Example project for the Line Follower robot.

Dependencies:   PM2_Libary Eigen

Committer:
pmic
Date:
Thu May 05 18:32:17 2022 +0200
Revision:
41:d8067ab9def5
Parent:
40:eb7f8dce5787
Child:
42:b54a4f294aa9
Eigen running

Who changed what in which revision?

UserRevisionLine numberNew contents of line
pmic 33:cff70742569d 1 #include <mbed.h>
pmic 33:cff70742569d 2 #include <math.h>
pmic 33:cff70742569d 3
pmic 17:c19b471f05cb 4 #include "PM2_Libary.h"
pmic 40:eb7f8dce5787 5 #include "Eigen/Dense.h"
pmic 6:e1fa1a2d7483 6
pmic 34:702246639f02 7 # define M_PI 3.14159265358979323846 // number pi
pmic 33:cff70742569d 8
pmic 24:86f1a63e35a0 9 // logical variable main task
pmic 24:86f1a63e35a0 10 bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task
pmic 17:c19b471f05cb 11
pmic 24:86f1a63e35a0 12 // user button on nucleo board
pmic 24:86f1a63e35a0 13 Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
pmic 24:86f1a63e35a0 14 InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
pmic 24:86f1a63e35a0 15 void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below
pmic 24:86f1a63e35a0 16 void user_button_released_fcn();
pmic 6:e1fa1a2d7483 17
pmic 24:86f1a63e35a0 18 // while loop gets executed every main_task_period_ms milliseconds
pmic 34:702246639f02 19 int main_task_period_ms = 10; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
pmic 24:86f1a63e35a0 20 Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms
pmic 6:e1fa1a2d7483 21
pmic 24:86f1a63e35a0 22 // led on nucleo board
pmic 24:86f1a63e35a0 23 DigitalOut user_led(LED1); // create DigitalOut object to command user led
pmic 17:c19b471f05cb 24
pmic 38:6d11788e14c0 25 // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
pmic 38:6d11788e14c0 26 float ir_distance_mV = 0.0f; // define variable to store measurement
pmic 38:6d11788e14c0 27 AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
pmic 38:6d11788e14c0 28
pmic 38:6d11788e14c0 29 // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
pmic 38:6d11788e14c0 30 DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors
pmic 38:6d11788e14c0 31
pmic 38:6d11788e14c0 32 float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors
pmic 38:6d11788e14c0 33 FastPWM pwm_M1(PB_13); // motor M1 is closed-loop speed controlled (angle velocity)
pmic 38:6d11788e14c0 34 FastPWM pwm_M2(PA_9); // motor M2 is closed-loop speed controlled (angle velocity)
pmic 38:6d11788e14c0 35
pmic 38:6d11788e14c0 36 EncoderCounter encoder_M1(PA_6, PC_7); // create encoder objects to read in the encoder counter values
pmic 38:6d11788e14c0 37 EncoderCounter encoder_M2(PB_6, PB_7);
pmic 38:6d11788e14c0 38
pmic 38:6d11788e14c0 39 // create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
pmic 38:6d11788e14c0 40 float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
pmic 38:6d11788e14c0 41 float counts_per_turn = 20.0f * 78.125f; // define counts per turn at gearbox end: counts/turn * gearratio
pmic 38:6d11788e14c0 42 float kn = 180.0f / 12.0f; // define motor constant in rpm per V
pmic 38:6d11788e14c0 43 float k_gear = 100.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1
pmic 38:6d11788e14c0 44 float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1
pmic 38:6d11788e14c0 45
pmic 38:6d11788e14c0 46 SpeedController speedController_M1(counts_per_turn, kn, max_voltage, pwm_M1, encoder_M1); // default 78.125:1 gear box with default contoller parameters
pmic 38:6d11788e14c0 47 SpeedController speedController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear box with default contoller parameters
pmic 38:6d11788e14c0 48 // SpeedController speedController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 100:1 gear
pmic 38:6d11788e14c0 49
pmic 38:6d11788e14c0 50 // sparkfun line follower array
pmic 33:cff70742569d 51 I2C i2c(PB_9, PB_8); // I2C (PinName sda, PinName scl)
pmic 33:cff70742569d 52 SensorBar sensor_bar(i2c, 0.1175f);
pmic 20:7e7325edcf5c 53
pmic 38:6d11788e14c0 54 float r_wheel = 0.0358f / 2.0f;
pmic 38:6d11788e14c0 55 float L_wheel = 0.143f;
pmic 38:6d11788e14c0 56 // transform wheel to robot
pmic 40:eb7f8dce5787 57 Eigen::Matrix<float, 2, 2> Crw;
pmic 40:eb7f8dce5787 58 Eigen::Matrix<float, 2, 2> Cwr;
pmic 41:d8067ab9def5 59 Eigen::Matrix<float, 2, 2> I;
pmic 41:d8067ab9def5 60
pmic 38:6d11788e14c0 61
pmic 1:93d997d6b232 62 int main()
pmic 41:d8067ab9def5 63 {
pmic 41:d8067ab9def5 64 Crw << r_wheel / 2.0f , r_wheel / 2.0f ,
pmic 41:d8067ab9def5 65 r_wheel / L_wheel, -r_wheel / L_wheel;
