------------------------------------------- z-direction TR -------------------------//  
    
      
    float l_moment_z = Moment[2];         //Moment in z direction
    
    phase_TR_z = 1;   // setting the default current direction
    if (l_moment_z <0)
    {
        phase_TR_z = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high 
        l_moment_z = abs(l_moment_z);
    }
    
    
    l_current_z = l_moment_z * TR_CONSTANT ;        //Moment and Current always have the linear relationship
     printf("current in trz is %f \r \n",l_current_z);
        if( l_current_z>0 && l_current_z < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100%
    {
        l_duty_cycle_z =  3*10000000*pow(l_current_z,3)- 90216*pow(l_current_z,2) + 697.78*l_current_z - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation 
        printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;
    }
    else if (l_current_z >= 0.0016 && l_current_z < 0.0171)
    {
        l_duty_cycle_z = - 76880*pow(l_current_z,3) + 1280.8*pow(l_current_z,2) + 583.78*l_current_z + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation
        printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;            
    }
    else if(l_current_z >= 0.0171 && l_current_z < 0.1678)
    {
        l_duty_cycle_z =  275.92*pow(l_current_z,2) + 546.13*l_current_z + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation
        printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;            
    }
    else if(l_current_z==0)
    {
        printf("\n \r l_current_z====0");
        l_duty_cycle_z = 0; // default value of duty cycle
        printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;            
    }
    else                               // not necessary
    {
        g_err_flag_TR_z = 1;
    }   
    
    //-----------------------------------------exiting the function-----------------------------------//
    
    printf("\n\rExited executable PWMGEN function\n\r"); // stating the successful exit of TR function
 
}


/*void FCTN_ACS_GENPWM_MAIN(float Moment[3])
{
    printf("\n\rEntered executable PWMGEN function\n"); // entering the PWMGEN executable function
    
    float l_duty_cycle_x=0;    //Duty cycle of Moment in x direction
    float l_current_x=0;       //Current sent in x TR's
    float l_duty_cycle_y=0;    //Duty cycle of Moment in y direction
    float l_current_y=0;       //Current sent in y TR's
    float l_duty_cycle_z=0;    //Duty cycle of Moment in z direction
    float l_current_z=0;       //Current sent in z TR's
 
    
    for(int i = 0 ; i<3;i++)
    {
       printf("pwm %f \t ",Moment[i]);  // taking the moment values from control algorithm as inputs
    }
    
    //-----------------------------  x-direction TR  --------------------------------------------//
    
    
    float l_moment_x = Moment[0];         //Moment in x direction
    
    phase_TR_x = 1;  // setting the default current direction
    if (l_moment_x <0)
    {
        phase_TR_x = 0;    // if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high 
        l_moment_x = abs(l_moment_x);
    }
    
    l_current_x = l_moment_x * TR_CONSTANT ;        //Moment and Current always have the linear relationship
    pc_acs.printf("current in trx is %f \r \n",l_current_x);
    if( l_current_x>0 && l_current_x < 0.006 ) //Current and Duty cycle have the linear relationship between 1% and 100%
    {
        l_duty_cycle_x =  6*1000000*pow(l_current_x,4) - 377291*pow(l_current_x,3) + 4689.6*pow(l_current_x,2) + 149.19*l_current_x - 0.0008; // calculating upto 0.1% dutycycle by polynomial interpolation 
        pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;
    }
    else if( l_current_x >= 0.006 && l_current_x < 0.0116)
    { 
        l_duty_cycle_x = 1*100000000*pow(l_current_x,4) - 5*1000000*pow(l_current_x,3) + 62603*pow(l_current_x,2) - 199.29*l_current_x + 0.7648;// calculating upto 1% dutycycle by polynomial interpolation
        pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;             
    }
    else if (l_current_x >= 0.0116 && l_current_x < 0.0624)
    {
        l_duty_cycle_x = 212444*pow(l_current_x,4) - 33244*pow(l_current_x,3) + 1778.4*pow(l_current_x,2) + 120.91*l_current_x + 0.3878; // calculating upto 10% dutycycle by polynomial interpolation
        pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;            
    }
    else if(l_current_x >= 0.0624 && l_current_x < 0.555)
    {
        l_duty_cycle_x =  331.15*pow(l_current_x,4) - 368.09*pow(l_current_x,3) + 140.43*pow(l_current_x,2) + 158.59*l_current_x + 0.0338; // calculating upto 100% dutycycle by polynomial interpolation
        pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;            
    }
    else if(l_current_x==0)
    {
        printf("\n \r l_current_x====0");
        l_duty_cycle_x = 0;      // default value of duty cycle
        pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x);
        PWM1.period(TIME_PERIOD);
        PWM1 = l_duty_cycle_x/100 ;            
    }
    else                                           //not necessary
    {
        g_err_flag_TR_x = 1;
    } 
         
