mbed implementation of the FreeIMU IMU for HobbyKing's 10DOF board
HK10DOF.cpp
- Committer:
- pommzorz
- Date:
- 2013-07-17
- Revision:
- 1:85fcfcb7b137
- Parent:
- 0:9a1682a09c50
File content as of revision 1:85fcfcb7b137:
/* FreeIMU.cpp - A libre and easy to use orientation sensing library for Arduino Copyright (C) 2011-2012 Fabio Varesano <fabio at varesano dot net> ported for HobbyKing's 10DOF stick on a mbed platform by Aloïs Wolff(wolffalois@gmail.com) Development of this code has been supported by the Department of Computer Science, Universita' degli Studi di Torino, Italy within the Piemonte Project http://www.piemonte.di.unito.it/ This program is free software: you can redistribute it and/or modify it under the terms of the version 3 GNU General Public License as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ //#define DEBUG #include "HK10DOF.h" #include "helper_3dmath.h" #include <math.h> // #include "WireUtils.h" //#include "DebugUtils.h" //#include "vector_math.h" #define M_PI 3.1415926535897932384626433832795 HK10DOF::HK10DOF(PinName sda, PinName scl) : acc(sda,scl), magn(sda,scl),gyro(sda,scl), baro(sda,scl),pc(USBTX,USBRX) { pc.baud(921600); // initialize quaternion q0 = 1.0f; q1 = 0.0f; q2 = 0.0f; q3 = 0.0f; exInt = 0.0; eyInt = 0.0; ezInt = 0.0; twoKp = twoKpDef; twoKi = twoKiDef; integralFBx = 0.0f, integralFBy = 0.0f, integralFBz = 0.0f; #ifndef CALIBRATION_H // initialize scale factors to neutral values acc_scale_x = 1; acc_scale_y = 1; acc_scale_z = 1; magn_scale_x = 1; magn_scale_y = 1; magn_scale_z = 1; #else // get values from global variables of same name defined in calibration.h acc_off_x = ::acc_off_x; acc_off_y = ::acc_off_y; acc_off_z = ::acc_off_z; acc_scale_x = ::acc_scale_x; acc_scale_y = ::acc_scale_y; acc_scale_z = ::acc_scale_z; magn_off_x = ::magn_off_x; magn_off_y = ::magn_off_y; magn_off_z = ::magn_off_z; magn_scale_x = ::magn_scale_x; magn_scale_y = ::magn_scale_y; magn_scale_z = ::magn_scale_z; #endif } /** * Initialize the FreeIMU I2C bus, sensors and performs gyro offsets calibration */ void HK10DOF::init(bool fastmode) { //Sensors Initialization pc.printf("Initializing sensors...\n\r"); magn.init(); baro.getCalibrationData(); acc.setPowerControl(0x00); wait_ms(10); acc.setDataFormatControl(0x0B); wait_ms(10); acc.setPowerControl(MeasurementMode); wait_ms(10); pc.printf("Sensors OK!\n\r"); update.start(); int dt_us=0; pc.printf("ZeroGyro\n\r"); // zero gyro //zeroGyro(); gyro.zeroCalibrate(128,5); pc.printf("ZeroGyro OK, CalLoad...\n\r"); // load calibration from eeprom calLoad(); } void HK10DOF::calLoad() { acc_off_x = 0; acc_off_y = 0; acc_off_z = 0; acc_scale_x = 1; acc_scale_y = 1; acc_scale_z = 1; magn_off_x = 0; magn_off_y = 0; magn_off_z = 0; magn_scale_x = 1; magn_scale_y = 1; magn_scale_z = 1; } void HK10DOF::getRawValues(int16_t * raw_values) { int16_t raw3[3]; int raw[3]; pc.printf("GetRaw IN \n\r"); acc.getOutput(&raw_values[0], &raw_values[1], &raw_values[2]); pc.printf("GotACC\n\r"); gyro.read(raw); raw_values[3]=(int16_t)raw[0]; raw_values[4]=(int16_t)raw[1]; raw_values[5]=(int16_t)raw[2]; pc.printf("GotGYRO\n\r"); magn.getXYZ(raw3); raw_values[6]=raw3[0]; raw_values[7]=raw3[1]; raw_values[8]=raw3[2]; pc.printf("GotMAG\n\r"); baro.readSensor(); raw_values[9]=(int16_t)baro.temp(); raw_values[10]=(int16_t)baro.press(); pc.printf("GotBARO\n\r"); } /** * Populates values with calibrated readings