
Example project
Dependencies: PM2_Libary Eigen
Controller.cpp
- Committer:
- pmic
- Date:
- 2022-05-10
- Revision:
- 39:f336caef17d9
- Parent:
- 38:8aae5cbcf25f
File content as of revision 39:f336caef17d9:
/* * Controller.cpp * Copyright (c) 2022, ZHAW * All rights reserved. */ #include "Controller.h" using namespace std; const float Controller::PERIOD = 0.001f; // period of control task, given in [s] const float Controller::M_PI = 3.14159265f; // the mathematical constant PI const float Controller::WHEEL_DISTANCE = 0.190f; // distance between wheels, given in [m] const float Controller::WHEEL_RADIUS = 0.0375f; // radius of wheels, given in [m] const float Controller::MAXIMUM_VELOCITY = 500.0; // maximum wheel velocity, given in [rpm] const float Controller::MAXIMUM_ACCELERATION = 1000.0; // maximum wheel acceleration, given in [rpm/s] const float Controller::COUNTS_PER_TURN = 1200.0f; // encoder resolution (pololu motors: 1200.0f, maxon motors: 86016.0f) const float Controller::LOWPASS_FILTER_FREQUENCY = 300.0f; // given in [rad/s] const float Controller::KN = 40.0f; // speed constant in [rpm/V] (pololu motors: 40.0f, maxon motors: 45.0f) const float Controller::KP = 0.15f; // speed control parameter const float Controller::MAX_VOLTAGE = 12.0f; // battery voltage in [V] const float Controller::MIN_DUTY_CYCLE = 0.02f; // minimum duty-cycle const float Controller::MAX_DUTY_CYCLE = 0.98f; // maximum duty-cycle /** * Creates and initialises the robot controller. * @param pwmLeft a reference to the pwm output for the left motor. * @param pwmRight a reference to the pwm output for the right motor. * @param counterLeft a reference to the encoder counter of the left motor. * @param counterRight a reference to the encoder counter of the right motor. */ Controller::Controller(PwmOut& pwmLeft, PwmOut& pwmRight, EncoderCounterROME2& counterLeft, EncoderCounterROME2& counterRight) : pwmLeft(pwmLeft), pwmRight(pwmRight), counterLeft(counterLeft), counterRight(counterRight), thread(osPriorityHigh, STACK_SIZE) { // initialise pwm outputs pwmLeft.period(0.00005f); // pwm period of 50 us pwmLeft = 0.5f; // duty-cycle of 50% pwmRight.period(0.00005f); // pwm period of 50 us pwmRight = 0.5f; // duty-cycle of 50% // initialise local variables translationalVelocity = 0.0f; rotationalVelocity = 0.0f; actualTranslationalVelocity = 0.0f; actualRotationalVelocity = 0.0f; desiredSpeedLeft = 0.0f; desiredSpeedRight = 0.0f; actualSpeedLeft = 0.0f; actualSpeedRight = 0.0f; motionLeft.setProfileVelocity(MAXIMUM_VELOCITY); motionLeft.setProfileAcceleration(MAXIMUM_ACCELERATION); motionLeft.setProfileDeceleration(MAXIMUM_ACCELERATION); motionRight.setProfileVelocity(MAXIMUM_VELOCITY); motionRight.setProfileAcceleration(MAXIMUM_ACCELERATION); motionRight.setProfileDeceleration(MAXIMUM_ACCELERATION); previousValueCounterLeft = counterLeft.read(); previousValueCounterRight = counterRight.read(); speedLeftFilter.setPeriod(PERIOD); speedLeftFilter.setFrequency(LOWPASS_FILTER_FREQUENCY); speedRightFilter.setPeriod(PERIOD); speedRightFilter.setFrequency(LOWPASS_FILTER_FREQUENCY); // start thread and timer interrupt thread.start(callback(this, &Controller::run)); ticker.attach(callback(this, &Controller::sendThreadFlag), std::chrono::microseconds{static_cast<long int>(1.0e6f * PERIOD)}); } /** * Deletes this Controller object. */ Controller::~Controller() { ticker.detach(); // stop the timer interrupt } /** * Sets the desired translational