cdms_update

Dependencies:   FreescaleIAP mbed-rtos mbed

Fork of CDMS_SD_MNG_OVERDRIVE by saikiran cholleti

Revision:
0:bcbd76c86cde
Child:
1:ad3b8a8032e2
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cdms_sd.cpp	Wed Dec 16 09:06:59 2015 +0000
@@ -0,0 +1,382 @@
+#include "cdms_sd.h"
+
+SPI spi_sd(PTE1, PTE3, PTE2);      // MOSI,MISO, CLOCK microcontroller(in order)     
+DigitalOut cs_sd(PTE22);
+
+Serial sd1(USBTX,USBRX);
+
+int cdv;
+uint64_t sd_sectors();
+uint64_t sectors;
+
+void FCTN_SD_MNGR()
+{
+    /*Size of block of SD card for 2GB = 512B, 4 , 8 GB SD card. We will prefer 8 GB.
+    SD allocation. Assuming 8GB
+    SCP: 600 MB -122880
+    SFF-AT: 2 GB -4194304
+    SFF-BT: 5 GB -10485760
+    HK-ARCH:100 MB -204800
+    LOG: 50MB -102400
+    SD card management: 50MB - 102400*/
+       
+}
+int initialise_card()
+{
+    // Set to 100kHz for initialisation, and clock card with cs_sd = 1
+    spi_sd.frequency(100000);
+    cs_sd = 1;
+    for (int i = 0; i < 16; i++) {
+        spi_sd.write(0xFF);
+    }
+
+    // send CMD0, should return with all zeros except IDLE STATE set (bit 0)
+    if (cmd(0, 0) != R1_IDLE_STATE) {
+        debug("No disk, or could not put SD card in to spi_sd idle state\r\n");
+        return SDCARD_FAIL;
+    }
+
+// send CMD8 to determine whther it is ver 2.x
+    int r = cmd8();
+    if (r == R1_IDLE_STATE) {
+        printf("\rEntering v2\r\n");
+        return initialise_card_v2();
+
+    } else if (r == (R1_IDLE_STATE | R1_ILLEGAL_COMMAND)) {
+        printf("\rEntering v1\r\n");
+        return initialise_card_v1();
+
+    } else {
+        debug("\rNot in idle state after sending CMD8 (not an SD card?)\r\n");
+        return SDCARD_FAIL;
+    }
+}
+
+int initialise_card_v1()
+{
+    for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
+        cmd(55, 0);
+        if (cmd(41, 0) == 0) {
+            printf("\rv1 initialization successfull\r\n");
+            cdv = 512;
+            debug_if(SD_DBG, "\n\rInit: SEDCARD_V1\n\r");
+
+            return SDCARD_V1;
+        }
+    }
+
+    debug("\rTimeout waiting for v1.x card\r\n");
+    return SDCARD_FAIL;
+}
+
+
+int initialise_card_v2()
+{
+    for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
+        wait_ms(50);
+        cmd58();
+        cmd(55, 0);
+        if (cmd(41, 0x40000000) == 0) {
+            printf("\rv2 initialization successfull\r\n");
+            cmd58();
+            debug_if(SD_DBG, "\n\rInit: SDCARD_V2\n\r");
+            cdv = 1;
+
+            return SDCARD_V2;
+        }
+    }
+
+    debug("\rTimeout waiting for v2.x card\r\n");
+    return SDCARD_FAIL;
+}
+
+int cmd(int cmd, int arg)
+{
+    cs_sd = 0;
+
+    // send a command
+    spi_sd.write(0x40 | cmd);
+    spi_sd.write(arg >> 24);
+    spi_sd.write(arg >> 16);
+    spi_sd.write(arg >> 8);
+    spi_sd.write(arg >> 0);
+    spi_sd.write(0x95);
+
+    // wait for the repsonse (response[7] == 0)
+    for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
+        int response = spi_sd.write(0xFF);
+        if (!(response & 0x80)) {
+            cs_sd = 1;
+            spi_sd.write(0xFF);
+            return response;
+        }
+    }
+    cs_sd = 1;
+    spi_sd.write(0xFF);
+    return -1; // timeout
+}
+
+
+int cmd58()
+{
+    cs_sd = 0;