from the sensors */ void HK10DOF::getValues(float * values) { int16_t accval[3]; float gyrval[3]; acc.getOutput(accval); values[0] = (float) accval[0]; values[1] = (float) accval[1]; values[2] = (float) accval[2]; gyro.readFin(gyrval); values[3] = gyrval[0]; values[4] = gyrval[1]; values[5] = gyrval[2]; magn.getXYZ(accval); values[6]=accval[0]; values[7]=accval[1]; values[8]=accval[2]; #warning Accelerometer calibration active: have you calibrated your device? // remove offsets and scale accelerometer (calibration) values[0] = (values[0] - acc_off_x) / acc_scale_x; values[1] = (values[1] - acc_off_y) / acc_scale_y; values[2] = (values[2] - acc_off_z) / acc_scale_z; // calibration #warning Magnetometer calibration active: have you calibrated your device? values[6] = (values[6] - magn_off_x) / magn_scale_x; values[7] = (values[7] - magn_off_y) / magn_scale_y; values[8] = (values[8] - magn_off_z) / magn_scale_z; } /** * Computes gyro offsets */ void HK10DOF::zeroGyro() { const int totSamples = 3; int16_t raw[11]; float tmpOffsets[] = {0,0,0}; for (int i = 0; i < totSamples; i++) { getRawValues(raw); tmpOffsets[0] += raw[3]; tmpOffsets[1] += raw[4]; tmpOffsets[2] += raw[5]; } gyro_off_x = tmpOffsets[0] / totSamples; gyro_off_y = tmpOffsets[1] / totSamples; gyro_off_z = tmpOffsets[2] / totSamples; } /** * Quaternion implementation of the 'DCM filter' [Mayhony et al]. Incorporates the magnetic distortion * compensation algorithms from Sebastian Madgwick's filter which eliminates the need for a reference * direction of flux (bx bz) to be predefined and limits the effect of magnetic distortions to yaw * axis only. * * @see: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms */ //#if IS_9DOM() void HK10DOF::AHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) { float recipNorm; float q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3; float halfex = 0.0f, halfey = 0.0f, halfez = 0.0f; float qa, qb, qc; // Auxiliary variables to avoid repeated arithmetic q0q0 = q0 * q0; q0q1 = q0 * q1; q0q2 = q0 * q2; q0q3 = q0 * q3; q1q1 = q1 * q1; q1q2 = q1 * q2; q1q3 = q1 * q3; q2q2 = q2 * q2; q2q3 = q2 * q3; q3q3 = q3 * q3; // Use magnetometer measurement only when valid (avoids NaN in magnetometer normalisation) if((mx != 0.0f) && (my != 0.0f) && (mz != 0.0f)) { float hx, hy, bx, bz; float halfwx, halfwy, halfwz; // Normalise magnetometer measurement recipNorm = invSqrt(mx * mx + my * my + mz * mz); mx *= recipNorm; my *= recipNorm; mz *= recipNorm; // Reference direction of Earth's magnetic field hx = 2.0f * (mx * (0.5f - q2q2 - q3q3) + my * (q1q2 - q0q3) + mz * (q1q3 + q0q2)); hy = 2.0f * (mx * (q1q2 + q0q3) + my * (0.5f - q1q1 - q3q3) + mz * (q2q3 - q0q1)); bx = sqrt(hx * hx + hy * hy); bz = 2.0f * (mx * (q1q3 - q0q2) + my * (q2q3 + q0q1) + mz * (0.5f - q1q1 - q2q2)); // Estimated direction of magnetic field halfwx = bx * (0.5f - q2q2 - q3q3) + bz * (q1q3 - q0q2); halfwy = bx * (q1q2 - q0q3) + bz * (q0q1 + q2q3); halfwz = bx * (q0q2 + q1q3) + bz * (0.5f - q1q1 - q2q2); // Error is sum of cross product between estimated direction and measured direction of field vectors halfex = (my * halfwz - mz * halfwy); halfey = (mz * halfwx - mx * halfwz); halfez = (mx * halfwy - my * halfwx); } // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation) if((ax != 0.0f) && (ay != 0.0f) && (az != 0.0f)) { float halfvx, halfvy, halfvz; // Normalise accelerometer measurement