I2C BAE standalone hardware testing
Dependencies: FreescaleIAP mbed-rtos mbed
Fork of ACS_Flowchart_BAE_1 by
Diff: ACS.cpp
- Revision:
- 10:f93407b97750
- Parent:
- 9:194afacf7449
- Child:
- 13:fb7facaf308b
--- a/ACS.cpp Fri Apr 01 21:13:16 2016 +0000 +++ b/ACS.cpp Mon Apr 11 17:26:46 2016 +0000 @@ -11,15 +11,15 @@ //********************************flags******************************************// extern uint32_t BAE_STATUS; extern uint32_t BAE_ENABLE; -extern uint8_t ACS_INIT_STATUS; -extern uint8_t ACS_DATA_ACQ_STATUS; -extern uint8_t ACS_ATS_STATUS; -extern uint8_t ACS_MAIN_STATUS; -extern uint8_t ACS_STATUS; +extern char ACS_INIT_STATUS; +extern char ACS_DATA_ACQ_STATUS; +extern char ACS_ATS_STATUS; +extern char ACS_MAIN_STATUS; +extern char ACS_STATUS; -extern uint8_t ACS_ATS_ENABLE; -extern uint8_t ACS_DATA_ACQ_ENABLE; -extern uint8_t ACS_STATE; +extern char ACS_ATS_ENABLE; +extern char ACS_DATA_ACQ_ENABLE; +extern char ACS_STATE; DigitalOut phase_TR_x(PIN27); // PHASE pin for x-torquerod DigitalOut phase_TR_y(PIN28); // PHASE pin for y-torquerod @@ -37,122 +37,138 @@ extern BAE_HK_actual actual_data; -//DigitalOut ATS1_SW_ENABLE(PTC0); // enable of att sens2 switch -//DigitalOut ATS2_SW_ENABLE(PTC16); // enable of att sens switch +//DigitalOut gpo1(PTC0); // enable of att sens2 switch +//DigitalOut gpo2(PTC16); // enable of att sens switch Serial pc_acs(USBTX,USBRX); //for usb communication +//CONTROL_ALGO + +float moment[3]; // Unit: Ampere*Meter^2 +float b_old[3]={1.15e-5,-0.245e-5,1.98e-5}; // Unit: Tesla +int flag_firsttime=1, controlmode, alarmmode=0; + + + +void controller (float moment[3], float b1[3], float omega1[3], float b_old[3], int &alarmmode, int &flag_firsttime, int &controlmode); +void controlmodes(float moment[3], float b[3], float db[3], float omega[3], int controlmode1, float MmntMax); +float max_array(float arr[3]); void inverse(float mat[3][3],float inv[3][3]); - -int ctrl_count = 0; -float bcopy[3]; -float moment[3]; - ///////algo working well + +//CONTROLALGO PARAMETERS + + void FCTN_ACS_CNTRLALGO(float b[3],float omega[3]) { - float db[3]; - float bb[3]={0,0,0}; - float d[3]={0,0,0}; - float Jm[3][3]={{0.2730,0,0},{0,0.3018,0},{0,0,0.3031}}; - float den=0,den2; - int i,j; //temporary variables - float Mu[2],z[2],dv[2],v[2],u[2],tauc[3]={0,0,0}; //outputs - float invJm[3][3]; - float kmu2=0.07,gamma2=1.9e4,kz2=0.4e-2,kmu=0.003,gamma=5.6e4,kz=0.1e-4; + float b1[3]; + float omega1[3]; + b1[0] = b[0]/1000000.0; + b1[1] = b[1]/1000000.0; + b1[2] = b[2]/1000000.0; + + omega1[0] = omega[0]*3.14159/180; + omega1[1] = omega[1]*3.14159/180; + omega1[2] = omega[2]*3.14159/180; + controller (moment, b1, omega1, b_old, alarmmode, flag_firsttime, controlmode); - //................. calculating db values........................... - if(ctrl_count!