pmic 41:d8067ab9def5 66 Cwr << 1.0f / r_wheel, L_wheel / (2.0f * r_wheel),
pmic 41:d8067ab9def5 67 1.0f / r_wheel, -L_wheel / (2.0f * r_wheel);
pmic 41:d8067ab9def5 68 I = Crw * Cwr;
pmic 41:d8067ab9def5 69 printf("%f, %f, %f, %f\r\n", I(0,0), I(0,1), I(1,0), I(1,1));
pmic 41:d8067ab9def5 70
pmic 24:86f1a63e35a0 71 // attach button fall and rise functions to user button object
pmic 24:86f1a63e35a0 72 user_button.fall(&user_button_pressed_fcn);
pmic 24:86f1a63e35a0 73 user_button.rise(&user_button_released_fcn);
pmic 17:c19b471f05cb 74
pmic 29:d6f1ccf42a31 75 // start timer
pmic 24:86f1a63e35a0 76 main_task_timer.start();
pmic 6:e1fa1a2d7483 77
pmic 38:6d11788e14c0 78 // enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled
pmic 38:6d11788e14c0 79 enable_motors = 1;
pmic 6:e1fa1a2d7483 80
pmic 24:86f1a63e35a0 81 while (true) { // this loop will run forever
pmic 6:e1fa1a2d7483 82
pmic 24:86f1a63e35a0 83 main_task_timer.reset();
pmic 6:e1fa1a2d7483 84
pmic 24:86f1a63e35a0 85 if (do_execute_main_task) {
pmic 34:702246639f02 86
pmic 38:6d11788e14c0 87 // read analog input
pmic 38:6d11788e14c0 88 ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
pmic 38:6d11788e14c0 89
pmic 38:6d11788e14c0 90 speedController_M1.setDesiredSpeedRPS(0.5f); // set a desired speed for speed controlled dc motors M2
pmic 38:6d11788e14c0 91 speedController_M2.setDesiredSpeedRPS(0.5f); // set a desired speed for speed controlled dc motors M2
pmic 38:6d11788e14c0 92
pmic 34:702246639f02 93 /*
pmic 34:702246639f02 94 uint8_t sensor_bar_raw_value = sensor_bar.getRaw();
pmic 34:702246639f02 95 for( int i = 7; i >= 0; i-- ) {
pmic 34:702246639f02 96 printf("%d", (sensor_bar_raw_value >> i) & 0x01);
pmic 34:702246639f02 97 }
pmic 34:702246639f02 98 printf(", ");
pmic 34:702246639f02 99 */
pmic 34:702246639f02 100
pmic 34:702246639f02 101 int8_t sensor_bar_binaryPosition = sensor_bar.getBinaryPosition();
pmic 34:702246639f02 102 printf("%d, ", sensor_bar_binaryPosition);
pmic 34:702246639f02 103
pmic 34:702246639f02 104 uint8_t sensor_bar_nrOfLedsActive = sensor_bar.getNrOfLedsActive();
pmic 34:702246639f02 105 printf("%d, ", sensor_bar_nrOfLedsActive);
pmic 34:702246639f02 106
pmic 34:702246639f02 107 float sensor_bar_angleRad = 0.0f;
pmic 34:702246639f02 108 float sensor_bar_avgAngleRad = 0.0f;
pmic 34:702246639f02 109 if (sensor_bar.isAnyLedActive()) {
pmic 34:702246639f02 110 sensor_bar_angleRad = sensor_bar.getAngleRad();
pmic 34:702246639f02 111 sensor_bar_avgAngleRad = sensor_bar.getAvgAngleRad();
pmic 34:702246639f02 112 }
pmic 34:702246639f02 113 printf("%f, ", sensor_bar_angleRad * 180.0f / M_PI);
pmic 34:702246639f02 114 printf("%f\r\n", sensor_bar_avgAngleRad * 180.0f / M_PI);
pmic 34:702246639f02 115
pmic 1:93d997d6b232 116 } else {
pmic 6:e1fa1a2d7483 117
pmic 38:6d11788e14c0 118 ir_distance_mV = 0.0f;
pmic 38:6d11788e14c0 119
pmic 38:6d11788e14c0 120 speedController_M1.setDesiredSpeedRPS(0.0f);
pmic 38:6d11788e14c0 121 speedController_M2.setDesiredSpeedRPS(0.0f);
pmic 33:cff70742569d 122 }
pmic 6:e1fa1a2d7483 123
pmic 24:86f1a63e35a0 124 user_led = !user_led;
pmic 24:86f1a63e35a0 125
pmic 24:86f1a63e35a0 126 // do only output via serial what's really necessary (this makes your code slow)
pmic 33:cff70742569d 127 // printf("%d, %d\r\n", sensor_bar_raw_value_time_ms, sensor_bar_position_time_ms);
pmic 17:c19b471f05cb 128
pmic 24:86f1a63e35a0 129 // read timer and make the main thread sleep for the remaining time span (non blocking)
pmic 24:86f1a63e35a0 130 int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
pmic 24:86f1a63e35a0 131 thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
pmic 1:93d997d6b232 132 }
pmic 1:93d997d6b232 133 }
pmic 6:e1fa1a2d7483 134
pmic 24:86f1a63e35a0 135 void user_button_pressed_fcn()
pmic 25:ea1d6e27c895 136 {
pmic 26:28693b369945 137 user_button_timer.start();
pmic 6:e1fa1a2d7483 138 user_button_timer.reset();
pmic 6:e1fa1a2d7483 139 }
pmic 6:e1fa1a2d7483 140
pmic 24:86f1a63e35a0 141 void user_button_released_fcn()
pmic 6:e1fa1a2d7483 142 {
pmic 24:86f1a63e35a0 143 // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
pmic 24:86f1a63e35a0 144 int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
pmic 6:e1fa1a2d7483 145 user_button_timer.stop();
pmic 24:86f1a63e35a0 146 if (user_button_elapsed_time_ms > 200) {
pmic 24:86f1a63e35a0 147 do_execute_main_task = !do_execute_main_task;
pmic 8:9bb806a7f585 148 }
pmic 6:e1fa1a2d7483 149 }