recipNorm = invSqrt(ax * ax + ay * ay + az * az); ax *= recipNorm; ay *= recipNorm; az *= recipNorm; // Estimated direction of gravity halfvx = q1q3 - q0q2; halfvy = q0q1 + q2q3; halfvz = q0q0 - 0.5f + q3q3; // Error is sum of cross product between estimated direction and measured direction of field vectors halfex += (ay * halfvz - az * halfvy); halfey += (az * halfvx - ax * halfvz); halfez += (ax * halfvy - ay * halfvx); } // Apply feedback only when valid data has been gathered from the accelerometer or magnetometer if(halfex != 0.0f && halfey != 0.0f && halfez != 0.0f) { // Compute and apply integral feedback if enabled if(twoKi > 0.0f) { integralFBx += twoKi * halfex * (1.0f / sampleFreq); // integral error scaled by Ki integralFBy += twoKi * halfey * (1.0f / sampleFreq); integralFBz += twoKi * halfez * (1.0f / sampleFreq); gx += integralFBx; // apply integral feedback gy += integralFBy; gz += integralFBz; } else { integralFBx = 0.0f; // prevent integral windup integralFBy = 0.0f; integralFBz = 0.0f; } // Apply proportional feedback gx += twoKp * halfex; gy += twoKp * halfey; gz += twoKp * halfez; } // Integrate rate of change of quaternion gx *= (0.5f * (1.0f / sampleFreq)); // pre-multiply common factors gy *= (0.5f * (1.0f / sampleFreq)); gz *= (0.5f * (1.0f / sampleFreq)); qa = q0; qb = q1; qc = q2; q0 += (-qb * gx - qc * gy - q3 * gz); q1 += (qa * gx + qc * gz - q3 * gy); q2 += (qa * gy - qb * gz + q3 * gx); q3 += (qa * gz + qb * gy - qc * gx); // Normalise quaternion recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); q0 *= recipNorm; q1 *= recipNorm; q2 *= recipNorm; q3 *= recipNorm; } /** * Populates array q with a quaternion representing the IMU orientation with respect to the Earth * * @param q the quaternion to populate */ void HK10DOF::getQ(float * q) { float val[9]; getValues(val); /* DEBUG_PRINT(val[3] * M_PI/180); DEBUG_PRINT(val[4] * M_PI/180); DEBUG_PRINT(val[5] * M_PI/180); DEBUG_PRINT(val[0]); DEBUG_PRINT(val[1]); DEBUG_PRINT(val[2]); DEBUG_PRINT(val[6]); DEBUG_PRINT(val[7]); DEBUG_PRINT(val[8]); */ dt_us=update.read_us(); sampleFreq = 1.0 / ((dt_us) / 1000000.0); update.reset(); // gyro values are expressed in deg/sec, the * M_PI/180 will convert it to radians/sec AHRSupdate(val[3] * M_PI/180, val[4] * M_PI/180, val[5] * M_PI/180, val[0], val[1], val[2], val[6], val[7], val[8]); q[0] = q0; q[1] = q1; q[2] = q2; q[3] = q3; } const float def_sea_press = 1013.25; /** * Returns an altitude estimate from baromether readings only using sea_press as current sea level pressure */ float HK10DOF::getBaroAlt(float sea_press) { //float temp,press,res; baro.readSensor(); //temp=(float)baro.temp(); //press=(float)baro.press(); return baro.altitud(); //return(temp,press); } /** * Returns an altitude estimate from baromether readings only using a default sea level pressure */ float HK10DOF::getBaroAlt() { return getBaroAlt(def_sea_press); } /** * Compensates the accelerometer readings in the 3D vector acc expressed in the sensor frame for gravity * @param acc the accelerometer readings to compensate for gravity * @param q the quaternion orientation of the sensor board with respect to the world */ void HK10DOF::gravityCompensateAcc(float * acc, float * q) { float g[3]; // get expected direction of gravity in the sensor frame g[0] = 2 * (q[1] * q[3] - q[0] * q[2]); g[1] = 2 * (q[0] * q[1] + q[2] * q[3]); g[2] = q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]; // compensate