    //------------------------------------- y-direction TR--------------------------------------//
    
     
    float l_moment_y = Moment[1];         //Moment in y direction
    
    phase_TR_y = 1;  // setting the default current direction
    if (l_moment_y <0)
    {
        phase_TR_y = 0;   //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high  
        l_moment_y = abs(l_moment_y);
    }
    
    
    l_current_y = l_moment_y * TR_CONSTANT ;        //Moment and Current always have the linear relationship
     pc_acs.printf("current in try is %f \r \n",l_current_y);
    if( l_current_y>0 && l_current_y < 0.006 )//Current and Duty cycle have the linear relationship between 1% and 100%
    {
        l_duty_cycle_y =  6*1000000*pow(l_current_y,4) - 377291*pow(l_current_y,3) + 4689.6*pow(l_current_y,2) + 149.19*l_current_y - 0.0008; // calculating upto 0.1% dutycycle by polynomial interpolation
        pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;
    }
    else if( l_current_y >= 0.006 && l_current_y < 0.0116)
    { 
        l_duty_cycle_y = 1*100000000*pow(l_current_y,4) - 5*1000000*pow(l_current_y,3) + 62603*pow(l_current_y,2) - 199.29*l_current_y + 0.7648;// calculating upto 1% dutycycle by polynomial interpolation
        pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;             
    }
    else if (l_current_y >= 0.0116&& l_current_y < 0.0624)
    {
        l_duty_cycle_y = 212444*pow(l_current_y,4) - 33244*pow(l_current_y,3) + 1778.4*pow(l_current_y,2) + 120.91*l_current_y + 0.3878;// calculating upto 10% dutycycle by polynomial interpolation
        pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;            
    }
    else if(l_current_y >= 0.0624 && l_current_y < 0.555)
    {
        l_duty_cycle_y =  331.15*pow(l_current_y,4) - 368.09*pow(l_current_y,3) + 140.43*pow(l_current_y,2) + 158.59*l_current_y + 0.0338;// calculating upto 100% dutycycle by polynomial interpolation
        pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;            
    }
    else if(l_current_y==0)
    {
        printf("\n \r l_current_y====0");
        l_duty_cycle_y = 0; // default value of duty cycle
        pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y);
        PWM2.period(TIME_PERIOD);
        PWM2 = l_duty_cycle_y/100 ;            
    }
    else                               // not necessary
    {
      g_err_flag_TR_y = 1;
    } 
             
    //----------------------------------------------- z-direction TR -------------------------//  
    
      
    float l_moment_z = Moment[2];         //Moment in z direction
    
    phase_TR_z = 1;   // setting the default current direction
    if (l_moment_z <0)
    {
        phase_TR_z = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high 
        l_moment_z = abs(l_moment_z);
    }
    
    
    l_current_z = l_moment_z * TR_CONSTANT ;        //Moment and Current always have the linear relationship
     pc_acs.printf("current in trz is %f \r \n",l_current_z);
    if( l_current_z>0 && l_current_z < 0.006 )//Current and Duty cycle have the linear relationship between 1% and 100%
    {
        l_duty_cycle_z =  6*1000000*pow(l_current_z,4) - 377291*pow(l_current_z,3) + 4689.6*pow(l_current_z,2) + 149.19*l_current_z - 0.0008;// calculating upto 0.1% dutycycle by polynomial interpolation
        pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;
    }
    else if( l_current_z >= 0.006 && l_current_z < 0.0116)
    { 
        l_duty_cycle_z = 1*100000000*pow(l_current_z,4) - 5*1000000*pow(l_current_z,3) + 62603*pow(l_current_z,2) - 199.29*l_current_z + 0.7648;// calculating upto 1% dutycycle by polynomial interpolation
        pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;             
    }
    else if (l_current_z >= 0.0116 && l_current_z < 0.0624)
    {
        l_duty_cycle_z = 212444*pow(l_current_z,4) - 33244*pow(l_current_z,3) + 1778.4*pow(l_current_z,2) + 120.91*l_current_z + 0.3878;// calculating upto 10% dutycycle by polynomial interpolation
        pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;            
    }
    else if(l_current_z >= 0.0624 && l_current_z < 0.555)
    {
        l_duty_cycle_z =  331.15*pow(l_current_z,4) - 368.09*pow(l_current_z,3) + 140.43*pow(l_current_z,2) + 158.59*l_current_z + 0.0338;// calculating upto 100% dutycycle by polynomial interpolation
        pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;            
    }
    else if(l_current_z==0)
    {
        printf("\n \r l_current_z====0");
        l_duty_cycle_z = 0; // default value of duty cycle
        pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z);
        PWM3.period(TIME_PERIOD);
        PWM3 = l_duty_cycle_z/100 ;            
    }
    else                               // not necessary
    {
        g_err_flag_TR_z = 1;
    }   
    
    //-----------------------------------------exiting the function-----------------------------------//
    
    printf("\n\rExited executable PWMGEN function\n\r"); // stating the successful exit of TR function
 
}*/