Example project

Dependencies:   PM2_Libary Eigen

Revision:
42:d2d2db5974c9
Parent:
41:7484471403aa
Child:
43:0a124a21e227
--- a/Controller.cpp	Wed May 11 09:44:25 2022 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,192 +0,0 @@
-/*
- * Controller.cpp
- * Copyright (c) 2022, ZHAW
- * All rights reserved.
- */
-
-#include "Controller.h"
-
-using namespace std;
-
-const float Controller::PERIOD = 0.001f;                    // period of control task, given in [s]
-const float Controller::M_PI = 3.14159265f;                 // the mathematical constant PI
-const float Controller::WHEEL_DISTANCE = 0.190f;            // distance between wheels, given in [m]
-const float Controller::WHEEL_RADIUS = 0.0375f;             // radius of wheels, given in [m]
-const float Controller::MAXIMUM_VELOCITY = 500.0;           // maximum wheel velocity, given in [rpm]
-const float Controller::MAXIMUM_ACCELERATION = 1000.0;       // maximum wheel acceleration, given in [rpm/s]
-const float Controller::COUNTS_PER_TURN = 1200.0f;          // encoder resolution (pololu motors: 1200.0f, maxon motors: 86016.0f)
-const float Controller::LOWPASS_FILTER_FREQUENCY = 300.0f;  // given in [rad/s]
-const float Controller::KN = 40.0f;                         // speed constant in [rpm/V] (pololu motors: 40.0f, maxon motors: 45.0f)
-const float Controller::KP = 0.15f;                         // speed control parameter
-const float Controller::MAX_VOLTAGE = 12.0f;                // battery voltage in [V]
-const float Controller::MIN_DUTY_CYCLE = 0.02f;             // minimum duty-cycle
-const float Controller::MAX_DUTY_CYCLE = 0.98f;             // maximum duty-cycle
-
-/**
- * Creates and initialises the robot controller.
- * @param pwmLeft a reference to the pwm output for the left motor.
- * @param pwmRight a reference to the pwm output for the right motor.
- * @param counterLeft a reference to the encoder counter of the left motor.
- * @param counterRight a reference to the encoder counter of the right motor.
- */
-Controller::Controller(PwmOut& pwmLeft, PwmOut& pwmRight, EncoderCounterROME2& counterLeft, EncoderCounterROME2& counterRight) : pwmLeft(pwmLeft), pwmRight(pwmRight), counterLeft(counterLeft), counterRight(counterRight), thread(osPriorityHigh, STACK_SIZE) {
-    
-    // initialise pwm outputs
-
-    pwmLeft.period(0.00005f);  // pwm period of 50 us
-    pwmLeft = 0.5f;            // duty-cycle of 50%
-
-    pwmRight.period(0.00005f); // pwm period of 50 us
-    pwmRight = 0.5f;           // duty-cycle of 50%
-
-    // initialise local variables
-
-    translationalVelocity = 0.0f;
-    rotationalVelocity = 0.0f;
-
-    actualTranslationalVelocity = 0.0f;
-    actualRotationalVelocity = 0.0f;
-
-    desiredSpeedLeft = 0.0f;
-    desiredSpeedRight = 0.0f;
-
-    actualSpeedLeft = 0.0f;
-    actualSpeedRight = 0.0f;
-
-    motionLeft.setProfileVelocity(MAXIMUM_VELOCITY);
-    motionLeft.setProfileAcceleration(MAXIMUM_ACCELERATION);
-    motionLeft.setProfileDeceleration(MAXIMUM_ACCELERATION);
-
-    motionRight.setProfileVelocity(MAXIMUM_VELOCITY);
-    motionRight.setProfileAcceleration(MAXIMUM_ACCELERATION);
-    motionRight.setProfileDeceleration(MAXIMUM_ACCELERATION);
-
-    previousValueCounterLeft = counterLeft.read();
-    previousValueCounterRight = counterRight.read();
-
-    speedLeftFilter.setPeriod(PERIOD);
-    speedLeftFilter.setFrequency(LOWPASS_FILTER_FREQUENCY);
-
-    speedRightFilter.setPeriod(PERIOD);
-    speedRightFilter.setFrequency(LOWPASS_FILTER_FREQUENCY);
-
-    // start thread and timer interrupt
-    
-    thread.start(callback(this, &Controller::run));
-    ticker.attach(callback(this, &Controller::sendThreadFlag), std::chrono::microseconds{static_cast<long int>(1.0e6f * PERIOD)});
-}
-
-/**
- * Deletes this Controller object.
- */
-Controller::~Controller() {
-    
-    ticker.detach(); // stop the timer interrupt
-}
-
-/**
- * Sets the desired translational velocity of the robot.
- * @param velocity the desired translational velocity, given in [m/s].