+    int arg = 0;
+
+    // send a command
+    spi_sd.write(0x40 | 58);
+    spi_sd.write(arg >> 24);
+    spi_sd.write(arg >> 16);
+    spi_sd.write(arg >> 8);
+    spi_sd.write(arg >> 0);
+    spi_sd.write(0x95);
+
+    // wait for the repsonse (response[7] == 0)
+    for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
+        int response = spi_sd.write(0xFF);
+        if (!(response & 0x80)) {
+            int ocr = spi_sd.write(0xFF) << 24;
+            ocr |= spi_sd.write(0xFF) << 16;
+            ocr |= spi_sd.write(0xFF) << 8;
+            ocr |= spi_sd.write(0xFF) << 0;
+            cs_sd = 1;
+            spi_sd.write(0xFF);
+            return response;
+        }
+    }
+    cs_sd = 1;
+    spi_sd.write(0xFF);
+    return -1; // timeout
+}
+
+
+int cmd8()
+{
+    cs_sd = 0;
+
+    // send a command
+    spi_sd.write(0x40 | 8); // CMD8
+    spi_sd.write(0x00);     // reserved
+    spi_sd.write(0x00);     // reserved
+    spi_sd.write(0x01);     // 3.3v
+    spi_sd.write(0xAA);     // check pattern
+    spi_sd.write(0x87);     // crc
+
+    // wait for the repsonse (response[7] == 0)
+    for (int i = 0; i < SD_COMMAND_TIMEOUT * 1000; i++) {
+        char response[5];
+        response[0] = spi_sd.write(0xFF);
+        if (!(response[0] & 0x80)) {
+            for (int j = 1; j < 5; j++) {
+                response[i] = spi_sd.write(0xFF);
+            }
+            cs_sd = 1;
+            spi_sd.write(0xFF);
+            return response[0];
+        }
+    }
+    cs_sd = 1;
+    spi_sd.write(0xFF);
+    return -1; // timeout
+}
+
+uint64_t sd_sectors()
+{
+    uint32_t c_size, c_size_mult, read_bl_len;
+    uint32_t block_len, mult, blocknr, capacity;
+    uint32_t hc_c_size;
+    uint64_t blocks;
+
+    // CMD9, Response R2 (R1 byte + 16-byte block read)
+    if (cmdx(9, 0) != 0) {
+        debug("\rDidn't get a response from the disk\n");
+        return 0;
+    }
+
+    uint8_t cs_sdd[16];
+    if (read(cs_sdd, 16) != 0) {
+        debug("\rCouldn't read cs_sdd response from disk\n");
+        return 0;
+    }
+
+    // cs_sdd_structure : cs_sdd[127:126]
+    // c_size        : cs_sdd[73:62]
+    // c_size_mult   : cs_sdd[49:47]
+    // read_bl_len   : cs_sdd[83:80] - the *maximum* read block length
+
+    int cs_sdd_structure = ext_bits(cs_sdd, 127, 126);
+
+    switch (cs_sdd_structure) {
+        case 0:
+            cdv = 512;
+            c_size = ext_bits(cs_sdd, 73, 62);
+            c_size_mult = ext_bits(cs_sdd, 49, 47);
+            read_bl_len = ext_bits(cs_sdd, 83, 80);
+
+            block_len = 1 << read_bl_len;
+            mult = 1 << (c_size_mult + 2);
+            blocknr = (c_size + 1) * mult;
+            capacity = blocknr * block_len;
+            blocks = capacity / 512;
+            debug_if(SD_DBG, "\n\rSDCard\n\rc_size: %d \n\rcapacity: %ld \n\rsectors: %lld\n\r", c_size, capacity, blocks);
+            break;
+
+        case 1:
+            cdv = 1;
+            hc_c_size = ext_bits(cs_sdd, 63, 48);
+            blocks = (hc_c_size+1)*1024;
+            debug_if(SD_DBG, "\n\rSDHC Card \n\rhc_c_size: %d\n\rcapacity: %lld \n\rsectors: %lld\n\r", hc_c_size, blocks*512, blocks);
+            break;
+
+        default:
+            debug("cs_sdD struct unsupported\r\n");
+            return 0;