=0) - { - for(i=0;i<3;i++) - db[i]= (b[i]-bcopy[i])/10; - } +} +void controller (float moment[3], float b1[3], float omega1[3], float b_old[3], int &alarmmode, int &flag_firsttime, int &controlmode) +{ + float db1[3]; // Unit: Tesla/Second + float sampling_time=10; // Unit: Seconds. Digital Control law excuted once in 10 seconds + float MmntMax=1.1; // Unit: Ampere*Meter^2 + float OmegaMax=1*3.1415/180.0; // Unit: Radians/Second + float normalising_fact; + float b1_copy[3], omega1_copy[3], db1_copy[3]; + int i; + if(flag_firsttime==1) + { + for(i=0;i<3;i++) + { + db1[i]=0; // Unit: Tesla/Second + } + flag_firsttime=0; + } else { for(i=0;i<3;i++) - db[i]= 0; - } - ctrl_count++; - //.................................................................. - printf("\n\r Entered cntrl algo\n\r"); - for(int i=0; i<3; i++) { - printf("%f\t",omega[i]); + db1[i]= (b1[i]-b_old[i])/sampling_time; // Unit: Tesla/Second } - for(int i=0; i<3; i++) - { - printf("%f\t",b[i]); - } - - //.........................algo...................................... - den=sqrt((b[0]*b[0])+(b[1]*b[1])+(b[2]*b[2])); - den2=(b[0]*db[0])+(b[1]*db[1])+(b[2]*db[2]); - for(i=0;i<3;i++) + } + + if(max_array(omega1)<(0.8*OmegaMax) && alarmmode==1) { - db[i]=((db[i]*den*den)-(b[i]*(den2)))/(pow(den,3)); - //db[i]/=den*den*den; + alarmmode=0; } - for(i=0;i<3;i++) - { - b[i]/=den; - } - // select kz, kmu, gamma - if(b[0]>0.9||b[0]<-0.9) + else if(max_array(omega1)>OmegaMax && alarmmode==0) { - kz=kz2; - kmu=kmu2; - gamma=gamma2; + alarmmode=1; } - // calculate Mu, v, dv, z, u - for(i=0;i<2;i++) + + for (i=0;i<3;i++) { - Mu[i]=b[i+1]; - v[i]=-kmu*Mu[i]; - dv[i]=-kmu*db[i+1]; - z[i]=db[i+1]-v[i]; - u[i]=-kz*z[i]+dv[i]-(Mu[i]/gamma); + b1_copy[i]=b1[i]; + db1_copy[i]=db1[i]; + omega1_copy[i]=omega1[i]; } - inverse(Jm,invJm); - for(i=0;i<3;i++) - { - for(j=0;j<3;j++) - bb[i]+=omega[j]*(omega[(i+1)%3]*Jm[(i+2)%3][j]-omega[(i+2)%3]*Jm[(i+1)%3][j]); - } - for(i=0;i<3;i++) + + if(alarmmode==0) + { + controlmode=0; + controlmodes(moment,b1,db1,omega1,controlmode,MmntMax); + for (i=0;i<3;i++) + { + b1[i]=b1_copy[i]; + db1[i]=db1_copy[i]; + omega1[i]=omega1_copy[i]; + } + if(max_array(moment)>MmntMax) + { + controlmode=1; + controlmodes(moment,b1,db1,omega1,controlmode,MmntMax); + for (i=0;i<3;i++) + { + b1[i]=b1_copy[i]; + db1[i]=db1_copy[i]; + omega1[i]=omega1_copy[i]; + } + if(max_array(moment)>MmntMax) + { + normalising_fact=max_array(moment)/MmntMax; + for(i=0;i<3;i++) + { + moment[i]/=normalising_fact; // Unit: Ampere*Meter^2 + } + } + } + } + else + { + controlmode=1; + controlmodes(moment,b1,db1,omega1,controlmode,MmntMax); + for (i=0;i<3;i++) + { + b1[i]=b1_copy[i]; + db1[i]=db1_copy[i]; + omega1[i]=omega1_copy[i]; + } + if(max_array(moment)>MmntMax) + { + normalising_fact=max_array(moment)/MmntMax; + for(i=0;i<3;i++) + { + moment[i]/=normalising_fact; // Unit: Ampere*Meter^2 + } + } + + } + for (i=0;i<3;i++) { - for(j=0;j<3;j++) - d[i]+=bb[j]*invJm[i][j]; - } - bb[1]=u[0]+(d[0]*b[2])-(d[2]*b[0])-(omega[0]*db[2])+(omega[2]*db[0]); - bb[2]=u[1]-(d[0]*b[1])+(d[1]*b[0])+(omega[0]*db[1])-(omega[1]*db[0]); - bb[0]=0; - for(i=0;i<3;i++) - { - d[i]=invJm[1][i]; - invJm[1][i]=b[2]*invJm[0][i]-b[0]*invJm[2][i]; - invJm[2][i]=-b[1]*invJm[0][i]+b[0]*d[i]; - invJm[0][i]=b[i]; + b_old[i]=b1[i]; } - inverse(invJm,Jm); - printf("\n \r calculating tauc"); - for(i=0;i<3;i++) - { - for(j=0;j<3;j++) - tauc[i]+=Jm[i][j]*bb[j]; // calculating torque values - printf(" %f \t",tauc[i]); - } - //..........................tauc to moment conversion.......................... - printf("\n \r calculating moment"); - for(i=0;i<3;i++) - bcopy[i]=b[i]*den; - for(i=0;i<3;i++) - { - moment[i]=bcopy[(i+1)%3]*tauc[(i+2)%3]-bcopy[(i+2)%3]*tauc[(i+1)%3]; - moment[i]/=den; - printf(" %f \t",moment[i]); - } - printf("\n\r exited control algo\n"); } -//..........................function to find inverse.................. + void inverse(float mat[3][3],float inv[3][3]) { int i,j; @@ -160,16 +176,141 @@ for(i=0;i<3;i++) { for(j=0;j<3;j++) + { inv[j][i]=(mat[(i+1)%3][(j+1)%3]*mat[(i+2)%3][(j+2)%3])-(mat[(i+2)%3][(j+1)%3]*mat[(i+1)%3][(j+2)%3]); + } } det+=(mat[0][0]*inv[0][0])+(mat[0][1]*inv[1][0])+(mat[0][2]*inv[2][0]); for(i=0;i<3;i++) - { + { for(j=0;j<3;j++) + { inv[i][j]/=det; + } } } +float max_array(float arr[3]) +{ + int i; + float temp_max=fabs(arr[0]); + for(i=1;i<3;i++) + { + if(fabs(arr[i])>temp_max) + { + temp_max=fabs(arr[i]); + } + } + return temp_max; +} + + +void controlmodes(float moment[3], float b[3], float db[3], float omega[3], int controlmode1, float MmntMax) +{ + float bb[3]={0,0,0}; + float d[3]={0,0,0}; + float Jm[3][3]={{0.2271,0.0014,-0.0026},{0.0014,0.2167,-0.004},{-0.0026,-0.004,0.2406}}; // Unit: Kilogram*Meter^2. Jm may change depending on the final satellite structure + float den=0,den2; + float bcopy[3]; + int i, j;//temporary variables + float Mu[2],z[2],dv[2],v[2],u[2],tauc[3]={0,0,0},Mmnt[3];//outputs + float invJm[3][3]; + float kmu2=0.07,gamma2=1.9e4,kz2=0.4e-2,kmu=0.003,gamma=5.6e4,kz=0.1e-4,kdetumble=2000000; + int infflag; // Flag variable to check if the moment value is infinity or NaN + + if(controlmode1==0) + { + den=sqrt((b[0]*b[0])+(b[1]*b[1])+(b[2]*b[2])); + den2=(b[0]*db[0])+(b[1]*db[1])+(b[2]*db[2]); + for(i=0;i<3;i++) + { + db[i]=((db[i]*den*den)-(b[i]*(den2)))/(pow(den,3)); // Normalized db. Hence the unit is Second^(-1) + } + for(i=0;i<3;i++) + { + b[i]/=den; // Mormalized b. Hence no unit. + } + if(b[2]>0.9 || b[2]<-0.9) + { + kz=kz2; + kmu=kmu2; + gamma=gamma2; + } + for(i=0;i<2;i++) + { + Mu[i]=b[i]; + v[i]=-kmu*Mu[i]; + dv[i]=-kmu*db[i]; + z[i]=db[i]-v[i]; + u[i]=-kz*z[i]+dv[i]-(Mu[i]/gamma); + } + inverse(Jm,invJm); + for(i=0;i<3;i++) + { + for(j=0;j<3;j++) + { + bb[i]+=omega[j]*(omega[(i+1)%3]*Jm[(i+2)%3][j]-omega[(i+2)%3]*Jm[(i+1)%3][j]); + } + } + for(i=0;i<3;i++) + { + for(j=0;j<3;j++) + { + d[i]+=bb[j]*invJm[i][j]; + } + } + bb[1]=u[0]-(d[1]*b[2])+(d[2]*b[1])-(omega[1]*db[2])+(omega[2]*db[1]); + bb[2]=u[1]-(d[2]*b[0])+(d[0]*b[2])-(omega[2]*db[0])+(omega[0]*db[2]); + bb[0]=0; + for(i=0;i<3;i++) + { + d[i]=invJm[2][i]; + invJm[1][i]=-b[2]*invJm[1][i]+b[1]*d[i]; + invJm[2][i]=b[2]*invJm[0][i]-b[0]*d[i]; + invJm[0][i]=b[i]; + } + inverse(invJm,Jm); + for(i=0;i<3;i++) + { + for(j=0;j<3;j++) + { + tauc[i]+=Jm[i][j]*bb[j]; // Unit: Newton*Meter^2 + } + } + for(i=0;i<3;i++) + { + bcopy[i]=b[i]*den; + } + for(i=0;i<3;i++) + { + Mmnt[i]=bcopy[(i+1)%3]*tauc[(i+2)%3]-bcopy[(i+2)%3]*tauc[(i+1)%3]; + Mmnt[i]/=(den*den); // Unit: Ampere*Meter^2 + } + infflag=0; + for (i=0; i<3 && infflag==0; i++) + { + if (isinf(Mmnt[i])==1 || isnan(Mmnt[i])==1) + infflag=1; + } + if (infflag==1) + { + for (i=0; i<3; i++) + Mmnt[i]=2*MmntMax; + } + + } + else if(controlmode1==1) + { + for(i=0;i<3;i++) + { + Mmnt[i]=-kdetumble*(b[(i+1)%3]*omega[(i+2)%3]-b[(i+2)%3]*omega[(i+1)%3]); // Unit: Ampere*Meter^2 + } + } + for(i=0;i<3;i++) + { + moment[i]=Mmnt[i]; // Unit: Ampere*Meter^2 + } +} I2C i2c (PTC9,PTC8); //PTC9-sda,PTC8-scl for the attitude sensors and battery gauge @@ -199,7 +340,7 @@ void FCTN_ACS_INIT() { - ACS_INIT_STATUS = 1; //set ACS_INIT_STATUS flag + ACS_INIT_STATUS = 's'; //set ACS_INIT_STATUS flag //FLAG(); pc_acs.printf("Attitude sensor init called \n \r"); //FLAG(); @@ -247,13 +388,13 @@ cmd[1]=BIT_EVT_ENB; i2c.write(SLAVE_ADDR,cmd,2); wait_ms(100); - ACS_INIT_STATUS = 0; //set ACS_INIT_STATUS flag + ACS_INIT_STATUS = 'c'; //set ACS_INIT_STATUS flag } void FCTN_ATS_DATA_ACQ() { - ACS_DATA_ACQ_STATUS = 1; //set ACS_DATA_ACQ_STATUS flag for att sens 2 - if( ACS_ATS_ENABLE == 1) + ACS_DATA_ACQ_STATUS = 's'; //set ACS_DATA_ACQ_STATUS flag for att sens 2 + if( ACS_ATS_ENABLE == 'e') { FLAG(); pc_acs.printf("attitude sensor execution called \n \r"); @@ -307,9 +448,9 @@ } else //ACS_DATA_ACQ_STATUS = ACS_DATA_ACQ_FAILURE { - ACS_DATA_ACQ_STATUS = 1; + ACS_DATA_ACQ_STATUS = 'f'; } - ACS_DATA_ACQ_STATUS = 0; //clear ACS_DATA_ACQ_STATUS flag for att sens 2 + ACS_DATA_ACQ_STATUS = 'c'; //clear ACS_DATA_ACQ_STATUS flag for att sens 2 } void FCTN_ACS_GENPWM_MAIN(float Moment[3]) @@ -342,6 +483,176 @@ } l_current_x = l_moment_x * TR_CONSTANT ; //Moment and Current always have the linear relationship + printf("current in trx is %f \r \n",l_current_x); + if( l_current_x>0 && l_current_x < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100% + { + l_duty_cycle_x = 3*10000000*pow(l_current_x,3)- 90216*pow(l_current_x,2) + 697.78*l_current_x - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation + printf("DC for trx is %f \r \n",l_duty_cycle_x); + PWM1.period(TIME_PERIOD); + PWM1 = l_duty_cycle_x/100 ; + } + else if (l_current_x >= 0.0016 && l_current_x < 0.0171) + { + l_duty_cycle_x = - 76880*pow(l_current_x,3) + 1280.8*pow(l_current_x,2) + 583.78*l_current_x + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation + printf("DC for trx is %f \r \n",l_duty_cycle_x); + PWM1.period(TIME_PERIOD); + PWM1 = l_duty_cycle_x/100 ; + } + else if(l_current_x >= 0.0171 && l_current_x < 0.1678) + { + l_duty_cycle_x = 275.92*pow(l_current_x,2) + 546.13*l_current_x + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation + printf("DC for trx is %f \r \n",l_duty_cycle_x); + PWM1.period(TIME_PERIOD); + PWM1 = l_duty_cycle_x/100 ; + } + else if(l_current_x==0) + { + printf("\n \r l_current_x====0"); + l_duty_cycle_x = 0; // default value of duty cycle + printf("DC for trx is %f \r \n",l_duty_cycle_x); + PWM1.period(TIME_PERIOD); + PWM1 = l_duty_cycle_x/100 ; + } + else //not necessary + { + g_err_flag_TR_x = 1; + } + + //------------------------------------- y-direction TR--------------------------------------// + + + float l_moment_y = Moment[1]; //Moment in y direction + + phase_TR_y = 1; // setting the default current direction + if (l_moment_y <0) + { + phase_TR_y = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high + l_moment_y = abs(l_moment_y); + } + + + l_current_y = l_moment_y * TR_CONSTANT ; //Moment and Current always have the linear relationship + printf("current in try is %f \r \n",l_current_y); + if( l_current_y>0 && l_current_y < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100% + { + l_duty_cycle_y = 3*10000000*pow(l_current_y,3)- 90216*pow(l_current_y,2) + 697.78*l_current_y - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation + printf("DC for try is %f \r \n",l_duty_cycle_y); + PWM2.period(TIME_PERIOD); + PWM2 = l_duty_cycle_y/100 ; + } + else if (l_current_y >= 0.0016 && l_current_y < 0.0171) + { + l_duty_cycle_y = - 76880*pow(l_current_y,3) + 1280.8*pow(l_current_y,2) + 583.78*l_current_y + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation + printf("DC for try is %f \r \n",l_duty_cycle_y); + PWM2.period(TIME_PERIOD); + PWM2 = l_duty_cycle_y/100 ; + } + else if(l_current_y >= 0.0171 && l_current_y < 0.1678) + { + l_duty_cycle_y = 275.92*pow(l_current_y,2) + 546.13*l_current_y + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation + printf("DC for try is %f \r \n",l_duty_cycle_y); + PWM2.period(TIME_PERIOD); + PWM2 = l_duty_cycle_y/100 ; + } + else if(l_current_y==0) + { + printf("\n \r l_current_y====0"); + l_duty_cycle_y = 0; // default value of duty cycle + printf("DC for try is %f \r \n",l_duty_cycle_y); + PWM2.period(TIME_PERIOD); + PWM2 = l_duty_cycle_y/100 ; + } + else // not necessary + { + g_err_flag_TR_y = 1; + } + + //----------------------------------------------- z-direction TR -------------------------// + + + float l_moment_z = Moment[2]; //Moment in z direction + + phase_TR_z = 1; // setting the default current direction + if (l_moment_z <0) + { + phase_TR_z = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high + l_moment_z = abs(l_moment_z); + } + + + l_current_z = l_moment_z * TR_CONSTANT ; //Moment and Current always have the linear relationship + printf("current in trz is %f \r \n",l_current_z); + if( l_current_z>0 && l_current_z < 0.0016 ) //Current and Duty cycle have the linear relationship between 1% and 100% + { + l_duty_cycle_z = 3*10000000*pow(l_current_z,3)- 90216*pow(l_current_z,2) + 