Peng Jing Xuan
/
mbed-os-example-wifi-DISCO_IOTBOARD_MQTT_copy
0527
Revision 60:c0c04325453c, committed 2019-05-27
- Comitter:
- peng103617
- Date:
- Mon May 27 05:38:15 2019 +0000
- Parent:
- 59:9bbcc1b368ba
- Commit message:
- 20190527
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/VL53L1X.cpp Mon May 27 05:38:15 2019 +0000 @@ -0,0 +1,877 @@ +// Most of the functionality of this library is based on the VL53L1X API +// provided by ST (STSW-IMG007), and some of the explanatory comments are quoted +// or paraphrased from the API source code, API user manual (UM2356), and +// VL53L1X datasheet. + +#include "VL53L1X.h" +#include "mbed.h" + +// Constructors //////////////////////////////////////////////////////////////// +VL53L1X::VL53L1X(PinName SDA, PinName SCL, PinName shutDown) : + _i2c(SDA,SCL), _shutDown(shutDown) + , io_timeout(0) // no timeout + , did_timeout(false) + , calibrated(false) + , saved_vhv_init(0) + , saved_vhv_timeout(0) + , distance_mode(Unknown){ + //Set I2C fast and bring reset line high + _i2c.frequency(400000); + address = AddressDefault << 1; + turnOff(); + } + +/*VL53L1X::VL53L1X() + : address(AddressDefault) +{ +}*/ + +// Public Methods ////////////////////////////////////////////////////////////// + +void VL53L1X::setAddress(uint8_t new_addr) +{ + writeReg(I2C_SLAVE__DEVICE_ADDRESS, new_addr & 0x7F); + wait(.01); + printf("%x\r\n", readReg(I2C_SLAVE__DEVICE_ADDRESS)); + address = new_addr << 1; +} + +// Initialize sensor using settings taken mostly from VL53L1_DataInit() and +// VL53L1_StaticInit(). +// If io_2v8 (optional) is true or not given, the sensor is configured for 2V8 +// mode. +bool VL53L1X::init(bool io_2v8) +{ + // check model ID and module type registers (values specified in datasheet) + int tempRegister = readReg16Bit(IDENTIFICATION__MODEL_ID); + printf("temporary %x\r\n", tempRegister); + if (tempRegister != 0xEACC) { + return false; + } + + // VL53L1_software_reset() begin + + writeReg(SOFT_RESET, 0x00); + wait(.001); + writeReg(SOFT_RESET, 0x01); + + // VL53L1_poll_for_boot_completion() begin + + startTimeout(); + int firmware = (readReg16Bit(FIRMWARE__SYSTEM_STATUS)); + printf("firmware : %x\r\n", firmware); + while ((readReg(FIRMWARE__SYSTEM_STATUS) & 0x01) == 0) + { + printf("stuck\r\n"); + if (checkTimeoutExpired()) + { + did_timeout = true; + return false; + } + } + // VL53L1_poll_for_boot_completion() end + + // VL53L1_software_reset() end + + // VL53L1_DataInit() begin + + // sensor uses 1V8 mode for I/O by default; switch to 2V8 mode if necessary + if (io_2v8) + { + writeReg(PAD_I2C_HV__EXTSUP_CONFIG, + readReg(PAD_I2C_HV__EXTSUP_CONFIG) | 0x01); + } + + // store oscillator info for later use + fast_osc_frequency = readReg16Bit(OSC_MEASURED__FAST_OSC__FREQUENCY); + osc_calibrate_val = readReg16Bit(RESULT__OSC_CALIBRATE_VAL); + + // VL53L1_DataInit() end + + // VL53L1_StaticInit() begin + + // Note that the API does not actually apply the configuration settings below + // when VL53L1_StaticInit() is called: it keeps a copy of the sensor's + // register contents in memory and doesn't actually write them until a + // measurement is started. Writing the configuration here means we don't have + // to keep it all in memory and avoids a lot of redundant writes later. + + // the API sets the preset mode to LOWPOWER_AUTONOMOUS here: + // VL53L1_set_preset_mode() begin + + // VL53L1_preset_mode_standard_ranging() begin + + // values labeled "tuning parm default" are from vl53l1_tuning_parm_defaults.h + // (API uses these in VL53L1_init_tuning_parm_storage_struct()) + + // static config + // API resets PAD_I2C_HV__EXTSUP_CONFIG here, but maybe we don't want to do + // that? (seems like it would disable 2V8 mode) + writeReg16Bit(DSS_CONFIG__TARGET_TOTAL_RATE_MCPS, TargetRate); // should already be this value after reset + writeReg(GPIO__TIO_HV_STATUS, 