+    };
+    return blocks;
+}
+
+int cmdx(int cmd, int arg)
+{
+    cs_sd = 0;
+
+    // send a command
+    spi_sd.write(0x40 | cmd);
+    spi_sd.write(arg >> 24);
+    spi_sd.write(arg >> 16);
+    spi_sd.write(arg >> 8);
+    spi_sd.write(arg >> 0);
+    spi_sd.write(0x95);
+
+    // wait for the repsonse (response[7] == 0)
+    for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
+        int response = spi_sd.write(0xFF);
+        if (!(response & 0x80)) {
+            return response;
+        }
+    }
+    cs_sd = 1;
+    spi_sd.write(0xFF);
+    return -1; // timeout
+}
+
+static uint32_t ext_bits(unsigned char *data, int msb, int lsb)
+{
+    uint32_t bits = 0;
+    uint32_t size = 1 + msb - lsb;
+    for (int i = 0; i < size; i++) {
+        uint32_t position = lsb + i;
+        uint32_t byte = 15 - (position >> 3);
+        uint32_t bit = position & 0x7;
+        uint32_t value = (data[byte] >> bit) & 1;
+        bits |= value << i;
+    }
+    return bits;
+}
+
+int disk_initialize()
+{
+    int i = initialise_card();
+    debug_if(SD_DBG, "init card = %d\n", i);
+    sectors = sd_sectors();
+
+    // Set block length to 512 (CMD16)
+    if (cmd(16, 512) != 0) {
+        debug("\rSet 512-byte block timed out\r\n");
+        return 1;
+    } else {
+        printf("\rDisk initialization successfull\r\n");
+    }
+
+    spi_sd.frequency(1000000); // Set to 1MHz for data transfer
+    return 0;
+}
+
+int disk_write(const uint8_t *buffer, uint64_t block_number)
+
+{
+    // set write address for single block (CMD24)
+    if (cmd(24, block_number * cdv) != 0) {
+        return 1;
+    }
+
+    // send the data block
+    write(buffer, 512);
+    //printf("Written Successfully bro \n");
+    return 0;
+}
+
+int write(const uint8_t*buffer, uint32_t length)
+{
+    cs_sd = 0;
+
+    // indicate start of block
+    spi_sd.write(0xFE);
+
+    // write the data
+    for (int i = 0; i < length; i++) {
+        spi_sd.write(buffer[i]);
+    }
+
+    // write the checksum
+    spi_sd.write(0xFF);
+    spi_sd.write(0xFF);
+
+    // check the response token
+    if ((spi_sd.write(0xFF) & 0x1F) != 0x05) {
+        cs_sd = 1;
+        spi_sd.write(0xFF);
+        return 1;
+    }
+
+    // wait for write to finish
+    while (spi_sd.write(0xFF) == 0);
+
+    cs_sd = 1;
+    spi_sd.write(0xFF);
+    return 0;
+}
+
+int disk_read(uint8_t *buffer, uint64_t block_number)
+{
+    // set read address for single block (CMD17)
+    if (cmd(17, block_number * cdv) != 0) {
+        return 1;
+    }
+
+    // receive the data
+    read(buffer, 512);
+    return 0;
+}
+
+int read(uint8_t *buffer, uint32_t length)
+{
+    cs_sd = 0;
+
+    // read until start byte (0xFF)
+    while (spi_sd.write(0xFF) != 0xFE);
+
+    // read data
+    for (int i = 0; i < length; i++) {
+        buffer[i] = spi_sd.write(0xFF);
+    }
+    spi_sd.write(0xFF); // checksum
+    spi_sd.write(0xFF);
+
+    cs_sd = 1;
+    spi_sd.write(0xFF);
+    return 0;
+}
+
+int disk_erase(int startBlock, int totalBlocks)
+{
+    if(cmd(32, startBlock * cdv) != 0) {
+        return 1;
+    }
+    if (cmd(33, (startBlock+totalBlocks-1) * cdv) != 0) {
+        return 1;
+    }
+    if (cmd(38,0) != 0) {
+        return 1;
+    }
+    
+    return 0; //normal return
+}