Pradeep Kotipalli
/
raw_sd_card_write_raw
efe
Fork of raw_sd_card_disc_init by
main.cpp
- Committer:
- pradeepvk2208
- Date:
- 2015-06-06
- Revision:
- 2:aea18e9b89d8
- Parent:
- 1:1843a53b51a8
- Child:
- 3:d4bb1e13a897
File content as of revision 2:aea18e9b89d8:
#include "mbed.h" #include "mbed_debug.h" #define SD_COMMAND_TIMEOUT 5000 #define SD_DBG 0 #define R1_IDLE_STATE (1 << 0) #define R1_ERASE_RESET (1 << 1) #define R1_ILLEGAL_COMMAND (1 << 2) #define R1_COM_CRC_ERROR (1 << 3) #define R1_ERASE_SEQUENCE_ERROR (1 << 4) #define R1_ADDRESS_ERROR (1 << 5) #define R1_PARAMETER_ERROR (1 << 6) int initialise_card(); int initialise_card_v1(); int initialise_card_v2(); int disk_initialize(); uint64_t sd_sectors(); uint64_t sectors; int cmd(int, int); int cmd58(); int cmdx(int, int); int cmd8(); int read(uint8_t*, uint32_t ); static uint32_t ext_bits(unsigned char *, int , int ); int cdv; #define SDCARD_FAIL 0 #define SDCARD_V1 1 #define SDCARD_V2 2 #define SDCARD_V2HC 3 SPI spi(PTD6, PTD7, PTD5); // mosi, miso, sclk DigitalOut cs(PTD2); int main() { while(1) { initialise_card(); int result= initialise_card(); printf("initialise card result=%d\n",result); disk_initialize(); wait(5); } } int initialise_card() { // Set to 100kHz for initialisation, and clock card with cs = 1 spi.frequency(100000); cs = 1; for (int i = 0; i < 16; i++) { spi.write(0xFF); } // send CMD0, should return with all zeros except IDLE STATE set (bit 0) if (cmd(0, 0) != R1_IDLE_STATE) { debug("No disk, or could not put SD card in to SPI idle state\n"); return SDCARD_FAIL; } // send CMD8 to determine whther it is ver 2.x int r = cmd8(); if (r == R1_IDLE_STATE) { printf("Entering v2 bro\n"); return initialise_card_v2(); } else if (r == (R1_IDLE_STATE | R1_ILLEGAL_COMMAND)) { printf("Entering v1 bro\n"); return initialise_card_v1(); } else { debug("Not in idle state after sending CMD8 (not an SD card?)\n"); return SDCARD_FAIL; } } int initialise_card_v1() { for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { cmd(55, 0); if (cmd(41, 0) == 0) { printf("Yuppie v1 successful"); cdv = 512; debug_if(SD_DBG, "\n\rInit: SEDCARD_V1\n\r"); return SDCARD_V1; } } debug("Timeout waiting for v1.x card\n"); return SDCARD_FAIL; } int initialise_card_v2() { for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { wait_ms(50); cmd58(); cmd(55, 0); if (cmd(41, 0x40000000) == 0) { printf("Yuppie,v2 successful"); cmd58(); debug_if(SD_DBG, "\n\rInit: SDCARD_V2\n\r"); cdv = 1; return SDCARD_V2; } } debug("Timeout waiting for v2.x card\n"); return SDCARD_FAIL; } int cmd(int cmd, int arg) { cs = 0; // send a command spi.write(0x40 | cmd); spi.write(arg >> 24); spi.write(arg >> 16); spi.write(arg >> 8); spi.write(arg >> 0); spi.write(0x95); // wait for the repsonse (response[7] == 0) for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { int response = spi.write(0xFF); if (!(response & 0x80)) { cs = 1; spi.write(0xFF); return response; } } cs = 1; spi.write(0xFF); return -1; // timeout } int cmd58() { cs = 0; int arg = 0; // send a command spi.write(0x40 | 58); spi.write(arg >> 24); spi.write(arg >> 16); spi.write(arg >> 8); spi.write(arg >> 0); spi.write(0x95); // wait for the repsonse (response[7] == 0) for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { int response = spi.write(0xFF); if (!