velocity of the robot. * @param velocity the desired translational velocity, given in [m/s]. */ void Controller::setTranslationalVelocity(float velocity) { this->translationalVelocity = velocity; } /** * Sets the desired rotational velocity of the robot. * @param velocity the desired rotational velocity, given in [rad/s]. */ void Controller::setRotationalVelocity(float velocity) { this->rotationalVelocity = velocity; } /** * Gets the actual translational velocity of the robot. * @return the actual translational velocity, given in [m/s]. */ float Controller::getActualTranslationalVelocity() { return actualTranslationalVelocity; } /** * Gets the actual rotational velocity of the robot. * @return the actual rotational velocity, given in [rad/s]. */ float Controller::getActualRotationalVelocity() { return actualRotationalVelocity; } /** * This method is called by the ticker timer interrupt service routine. * It sends a flag to the thread to make it run again. */ void Controller::sendThreadFlag() { thread.flags_set(threadFlag); } /** * This is an internal method of the controller that is running periodically. */ void Controller::run() { while (true) { // wait for the periodic thread flag ThisThread::flags_wait_any(threadFlag); // calculate the values 'desiredSpeedLeft' and 'desiredSpeedRight' using the kinematic model desiredSpeedLeft = (translationalVelocity-WHEEL_DISTANCE/2.0f*rotationalVelocity)/WHEEL_RADIUS*60.0f/2.0f/M_PI; desiredSpeedRight = -(translationalVelocity+WHEEL_DISTANCE/2.0f*rotationalVelocity)/WHEEL_RADIUS*60.0f/2.0f/M_PI; // calculate planned speedLeft and speedRight values using the motion planner motionLeft.incrementToVelocity(desiredSpeedLeft, PERIOD); motionRight.incrementToVelocity(desiredSpeedRight, PERIOD); desiredSpeedLeft = motionLeft.getVelocity(); desiredSpeedRight = motionRight.getVelocity(); // calculate the actual speed of the motors in [rpm] short valueCounterLeft = counterLeft.read(); short valueCounterRight = counterRight.read(); short countsInPastPeriodLeft = valueCounterLeft-previousValueCounterLeft; short countsInPastPeriodRight = valueCounterRight-previousValueCounterRight; previousValueCounterLeft = valueCounterLeft; previousValueCounterRight = valueCounterRight; actualSpeedLeft = speedLeftFilter.filter((float)countsInPastPeriodLeft/COUNTS_PER_TURN/PERIOD*60.0f); actualSpeedRight = speedRightFilter.filter((float)countsInPastPeriodRight/COUNTS_PER_TURN/PERIOD*60.0f); // calculate desired motor voltages Uout float voltageLeft = KP*(desiredSpeedLeft-actualSpeedLeft)+desiredSpeedLeft/KN; float voltageRight = KP*(desiredSpeedRight-actualSpeedRight)+desiredSpeedRight/KN; // calculate, limit and set the duty-cycle float dutyCycleLeft = 0.5f+0.5f*voltageLeft/MAX_VOLTAGE; if (dutyCycleLeft < MIN_DUTY_CYCLE) dutyCycleLeft = MIN_DUTY_CYCLE; else if (dutyCycleLeft > MAX_DUTY_CYCLE) dutyCycleLeft = MAX_DUTY_CYCLE; pwmLeft = dutyCycleLeft; float dutyCycleRight = 0.5f+0.5f*voltageRight/MAX_VOLTAGE; if (dutyCycleRight < MIN_DUTY_CYCLE) dutyCycleRight = MIN_DUTY_CYCLE; else if (dutyCycleRight > MAX_DUTY_CYCLE) dutyCycleRight = MAX_DUTY_CYCLE; pwmRight = dutyCycleRight; // calculate the values 'actualTranslationalVelocity' and 'actualRotationalVelocity' using the kinematic model actualTranslationalVelocity = (actualSpeedLeft-actualSpeedRight)*2.0f*M_PI/60.0f*WHEEL_RADIUS/2.0f; actualRotationalVelocity = (-actualSpeedRight-actualSpeedLeft)*2.0f*M_PI/60.0f*WHEEL_RADIUS/WHEEL_DISTANCE; } }