697.78*l_current_z - 0.0048; // calculating upto 0.1% dutycycle by polynomial interpolation + printf("DC for trz is %f \r \n",l_duty_cycle_z); + PWM3.period(TIME_PERIOD); + PWM3 = l_duty_cycle_z/100 ; + } + else if (l_current_z >= 0.0016 && l_current_z < 0.0171) + { + l_duty_cycle_z = - 76880*pow(l_current_z,3) + 1280.8*pow(l_current_z,2) + 583.78*l_current_z + 0.0281; // calculating upto 10% dutycycle by polynomial interpolation + printf("DC for trz is %f \r \n",l_duty_cycle_z); + PWM3.period(TIME_PERIOD); + PWM3 = l_duty_cycle_z/100 ; + } + else if(l_current_z >= 0.0171 && l_current_z < 0.1678) + { + l_duty_cycle_z = 275.92*pow(l_current_z,2) + 546.13*l_current_z + 0.5316; // calculating upto 100% dutycycle by polynomial interpolation + printf("DC for trz is %f \r \n",l_duty_cycle_z); + PWM3.period(TIME_PERIOD); + PWM3 = l_duty_cycle_z/100 ; + } + else if(l_current_z==0) + { + printf("\n \r l_current_z====0"); + l_duty_cycle_z = 0; // default value of duty cycle + printf("DC for trz is %f \r \n",l_duty_cycle_z); + PWM3.period(TIME_PERIOD); + PWM3 = l_duty_cycle_z/100 ; + } + else // not necessary + { + g_err_flag_TR_z = 1; + } + + //-----------------------------------------exiting the function-----------------------------------// + + printf("\n\rExited executable PWMGEN function\n\r"); // stating the successful exit of TR function + +} + + +/*void FCTN_ACS_GENPWM_MAIN(float Moment[3]) +{ + printf("\n\rEntered executable PWMGEN function\n"); // entering the PWMGEN executable function + + float l_duty_cycle_x=0; //Duty cycle of Moment in x direction + float l_current_x=0; //Current sent in x TR's + float l_duty_cycle_y=0; //Duty cycle of Moment in y direction + float l_current_y=0; //Current sent in y TR's + float l_duty_cycle_z=0; //Duty cycle of Moment in z direction + float l_current_z=0; //Current sent in z TR's + + + for(int i = 0 ; i<3;i++) + { + printf("pwm %f \t ",Moment[i]); // taking the moment values from control algorithm as inputs + } + + //----------------------------- x-direction TR --------------------------------------------// + + + float l_moment_x = Moment[0]; //Moment in x direction + + phase_TR_x = 1; // setting the default current direction + if (l_moment_x <0) + { + phase_TR_x = 0; // if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high + l_moment_x = abs(l_moment_x); + } + + l_current_x = l_moment_x * TR_CONSTANT ; //Moment and Current always have the linear relationship pc_acs.printf("current in trx is %f \r \n",l_current_x); if( l_current_x>0 && l_current_x < 0.006 ) //Current and Duty cycle have the linear relationship between 1% and 100% { @@ -349,7 +660,6 @@ pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x); PWM1.period(TIME_PERIOD); PWM1 = l_duty_cycle_x/100 ; - } else if( l_current_x >= 0.006 && l_current_x < 0.0116) { @@ -501,7 +811,7 @@ printf("\n\rExited executable PWMGEN function\n\r"); // stating the successful exit of TR function -} +}*/ \ No newline at end of file