(response & 0x80)) { int ocr = spi.write(0xFF) << 24; ocr |= spi.write(0xFF) << 16; ocr |= spi.write(0xFF) << 8; ocr |= spi.write(0xFF) << 0; cs = 1; spi.write(0xFF); return response; } } cs = 1; spi.write(0xFF); return -1; // timeout } int cmd8() { cs = 0; // send a command spi.write(0x40 | 8); // CMD8 spi.write(0x00); // reserved spi.write(0x00); // reserved spi.write(0x01); // 3.3v spi.write(0xAA); // check pattern spi.write(0x87); // crc // wait for the repsonse (response[7] == 0) for (int i = 0; i < SD_COMMAND_TIMEOUT * 1000; i++) { char response[5]; response[0] = spi.write(0xFF); if (!(response[0] & 0x80)) { for (int j = 1; j < 5; j++) { response[i] = spi.write(0xFF); } cs = 1; spi.write(0xFF); return response[0]; } } cs = 1; spi.write(0xFF); return -1; // timeout } uint64_t sd_sectors() { uint32_t c_size, c_size_mult, read_bl_len; uint32_t block_len, mult, blocknr, capacity; uint32_t hc_c_size; uint64_t blocks; // CMD9, Response R2 (R1 byte + 16-byte block read) if (cmdx(9, 0) != 0) { debug("Didn't get a response from the disk\n"); return 0; } uint8_t csd[16]; if (read(csd, 16) != 0) { debug("Couldn't read csd response from disk\n"); return 0; } // csd_structure : csd[127:126] // c_size : csd[73:62] // c_size_mult : csd[49:47] // read_bl_len : csd[83:80] - the *maximum* read block length int csd_structure = ext_bits(csd, 127, 126); switch (csd_structure) { case 0: cdv = 512; c_size = ext_bits(csd, 73, 62); c_size_mult = ext_bits(csd, 49, 47); read_bl_len = ext_bits(csd, 83, 80); block_len = 1 << read_bl_len; mult = 1 << (c_size_mult + 2); blocknr = (c_size + 1) * mult; capacity = blocknr * block_len; blocks = capacity / 512; debug_if(SD_DBG, "\n\rSDCard\n\rc_size: %d \n\rcapacity: %ld \n\rsectors: %lld\n\r", c_size, capacity, blocks); break; case 1: cdv = 1; hc_c_size = ext_bits(csd, 63, 48); blocks = (hc_c_size+1)*1024; debug_if(SD_DBG, "\n\rSDHC Card \n\rhc_c_size: %d\n\rcapacity: %lld \n\rsectors: %lld\n\r", hc_c_size, blocks*512, blocks); break; default: debug("CSD struct unsupported\r\n"); return 0; }; return blocks; } int cmdx(int cmd, int arg) { cs = 0; // send a command spi.write(0x40 | cmd); spi.write(arg >> 24); spi.write(arg >> 16); spi.write(arg >> 8); spi.write(arg >> 0); spi.write(0x95); // wait for the repsonse (response[7] == 0) for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { int response = spi.write(0xFF); if (!(response & 0x80)) { return response; } } cs = 1; spi.write(0xFF); return -1; // timeout } int read(uint8_t *buffer, uint32_t length) { cs = 0; // read until start byte (0xFF) while (spi.write(0xFF) != 0xFE); // read data for (int i = 0; i < length; i++) { buffer[i] = spi.write(0xFF); } spi.write(0xFF); // checksum spi.write(0xFF); cs = 1; spi.write(0xFF); return 0; } static uint32_t ext_bits(unsigned char *data, int msb, int lsb) { uint32_t bits = 0; uint32_t size = 1 + msb - lsb; for (int i = 0; i < size; i++) { uint32_t position = lsb + i; uint32_t byte = 15 - (position >> 3); uint32_t bit = position & 0x7; uint32_t value = (data[byte] >> bit) & 1; bits |= value << i; } return bits; } int disk_initialize() { int i = initialise_card(); debug_if(SD_DBG, "init card = %d\n", i); sectors = sd_sectors(); // Set block length to 512 (CMD16) if (cmd(16, 512) != 0) { debug("Set 512-byte block timed out\n"); return 1; } else { printf("Hey,block init succesful"); } spi.frequency(1000000); // Set to 1MHz for data transfer return 0; }