- */
-void Controller::setTranslationalVelocity(float velocity) {
-    
-    this->translationalVelocity = velocity;
-}
-
-/**
- * Sets the desired rotational velocity of the robot.
- * @param velocity the desired rotational velocity, given in [rad/s].
- */
-void Controller::setRotationalVelocity(float velocity) {
-    
-    this->rotationalVelocity = velocity;
-}
-
-/**
- * Gets the actual translational velocity of the robot.
- * @return the actual translational velocity, given in [m/s].
- */
-float Controller::getActualTranslationalVelocity() {
-    
-    return actualTranslationalVelocity;
-}
-
-/**
- * Gets the actual rotational velocity of the robot.
- * @return the actual rotational velocity, given in [rad/s].
- */
-float Controller::getActualRotationalVelocity() {
-    
-    return actualRotationalVelocity;
-}
-
-/**
- * This method is called by the ticker timer interrupt service routine.
- * It sends a flag to the thread to make it run again.
- */
-void Controller::sendThreadFlag() {
-    
-    thread.flags_set(threadFlag);
-}
-
-/**
- * This is an internal method of the controller that is running periodically.
- */
-void Controller::run() {
-
-    while (true) {
-        
-        // wait for the periodic thread flag
-        
-        ThisThread::flags_wait_any(threadFlag);
-        
-        // calculate the values 'desiredSpeedLeft' and 'desiredSpeedRight' using the kinematic model
-        
-        desiredSpeedLeft = (translationalVelocity-WHEEL_DISTANCE/2.0f*rotationalVelocity)/WHEEL_RADIUS*60.0f/2.0f/M_PI;
-        desiredSpeedRight = -(translationalVelocity+WHEEL_DISTANCE/2.0f*rotationalVelocity)/WHEEL_RADIUS*60.0f/2.0f/M_PI;
-        
-        // calculate planned speedLeft and speedRight values using the motion planner
-        
-        motionLeft.incrementToVelocity(desiredSpeedLeft, PERIOD);
-        motionRight.incrementToVelocity(desiredSpeedRight, PERIOD);
-        
-        desiredSpeedLeft = motionLeft.getVelocity();
-        desiredSpeedRight = motionRight.getVelocity();
-        
-        // calculate the actual speed of the motors in [rpm]
-
-        short valueCounterLeft = counterLeft.read();
-        short valueCounterRight = counterRight.read();
-
-        short countsInPastPeriodLeft = valueCounterLeft-previousValueCounterLeft;
-        short countsInPastPeriodRight = valueCounterRight-previousValueCounterRight;
-
-        previousValueCounterLeft = valueCounterLeft;
-        previousValueCounterRight = valueCounterRight;
-
-        actualSpeedLeft = speedLeftFilter.filter((float)countsInPastPeriodLeft/COUNTS_PER_TURN/PERIOD*60.0f);
-        actualSpeedRight = speedRightFilter.filter((float)countsInPastPeriodRight/COUNTS_PER_TURN/PERIOD*60.0f);
-
-        // calculate desired motor voltages Uout
-
-        float voltageLeft = KP*(desiredSpeedLeft-actualSpeedLeft)+desiredSpeedLeft/KN;
-        float voltageRight = KP*(desiredSpeedRight-actualSpeedRight)+desiredSpeedRight/KN;
-
-        // calculate, limit and set the duty-cycle
-
-        float dutyCycleLeft = 0.5f+0.5f*voltageLeft/MAX_VOLTAGE;
-        if (dutyCycleLeft < MIN_DUTY_CYCLE) dutyCycleLeft = MIN_DUTY_CYCLE;
-        else if (dutyCycleLeft > MAX_DUTY_CYCLE) dutyCycleLeft = MAX_DUTY_CYCLE;
-        pwmLeft = dutyCycleLeft;
-
-        float dutyCycleRight = 0.5f+0.5f*voltageRight/MAX_VOLTAGE;
-        if (dutyCycleRight < MIN_DUTY_CYCLE) dutyCycleRight = MIN_DUTY_CYCLE;
-        else if (dutyCycleRight > MAX_DUTY_CYCLE) dutyCycleRight = MAX_DUTY_CYCLE;
-        pwmRight = dutyCycleRight;
-
-        // calculate the values 'actualTranslationalVelocity' and 'actualRotationalVelocity' using the kinematic model
-
-        actualTranslationalVelocity = (actualSpeedLeft-actualSpeedRight)*2.0f*M_PI/60.0f*WHEEL_RADIUS/2.0f;
-        actualRotationalVelocity = (-actualSpeedRight-actualSpeedLeft)*2.0f*M_PI/60.0f*WHEEL_RADIUS/WHEEL_DISTANCE;
-    }
-}