0x02); + writeReg(SIGMA_ESTIMATOR__EFFECTIVE_PULSE_WIDTH_NS, 8); // tuning parm default + writeReg(SIGMA_ESTIMATOR__EFFECTIVE_AMBIENT_WIDTH_NS, 16); // tuning parm default + writeReg(ALGO__CROSSTALK_COMPENSATION_VALID_HEIGHT_MM, 0x01); + writeReg(ALGO__RANGE_IGNORE_VALID_HEIGHT_MM, 0xFF); + writeReg(ALGO__RANGE_MIN_CLIP, 0); // tuning parm default + writeReg(ALGO__CONSISTENCY_CHECK__TOLERANCE, 2); // tuning parm default + + // general config + writeReg16Bit(SYSTEM__THRESH_RATE_HIGH, 0x0000); + writeReg16Bit(SYSTEM__THRESH_RATE_LOW, 0x0000); + writeReg(DSS_CONFIG__APERTURE_ATTENUATION, 0x38); + + // timing config + // most of these settings will be determined later by distance and timing + // budget configuration + writeReg16Bit(RANGE_CONFIG__SIGMA_THRESH, 360); // tuning parm default + writeReg16Bit(RANGE_CONFIG__MIN_COUNT_RATE_RTN_LIMIT_MCPS, 192); // tuning parm default + + // dynamic config + + writeReg(SYSTEM__GROUPED_PARAMETER_HOLD_0, 0x01); + writeReg(SYSTEM__GROUPED_PARAMETER_HOLD_1, 0x01); + writeReg(SD_CONFIG__QUANTIFIER, 2); // tuning parm default + + // VL53L1_preset_mode_standard_ranging() end + + // from VL53L1_preset_mode_timed_ranging_* + // GPH is 0 after reset, but writing GPH0 and GPH1 above seem to set GPH to 1, + // and things don't seem to work if we don't set GPH back to 0 (which the API + // does here). + writeReg(SYSTEM__GROUPED_PARAMETER_HOLD, 0x00); + writeReg(SYSTEM__SEED_CONFIG, 1); // tuning parm default + + // from VL53L1_config_low_power_auto_mode + writeReg(SYSTEM__SEQUENCE_CONFIG, 0x8B); // VHV, PHASECAL, DSS1, RANGE + writeReg16Bit(DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT, 200 << 8); + writeReg(DSS_CONFIG__ROI_MODE_CONTROL, 2); // REQUESTED_EFFFECTIVE_SPADS + + // VL53L1_set_preset_mode() end + + // default to long range, 50 ms timing budget + // note that this is different than what the API defaults to + setDistanceMode(Short); + setMeasurementTimingBudget(50000); + + // VL53L1_StaticInit() end + + // the API triggers this change in VL53L1_init_and_start_range() once a + // measurement is started; assumes MM1 and MM2 are disabled + writeReg16Bit(ALGO__PART_TO_PART_RANGE_OFFSET_MM, + readReg16Bit(MM_CONFIG__OUTER_OFFSET_MM) * 4); + t.start(); + return true; +} + +// Write an 8-bit register +void VL53L1X::writeReg(uint16_t registerAddr, uint8_t data) +{ + char data_write[3]; + data_write[0] = (registerAddr >> 8) & 0xFF; //MSB of register address + data_write[1] = registerAddr & 0xFF; //LSB of register address + data_write[2] = data & 0xFF; + _i2c.write(address, data_write, 3); +} + +void VL53L1X::writeReg16Bit(uint16_t registerAddr, uint16_t data) +{ + char data_write[4]; + data_write[0] = (registerAddr >> 8) & 0xFF; //MSB of register address + data_write[1] = registerAddr & 0xFF; //LSB of register address + data_write[2] = (data >> 8) & 0xFF; + data_write[3] = data & 0xFF; + _i2c.write(address, data_write, 4); +} + + +// Write a 32-bit register +/* +void VL53L1X::writeReg32Bit(uint16_t registerAddr, uint32_t data) +{ + char data_write[5]; + data_write[0] = (registerAddr >> 8) & 0xFF; //MSB of register address + data_write[1] = registerAddr & 0xFF; //LSB of register address + data_write[2] = (data >> 16) & 0xFF; + data_write[3] = (data >> 8) & 0xFF; + data_write[4] = data & 0xFF; + _i2c.write(address, data_write, 5); +} +*/ +void VL53L1X::writeReg32Bit(uint16_t registerAddr, uint32_t data) +{ + char data_write[6]; + data_write[0] = (registerAddr >> 8) & 0xFF; //MSB of register address + data_write[1] = registerAddr & 0xFF; //LSB of register address + data_write[2] = (data >> 24) & 0xFF; + data_write[3] = (data >> 16) & 0xFF; + data_write[4] = (data >> 8) & 0xFF;; + data_write[5] = data & 0xFF; + _i2c.write(address, data_write, 6); +} + + +// Read an 8-bit register +uint8_t VL53L1X::readReg(uint16_t registerAddr) +{ + uint8_t data; + char data_write[2]; + char data_read[1]; + data_write[0] = (registerAddr >> 8) & 0xFF; //MSB of register address + data_write[1] = registerAddr & 0xFF; //LSB of register address + _i2c.write(address, data_write, 2,0); + _i2c.read(address,data_read,1,1); + //Read Data from selected register + data=data_read[0]; + return data; +} + +uint16_t VL53L1X::readReg16Bit(uint16_t registerAddr) +{ + uint8_t data_low; + uint8_t data_high; + uint16_t data; + + char data_write[2]; + char data_read[2]; + data_write[0] = (registerAddr >> 8) & 0xFF; //MSB of register address + data_write[1] = registerAddr & 0xFF; //LSB of register address + _i2c.write(address, data_write, 2,0); + _i2c.read(address,data_read,2,1); + data_high = data_read[0]; //Read Data from selected register + data_low = data_read[1]; //Read Data from selected register + data = (data_high << 8)|data_low; + + return data; +} +// Read a 32-bit register +uint32_t VL53L1X::readReg32Bit(uint16_t reg) +{ + uint32_t value; +/* + _i2c.beginTransmission(address); + _i2c.write((reg >> 8) & 0xFF); // reg high byte + _i2c.write( reg & 0xFF); // reg low byte + last_status = _i2c.endTransmission(); + + _i2c.requestFrom(address, (uint8_t)4); + value = (uint32_t)_i2c.read() << 24; // value highest byte + value |= (uint32_t)_i2c.read() << 16; + value |= (uint16_t)_i2c.read() << 8; + value |= _i2c.read(); // value lowest byte +*/ + return value; +} + +// set distance mode to Short, Medium, or Long +// based on VL53L1_SetDistanceMode() +bool VL53L1X::setDistanceMode(DistanceMode mode) +{ + // save existing timing budget + uint32_t budget_us = getMeasurementTimingBudget(); + switch (mode) + { + case Short: + // from VL53L1_preset_mode_standard_ranging_short_range() + + // timing config + writeReg(RANGE_CONFIG__VCSEL_PERIOD_A, 0x07); + writeReg(RANGE_CONFIG__VCSEL_PERIOD_B, 0x05); + writeReg(RANGE_CONFIG__VALID_PHASE_HIGH, 0x38); + + // dynamic config + writeReg(SD_CONFIG__WOI_SD0, 0x07); + writeReg(SD_CONFIG__WOI_SD1, 0x05); + writeReg(SD_CONFIG__INITIAL_PHASE_SD0, 6); // tuning parm default + writeReg(SD_CONFIG__INITIAL_PHASE_SD1, 6); // tuning parm default + + break; + + case Medium: + // from VL53L1_preset_mode_standard_ranging() + + // timing config + writeReg(RANGE_CONFIG__VCSEL_PERIOD_A, 0x0B); + writeReg(RANGE_CONFIG__VCSEL_PERIOD_B, 0x09); + writeReg(RANGE_CONFIG__VALID_PHASE_HIGH, 0x78); + + // dynamic config + writeReg(SD_CONFIG__WOI_SD0, 0x0B); + writeReg(SD_CONFIG__WOI_SD1, 0x09); + writeReg(SD_CONFIG__INITIAL_PHASE_SD0, 10); // tuning parm default + writeReg(SD_CONFIG__INITIAL_PHASE_SD1, 10); // tuning parm default + + break; + + case Long: // long + // from VL53L1_preset_mode_standard_ranging_long_range() + + // timing config + writeReg(RANGE_CONFIG__VCSEL_PERIOD_A, 0x0F); + writeReg(RANGE_CONFIG__VCSEL_PERIOD_B, 0x0D); + writeReg(RANGE_CONFIG__VALID_PHASE_HIGH, 0xB8); + + // dynamic config + writeReg(SD_CONFIG__WOI_SD0, 0x0F); + writeReg(SD_CONFIG__WOI_SD1, 0x0D); + writeReg(SD_CONFIG__INITIAL_PHASE_SD0, 14); // tuning parm default + writeReg(SD_CONFIG__INITIAL_PHASE_SD1, 14); // tuning parm default + + break; + + default: + // unrecognized mode - do nothing + return false; + } + + // reapply timing budget + setMeasurementTimingBudget(budget_us); + + // save mode so it can be returned by getDistanceMode() + distance_mode = mode; + + return true; +} + +// Set the measurement timing budget in microseconds, which is the time allowed +// for one measurement. A longer timing budget allows for more accurate +// measurements. +// based on VL53L1_SetMeasurementTimingBudgetMicroSeconds() +bool VL53L1X::setMeasurementTimingBudget(uint32_t budget_us) +{ + // assumes PresetMode is LOWPOWER_AUTONOMOUS + + if (budget_us <= TimingGuard) { return false; } + + uint32_t range_config_timeout_us = budget_us -= TimingGuard; + if (range_config_timeout_us > 1100000) { return false; } // FDA_MAX_TIMING_BUDGET_US * 2 + + range_config_timeout_us /= 2; + + // VL53L1_calc_timeout_register_values() begin + + uint32_t macro_period_us; + + // "Update Macro Period for Range A VCSEL Period" + macro_period_us = calcMacroPeriod(readReg(RANGE_CONFIG__VCSEL_PERIOD_A)); + + // "Update Phase timeout - uses Timing A" + // Timeout of 1000 is tuning parm default (TIMED_PHASECAL_CONFIG_TIMEOUT_US_DEFAULT) + // via VL53L1_get_preset_mode_timing_cfg(). + uint32_t phasecal_timeout_mclks = timeoutMicrosecondsToMclks(1000, macro_period_us); + if (phasecal_timeout_mclks > 0xFF) { phasecal_timeout_mclks = 0xFF; } + writeReg(PHASECAL_CONFIG__TIMEOUT_MACROP, phasecal_timeout_mclks); + + // "Update MM Timing A timeout" + // Timeout of 1 is tuning parm default (LOWPOWERAUTO_MM_CONFIG_TIMEOUT_US_DEFAULT) + // via VL53L1_get_preset_mode_timing_cfg(). With the API, the register + // actually ends up with a slightly different value because it gets assigned, + // retrieved, recalculated with a different macro period, and reassigned, + // but it probably doesn't matter because it seems like the MM ("mode + // mitigation"?) sequence steps are disabled in low power auto mode anyway. + writeReg16Bit(MM_CONFIG__TIMEOUT_MACROP_A, encodeTimeout( + timeoutMicrosecondsToMclks(1, macro_period_us))); + + // "Update Range Timing A timeout" + writeReg16Bit(RANGE_CONFIG__TIMEOUT_MACROP_A, encodeTimeout( + timeoutMicrosecondsToMclks(range_config_timeout_us, macro_period_us))); + + // "Update Macro Period for Range B VCSEL Period" + macro_period_us = calcMacroPeriod(readReg(RANGE_CONFIG__VCSEL_PERIOD_B)); + + // "Update MM Timing B timeout" + // (See earlier comment about MM Timing A timeout.) + writeReg16Bit(MM_CONFIG__TIMEOUT_MACROP_B, encodeTimeout( + timeoutMicrosecondsToMclks(1, macro_period_us))); + + // "Update Range Timing B timeout" + writeReg16Bit(RANGE_CONFIG__TIMEOUT_MACROP_B, encodeTimeout( + timeoutMicrosecondsToMclks(range_config_timeout_us, macro_period_us))); + // VL53L1_calc_timeout_register_values() end + + return true; +} + +// Get the measurement timing budget in microseconds +// based on VL53L1_SetMeasurementTimingBudgetMicroSeconds() +uint32_t VL53L1X::getMeasurementTimingBudget() +{ + // assumes PresetMode is LOWPOWER_AUTONOMOUS and these sequence steps are + // enabled: VHV, PHASECAL, DSS1, RANGE + + // VL53L1_get_timeouts_us() begin + + // "Update Macro Period for Range A VCSEL Period" + uint32_t macro_period_us = calcMacroPeriod(readReg(RANGE_CONFIG__VCSEL_PERIOD_A)); + + // "Get Range Timing A timeout" + + uint32_t range_config_timeout_us = timeoutMclksToMicroseconds(decodeTimeout( + readReg16Bit(RANGE_CONFIG__TIMEOUT_MACROP_A)), macro_period_us); + + // VL53L1_get_timeouts_us() end + + return 2 * range_config_timeout_us + TimingGuard; +} + +// Start continuous ranging measurements, with the given inter-measurement +// period in milliseconds determining how often the sensor takes a measurement. +void VL53L1X::startContinuous(uint32_t period_ms) +{ + // from VL53L1_set_inter_measurement_period_ms() + writeReg32Bit(SYSTEM__INTERMEASUREMENT_PERIOD, period_ms * osc_calibrate_val); + writeReg(SYSTEM__INTERRUPT_CLEAR, 0x01); // sys_interrupt_clear_range + writeReg(SYSTEM__MODE_START, 0x40); // mode_range__timed +} + +// Stop continuous measurements +// based on VL53L1_stop_range() +void VL53L1X::stopContinuous() +{ + writeReg(SYSTEM__MODE_START, 0x80); // mode_range__abort + + // VL53L1_low_power_auto_data_stop_range() begin + + calibrated = false; + + // "restore vhv configs" + if (saved_vhv_init != 0) + { + writeReg(VHV_CONFIG__INIT, saved_vhv_init); + } + if (saved_vhv_timeout != 0) + { + writeReg(VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND, saved_vhv_timeout); + } + + // "remove phasecal override" + writeReg(PHASECAL_CONFIG__OVERRIDE, 0x00); + + // VL53L1_low_power_auto_data_stop_range() end +} + +// Returns a range reading in millimeters when continuous mode is