mbed implementation of the FreeIMU IMU for HobbyKing's 10DOF board
Diff: helper_3dmath.h
- Revision:
- 0:9a1682a09c50
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/helper_3dmath.h Wed Jul 17 18:50:28 2013 +0000 @@ -0,0 +1,216 @@ +// I2C device class (I2Cdev) demonstration Arduino sketch for MPU6050 class, 3D math helper +// 6/5/2012 by Jeff Rowberg <jeff@rowberg.net> +// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib +// +// Changelog: +// 2012-06-05 - add 3D math helper file to DMP6 example sketch + +/* ============================================ +I2Cdev device library code is placed under the MIT license +Copyright (c) 2012 Jeff Rowberg + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. +=============================================== +*/ + +#ifndef _HELPER_3DMATH_H_ +#define _HELPER_3DMATH_H_ + +class Quaternion { + public: + float w; + float x; + float y; + float z; + + Quaternion() { + w = 1.0f; + x = 0.0f; + y = 0.0f; + z = 0.0f; + } + + Quaternion(float nw, float nx, float ny, float nz) { + w = nw; + x = nx; + y = ny; + z = nz; + } + + Quaternion getProduct(Quaternion q) { + // Quaternion multiplication is defined by: + // (Q1 * Q2).w = (w1w2 - x1x2 - y1y2 - z1z2) + // (Q1 * Q2).x = (w1x2 + x1w2 + y1z2 - z1y2) + // (Q1 * Q2).y = (w1y2 - x1z2 + y1w2 + z1x2) + // (Q1 * Q2).z = (w1z2 + x1y2 - y1x2 + z1w2 + return Quaternion( + w*q.w - x*q.x - y*q.y - z*q.z, // new w + w*q.x + x*q.w + y*q.z - z*q.y, // new x + w*q.y - x*q.z + y*q.w + z*q.x, // new y + w*q.z + x*q.y - y*q.x + z*q.w); // new z + } + + Quaternion getConjugate() { + return Quaternion(w, -x, -y, -z); + } + + float getMagnitude() { + return sqrt(w*w + x*x + y*y + z*z); + } + + void normalize() { + float m = getMagnitude(); + w /= m; + x /= m; + y /= m; + z /= m; + } + + Quaternion getNormalized() { + Quaternion r(w, x, y, z); + r.normalize(); + return r; + } +}; + +class VectorInt16 { + public: + int16_t x; + int16_t y; + int16_t z; + + VectorInt16() { + x = 0; + y = 0; + z = 0; + } + + VectorInt16(int16_t nx, int16_t ny, int16_t nz) { + x = nx; + y = ny; + z = nz; + } + + float getMagnitude() { + return sqrt((float)(x*x + y*y + z*z)); + } + + void normalize() { + float m = getMagnitude(); + x /= m; + y /= m; + z /= m; + } + + VectorInt16 getNormalized() { + VectorInt16 r(x, y, z); + r.normalize(); + return r; + } + + void rotate(Quaternion *q) { + // http://www.cprogramming.com/tutorial/3d/quaternions.html + // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/index.htm + // http://content.gpwiki.org/index.php/OpenGL:Tutorials:Using_Quaternions_to_represent_rotation + // ^ or: http://webcache.googleusercontent.com/search?q=cache:xgJAp3bDNhQJ:content.gpwiki.org/index.php/OpenGL:Tutorials:Using_Quaternions_to_represent_rotation&hl=en&gl=us&strip=1 + + // P_out = q * P_in * conj(q) + // - P_out is the output vector + // - q is the orientation quaternion + // - P_in is the input vector (a*aReal) + // - conj(q) is the conjugate of the orientation quaternion (q=[w,x,y,z], q*=[w,-x,-y,-z]) + Quaternion p(0, x, y, z); + + // quaternion multiplication: q * p, stored back in p + p = q -> getProduct(p); + + // quaternion multiplication: p * conj(q), stored back in p + p = p.getProduct(q -> getConjugate()); + + // p quaternion is now [0, x', y', z'] + x = p.x; + y = p.y; + z = p.z; + } + + VectorInt16 getRotated(Quaternion *q) { + VectorInt16 r(x, y, z); + r.rotate(q); + return r; + } +}; + +class VectorFloat { + public: + float x; + float y; + float z; + + VectorFloat() { + x = 0; + y = 0; + z = 0; + } + + VectorFloat(float nx, float ny, float nz) { + x = nx; + y = ny; + z = nz; + } + + float getMagnitude() { + return sqrt(x*x + y*y + z*z); + } + + void normalize() { + float m = getMagnitude(); + x /= m; + y /= m; + z /= m; + } + + VectorFloat getNormalized() { + VectorFloat r(x, y, z); + r.normalize(); + return r; + } + + void rotate(Quaternion *q) { + Quaternion p(0, x, y, z); + + // quaternion multiplication: q * p, stored back in p + p = q -> getProduct(p); + + // quaternion multiplication: p * conj(q), stored back in p + p = p.getProduct(q -> getConjugate()); + + // p quaternion is now [0, x', y', z'] + x = p.x; + y = p.y; + z = p.z; + } + + VectorFloat getRotated(Quaternion *q) { + VectorFloat r(x, y, z); + r.rotate(q); + return r; + } +}; + +#endif /* _HELPER_3DMATH_H_ */