accelerometer readings with the expected direction of gravity acc[0] = acc[0] - g[0]; acc[1] = acc[1] - g[1]; acc[2] = acc[2] - g[2]; } /** * Returns the Euler angles in radians defined in the Aerospace sequence. * See Sebastian O.H. Madwick report "An efficient orientation filter for * inertial and intertial/magnetic sensor arrays" Chapter 2 Quaternion representation * * @param angles three floats array which will be populated by the Euler angles in radians */ void HK10DOF::getEulerRad(float * angles) { float q[4]; // quaternion getQ(q); angles[0] = atan2(2 * q[1] * q[2] - 2 * q[0] * q[3], 2 * q[0]*q[0] + 2 * q[1] * q[1] - 1); // psi angles[1] = -asin(2 * q[1] * q[3] + 2 * q[0] * q[2]); // theta angles[2] = atan2(2 * q[2] * q[3] - 2 * q[0] * q[1], 2 * q[0] * q[0] + 2 * q[3] * q[3] - 1); // phi } /** * Returns the Euler angles in degrees defined with the Aerospace sequence. * See Sebastian O.H. Madwick report "An efficient orientation filter for * inertial and intertial/magnetic sensor arrays" Chapter 2 Quaternion representation * * @param angles three floats array which will be populated by the Euler angles in degrees */ void HK10DOF::getEuler(float * angles) { getEulerRad(angles); arr3_rad_to_deg(angles); } /** * Returns the yaw pitch and roll angles, respectively defined as the angles in radians between * the Earth North and the IMU X axis (yaw), the Earth ground plane and the IMU X axis (pitch) * and the Earth ground plane and the IMU Y axis. * * @note This is not an Euler representation: the rotations aren't consecutive rotations but only * angles from Earth and the IMU. For Euler representation Yaw, Pitch and Roll see HK10DOF::getEuler * * @param ypr three floats array which will be populated by Yaw, Pitch and Roll angles in radians */ void HK10DOF::getYawPitchRollRad(float * ypr) { float q[4]; // quaternion float gx, gy, gz; // estimated gravity direction getQ(q); gx = 2 * (q[1]*q[3] - q[0]*q[2]); gy = 2 * (q[0]*q[1] + q[2]*q[3]); gz = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]; ypr[0] = atan2(2 * q[1] * q[2] - 2 * q[0] * q[3], 2 * q[0]*q[0] + 2 * q[1] * q[1] - 1); ypr[1] = atan(gx / sqrt(gy*gy + gz*gz)); ypr[2] = atan(gy / sqrt(gx*gx + gz*gz)); } /** * Returns the yaw pitch and roll angles, respectively defined as the angles in degrees between * the Earth North and the IMU X axis (yaw), the Earth ground plane and the IMU X axis (pitch) * and the Earth ground plane and the IMU Y axis. * * @note This is not an Euler representation: the rotations aren't consecutive rotations but only * angles from Earth and the IMU. For Euler representation Yaw, Pitch and Roll see HK10DOF::getEuler * * @param ypr three floats array which will be populated by Yaw, Pitch and Roll angles in degrees */ void HK10DOF::getYawPitchRoll(float * ypr) { getYawPitchRollRad(ypr); arr3_rad_to_deg(ypr); } /** * Converts a 3 elements array arr of angles expressed in radians into degrees */ void arr3_rad_to_deg(float * arr) { arr[0] *= 180/M_PI; arr[1] *= 180/M_PI; arr[2] *= 180/M_PI; } /** * Fast inverse square root implementation * @see http://en.wikipedia.org/wiki/Fast_inverse_square_root */ float invSqrt(float number) { volatile long i; volatile float x, y; volatile const float f = 1.5F; x = number * 0.5F; y = number; i = * ( long * ) &y; i = 0x5f375a86 - ( i >> 1 ); y = * ( float * ) &i; y = y * ( f - ( x * y * y ) ); return y; }