active +// (readRangeSingleMillimetersx () also calls this function after starting a +// single-shot range measurement) +uint16_t VL53L1X::read(bool blocking) +{ + if (blocking) + { + // startTimeout(); + + /* dataReady returns 0. Loop is never entered. */ + /* + while (dataReady()) + { + if (checkTimeoutExpired()) + { + did_timeout = true; + ranging_data.range_status = None; + ranging_data.range_mm = 0; + ranging_data.peak_signal_count_rate_MCPS = 0; + ranging_data.ambient_count_rate_MCPS = 0; + return ranging_data.range_mm; + } + }*/ + } + + readResults(); + + if (!calibrated) + { + setupManualCalibration(); + calibrated = true; + } + + updateDSS(); + + getRangingData(); + + writeReg(SYSTEM__INTERRUPT_CLEAR, 0x01); // sys_interrupt_clear_range + + return ranging_data.range_mm; +} + +// convert a RangeStatus to a readable string +// Note that on an AVR, these strings are stored in RAM (dynamic memory), which +// makes working with them easier but uses up 200+ bytes of RAM (many AVR-based +// Arduinos only have about 2000 bytes of RAM). You can avoid this memory usage +// if you do not call this function in your sketch. +const char * VL53L1X::rangeStatusToString(RangeStatus status) +{ + switch (status) + { + case RangeValid: + return "range valid"; + + case SigmaFail: + return "sigma fail"; + + case SignalFail: + return "signal fail"; + + case RangeValidMinRangeClipped: + return "range valid, min range clipped"; + + case OutOfBoundsFail: + return "out of bounds fail"; + + case HardwareFail: + return "hardware fail"; + + case RangeValidNoWrapCheckFail: + return "range valid, no wrap check fail"; + + case WrapTargetFail: + return "wrap target fail"; + + case XtalkSignalFail: + return "xtalk signal fail"; + + case SynchronizationInt: + return "synchronization int"; + + case MinRangeFail: + return "min range fail"; + + case None: + return "no update"; + + default: + return "unknown status"; + } +} + +// Did a timeout occur in one of the read functions since the last call to +// timeoutOccurred()? +bool VL53L1X::timeoutOccurred() +{ + bool tmp = did_timeout; + did_timeout = false; + return tmp; +} + +// Private Methods ///////////////////////////////////////////////////////////// + +// "Setup ranges after the first one in low power auto mode by turning off +// FW calibration steps and programming static values" +// based on VL53L1_low_power_auto_setup_manual_calibration() +void VL53L1X::setupManualCalibration() +{ + // "save original vhv configs" + saved_vhv_init = readReg(VHV_CONFIG__INIT); + saved_vhv_timeout = readReg(VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND); + + // "disable VHV init" + writeReg(VHV_CONFIG__INIT, saved_vhv_init & 0x7F); + + // "set loop bound to tuning param" + writeReg(VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND, + (saved_vhv_timeout & 0x03) + (3 << 2)); // tuning parm default (LOWPOWERAUTO_VHV_LOOP_BOUND_DEFAULT) + + // "override phasecal" + writeReg(PHASECAL_CONFIG__OVERRIDE, 0x01); + writeReg(CAL_CONFIG__VCSEL_START, readReg(PHASECAL_RESULT__VCSEL_START)); +} + +// read measurement results into buffer +void VL53L1X::readResults() +{ + char infoToWrite[2]; + char infoToRead[18]; + //_i2c.beginTransmission(address); + //_i2c.write(address); + //_i2c.write((RESULT__RANGE_STATUS >> 8) & 0xFF); // reg high byte + //_i2c.write( RESULT__RANGE_STATUS & 0xFF); // reg low byte +// last_status = _i2c.endTransmission(); + infoToWrite[0] = ((RESULT__RANGE_STATUS >> 8) & 0xFF); + infoToWrite[1] = ( RESULT__RANGE_STATUS & 0xFF); + _i2c.write(address, infoToWrite, 2, 1); + +// _i2c.requestFrom(address, (uint8_t)17); + _i2c.read(address, infoToRead, 17, 0); + + wait(.005); + results.range_status = infoToRead[0]; + +// infoToRead[1]; // report_status: not used + + results.stream_count = infoToRead[2]; + + results.dss_actual_effective_spads_sd0 = (uint16_t)infoToRead[3] << 8; // high byte + results.dss_actual_effective_spads_sd0 |= infoToRead[4]; // low byte + +// infoToRead[5]; // peak_signal_count_rate_mcps_sd0: not used +// infoToRead[6]; + + results.ambient_count_rate_mcps_sd0 = (uint16_t)infoToRead[7] << 8; // high byte + results.ambient_count_rate_mcps_sd0 |= infoToRead[8]; // low byte + +// infoToRead[9]; // sigma_sd0: not used +// infoToRead[10]; + +// infoToRead[11]; // phase_sd0: not used +// infoToRead[12]; + + results.final_crosstalk_corrected_range_mm_sd0 = (uint16_t)infoToRead[13] << 8; // high byte + results.final_crosstalk_corrected_range_mm_sd0 |= infoToRead[14]; // low byte + + results.peak_signal_count_rate_crosstalk_corrected_mcps_sd0 = (uint16_t)infoToRead[15] << 8; // high byte + results.peak_signal_count_rate_crosstalk_corrected_mcps_sd0 |= infoToRead[16]; // low byte +} + +// perform Dynamic SPAD Selection calculation/update +// based on VL53L1_low_power_auto_update_DSS() +void VL53L1X::updateDSS() +{ + uint16_t spadCount = results.dss_actual_effective_spads_sd0; + + if (spadCount != 0) + { + // "Calc total rate per spad" + + uint32_t totalRatePerSpad = + (uint32_t)results.peak_signal_count_rate_crosstalk_corrected_mcps_sd0 + + results.ambient_count_rate_mcps_sd0; + + // "clip to 16 bits" + if (totalRatePerSpad > 0xFFFF) { totalRatePerSpad = 0xFFFF; } + + // "shift up to take advantage of 32 bits" + totalRatePerSpad <<= 16; + + totalRatePerSpad /= spadCount; + + if (totalRatePerSpad != 0) + { + // "get the target rate and shift up by 16" + uint32_t requiredSpads = ((uint32_t)TargetRate << 16) / totalRatePerSpad; + + // "clip to 16 bit" + if (requiredSpads > 0xFFFF) { requiredSpads = 0xFFFF; } + + // "override DSS config" + writeReg16Bit(DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT, requiredSpads); + // DSS_CONFIG__ROI_MODE_CONTROL should already be set to REQUESTED_EFFFECTIVE_SPADS + + return; + } + } + + // If we reached this point, it means something above would have resulted in a + // divide by zero. + // "We want to gracefully set a spad target, not just exit with an error" + + // "set target to mid point" + writeReg16Bit(DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT, 0x8000); +} + +// get range, status, rates from results buffer +// based on VL53L1_GetRangingMeasurementData() +void VL53L1X::getRangingData() +{ + // VL53L1_copy_sys_and_core_results_to_range_results() begin + + uint16_t range = results.final_crosstalk_corrected_range_mm_sd0; + + // "apply correction gain" + // gain factor of 2011 is tuning parm default (VL53L1_TUNINGPARM_LITE_RANGING_GAIN_FACTOR_DEFAULT) + // Basically, this appears to scale the result by 2011/2048, or about 98% + // (with the 1024 added for proper rounding). + ranging_data.range_mm = ((uint32_t)range * 2011 + 0x0400) / 0x0800; + wait(.005); + // VL53L1_copy_sys_and_core_results_to_range_results() end + + // set range_status in ranging_data based on value of RESULT__RANGE_STATUS register + // mostly based on ConvertStatusLite() + switch(results.range_status) + { + case 17: // MULTCLIPFAIL + case 2: // VCSELWATCHDOGTESTFAILURE + case 1: // VCSELCONTINUITYTESTFAILURE + case 3: // NOVHVVALUEFOUND + // from SetSimpleData() + ranging_data.range_status = HardwareFail; + break; + + case 13: // USERROICLIP + // from SetSimpleData() + ranging_data.range_status = MinRangeFail; + break; + + case 18: // GPHSTREAMCOUNT0READY + ranging_data.range_status = SynchronizationInt; + break; + + case 5: // RANGEPHASECHECK + ranging_data.range_status = OutOfBoundsFail; + break; + + case 4: // MSRCNOTARGET + ranging_data.range_status = SignalFail; + break; + + case 6: // SIGMATHRESHOLDCHECK + ranging_data.range_status = SignalFail; + break; + + case 7: // PHASECONSISTENCY + ranging_data.range_status = WrapTargetFail; + break; + + case 12: // RANGEIGNORETHRESHOLD + ranging_data.range_status = XtalkSignalFail; + break; + + case 8: // MINCLIP + ranging_data.range_status = RangeValidMinRangeClipped; + break; + + case 9: // RANGECOMPLETE + // from VL53L1_copy_sys_and_core_results_to_range_results() + if (results.stream_count == 0) + { + ranging_data.range_status = RangeValidNoWrapCheckFail; + } + else + { + ranging_data.range_status = RangeValid; + } + break; + + default: + ranging_data.range_status = None; + } + + // from SetSimpleData() + ranging_data.peak_signal_count_rate_MCPS = + countRateFixedToFloat(results.peak_signal_count_rate_crosstalk_corrected_mcps_sd0); + ranging_data.ambient_count_rate_MCPS = + countRateFixedToFloat(results.ambient_count_rate_mcps_sd0); +} + +// Decode sequence step timeout in MCLKs from register value +// based on VL53L1_decode_timeout() +uint32_t VL53L1X::decodeTimeout(uint16_t reg_val) +{ + return ((uint32_t)(reg_val & 0xFF) << (reg_val >> 8)) + 1; +} + +// Encode sequence step timeout register value from timeout in MCLKs +// based on VL53L1_encode_timeout() +uint16_t VL53L1X::encodeTimeout(uint32_t timeout_mclks) +{ + // encoded format: "(LSByte * 2^MSByte) + 1" + + uint32_t ls_byte = 0; + uint16_t ms_byte = 0; + + if (timeout_mclks > 0) + { + ls_byte = timeout_mclks - 1; + + while ((ls_byte & 0xFFFFFF00) > 0) + { + ls_byte >>= 1; + ms_byte++; + } + + return (ms_byte << 8) | (ls_byte & 0xFF); + } + else { return 0; } +} + +// Convert sequence step timeout from macro periods to microseconds with given +// macro period in microseconds (12.12 format) +// based on VL53L1_calc_timeout_us() +uint32_t VL53L1X::timeoutMclksToMicroseconds(uint32_t timeout_mclks, uint32_t macro_period_us) +{ + return ((uint64_t)timeout_mclks * macro_period_us + 0x800) >> 12; +} + +// Convert sequence step timeout from microseconds to macro periods with given +// macro period in microseconds (12.12 format) +// based on VL53L1_calc_timeout_mclks() +uint32_t VL53L1X::timeoutMicrosecondsToMclks(uint32_t timeout_us, uint32_t macro_period_us) +{ + return (((uint32_t)timeout_us << 12) + (macro_period_us >> 1)) / macro_period_us; +} + +// Calculate macro period in microseconds (12.12 format) with given VCSEL period +// assumes fast_osc_frequency has been read and stored +// based on VL53L1_calc_macro_period_us() +uint32_t VL53L1X::calcMacroPeriod(uint8_t vcsel_period) +{ + // from VL53L1_calc_pll_period_us() + // fast osc frequency in 4.12 format; PLL period in 0.24 format + uint32_t pll_period_us = ((uint32_t)0x01 << 30) / fast_osc_frequency; + + // from VL53L1_decode_vcsel_period() + uint8_t vcsel_period_pclks = (vcsel_period + 1) << 1; + + // VL53L1_MACRO_PERIOD_VCSEL_PERIODS = 2304 + uint32_t macro_period_us = (uint32_t)2304 * pll_period_us; + macro_period_us >>= 6; + macro_period_us *= vcsel_period_pclks; + macro_period_us >>= 6; + + return macro_period_us; +} + + + + + + + + + + +bool VL53L1X::initReading(int addr, int timing_budget) +{ + turnOn(); + wait_ms(100); + setTimeout(500); + if (!init()) { + didInitialize = false; + return false; + } + // setDistanceMode(VL53L1X::Short);//Short Medium Long + setAddress(addr);//change I2C address for next sensor + setMeasurementTimingBudget(timing_budget);//min 20ms for Short, 33ms for Medium and Long + startContinuous(50); + wait_ms(100); + didInitialize = true; + return true; +} +//************************************* + +//*********GPIO*********** +void VL53L1X::turnOff(void) +{ + //turn pin LOW + _shutDown = false; +} +void VL53L1X::resetPin(void) +{ + //reset pin and set it to LOW + _shutDown = false; + wait(.05); + _shutDown = true; + wait(.05); + _shutDown = false; + wait(.05); + +} +void VL53L1X::turnOn(void) +{ + //turn pin HIGH + _shutDown = true; +} +int VL53L1X::readFromOneSensor(void) +{ + if (didInitialize) //create bool + return read(); + else + return -1; +} \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/VL53L1X.h Mon May 27 05:38:15 2019 +0000 @@ -0,0 +1,1403 @@ +#ifndef VL53L1X_H +#define VL53L1X_H + +#include "mbed.h" + +class VL53L1X +{ + public: + Timer t; + VL53L1X(PinName SDA, PinName SCL, PinName shutDown); + + // register addresses from API vl53l1x_register_map.h + enum regAddr : uint16_t + { + SOFT_RESET = 0x0000, + I2C_SLAVE__DEVICE_ADDRESS = 0x0001, + ANA_CONFIG__VHV_REF_SEL_VDDPIX = 0x0002, + ANA_CONFIG__VHV_REF_SEL_VQUENCH = 0x0003, + ANA_CONFIG__REG_AVDD1V2_SEL = 0x0004, + ANA_CONFIG__FAST_OSC__TRIM = 0x0005, + OSC_MEASURED__FAST_OSC__FREQUENCY = 0x0006, + OSC_MEASURED__FAST_OSC__FREQUENCY_HI = 0x0006, + OSC_MEASURED__FAST_OSC__FREQUENCY_LO = 0x0007, + VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND = 0x0008, + VHV_CONFIG__COUNT_THRESH = 0x0009, + VHV_CONFIG__OFFSET = 0x000A, + VHV_CONFIG__INIT = 0x000B, + GLOBAL_CONFIG__SPAD_ENABLES_REF_0 = 0x000D, + GLOBAL_CONFIG__SPAD_ENABLES_REF_1 = 0x000E, + GLOBAL_CONFIG__SPAD_ENABLES_REF_2 = 0x000F, + GLOBAL_CONFIG__SPAD_ENABLES_REF_3 = 0x0010, + GLOBAL_CONFIG__SPAD_ENABLES_REF_4 = 0x0011, + GLOBAL_CONFIG__SPAD_ENABLES_REF_5 = 0x0012, + GLOBAL_CONFIG__REF_EN_START_SELECT = 0x0013, + REF_SPAD_MAN__NUM_REQUESTED_REF_SPADS = 0x0014, + REF_SPAD_MAN__REF_LOCATION = 0x0015, + ALGO__CROSSTALK_COMPENSATION_PLANE_OFFSET_KCPS = 0x0016, + ALGO__CROSSTALK_COMPENSATION_PLANE_OFFSET_KCPS_HI = 0x0016, + ALGO__CROSSTALK_COMPENSATION_PLANE_OFFSET_KCPS_LO = 0x0017, + ALGO__CROSSTALK_COMPENSATION_X_PLANE_GRADIENT_KCPS = 0x0018, + ALGO__CROSSTALK_COMPENSATION_X_PLANE_GRADIENT_KCPS_HI = 0x0018, + ALGO__CROSSTALK_COMPENSATION_X_PLANE_GRADIENT_KCPS_LO = 0x0019, + ALGO__CROSSTALK_COMPENSATION_Y_PLANE_GRADIENT_KCPS = 0x001A, + ALGO__CROSSTALK_COMPENSATION_Y_PLANE_GRADIENT_KCPS_HI = 0x001A, + ALGO__CROSSTALK_COMPENSATION_Y_PLANE_GRADIENT_KCPS_LO = 0x001B, + REF_SPAD_CHAR__TOTAL_RATE_TARGET_MCPS = 0x001C, + REF_SPAD_CHAR__TOTAL_RATE_TARGET_MCPS_HI = 0x001C, + REF_SPAD_CHAR__TOTAL_RATE_TARGET_MCPS_LO = 0x001D, + ALGO__PART_TO_PART_RANGE_OFFSET_MM = 0x001E, + ALGO__PART_TO_PART_RANGE_OFFSET_MM_HI = 0x001E, + ALGO__PART_TO_PART_RANGE_OFFSET_MM_LO = 0x001F, + MM_CONFIG__INNER_OFFSET_MM = 0x0020, + MM_CONFIG__INNER_OFFSET_MM_HI = 0x0020, + MM_CONFIG__INNER_OFFSET_MM_LO = 0x0021, + MM_CONFIG__OUTER_OFFSET_MM = 0x0022, + MM_CONFIG__OUTER_OFFSET_MM_HI = 0x0022, + MM_CONFIG__OUTER_OFFSET_MM_LO = 0x0023, + DSS_CONFIG__TARGET_TOTAL_RATE_MCPS = 0x0024, + DSS_CONFIG__TARGET_TOTAL_RATE_MCPS_HI = 0x0024, + DSS_CONFIG__TARGET_TOTAL_RATE_MCPS_LO = 0x0025, + DEBUG__CTRL = 0x0026, + TEST_MODE__CTRL = 0x0027, + CLK_GATING__CTRL = 0x0028, + NVM_BIST__CTRL = 0x0029, + NVM_BIST__NUM_NVM_WORDS = 0x002A, + NVM_BIST__START_ADDRESS = 0x002B, + HOST_IF__STATUS = 0x002C, + PAD_I2C_HV__CONFIG = 0x002D, + PAD_I2C_HV__EXTSUP_CONFIG = 0x002E, + GPIO_HV_PAD__CTRL = 0x002F, + GPIO_HV_MUX__CTRL = 0x0030, + GPIO__TIO_HV_STATUS = 0x0031, + GPIO__FIO_HV_STATUS = 0x0032, + ANA_CONFIG__SPAD_SEL_PSWIDTH = 0x0033, + ANA_CONFIG__VCSEL_PULSE_WIDTH_OFFSET = 0x0034, + ANA_CONFIG__FAST_OSC__CONFIG_CTRL = 0x0035, + SIGMA_ESTIMATOR__EFFECTIVE_PULSE_WIDTH_NS = 0x0036, + SIGMA_ESTIMATOR__EFFECTIVE_AMBIENT_WIDTH_NS = 0x0037, + SIGMA_ESTIMATOR__SIGMA_REF_MM = 0x0038, + ALGO__CROSSTALK_COMPENSATION_VALID_HEIGHT_MM = 0x0039, + SPARE_HOST_CONFIG__STATIC_CONFIG_SPARE_0 = 0x003A, + SPARE_HOST_CONFIG__STATIC_CONFIG_SPARE_1 = 0x003B, + ALGO__RANGE_IGNORE_THRESHOLD_MCPS = 0x003C, + ALGO__RANGE_IGNORE_THRESHOLD_MCPS_HI = 0x003C, + ALGO__RANGE_IGNORE_THRESHOLD_MCPS_LO = 0x003D, + ALGO__RANGE_IGNORE_VALID_HEIGHT_MM = 0x003E, + ALGO__RANGE_MIN_CLIP = 0x003F, + ALGO__CONSISTENCY_CHECK__TOLERANCE = 0x0040, + SPARE_HOST_CONFIG__STATIC_CONFIG_SPARE_2 = 0x0041, + SD_CONFIG__RESET_STAGES_MSB = 0x0042, + SD_CONFIG__RESET_STAGES_LSB = 0x0043, + GPH_CONFIG__STREAM_COUNT_UPDATE_VALUE = 0x0044, + GLOBAL_CONFIG__STREAM_DIVIDER = 0x0045, + SYSTEM__INTERRUPT_CONFIG_GPIO = 0x0046, + CAL_CONFIG__VCSEL_START = 0x0047, + CAL_CONFIG__REPEAT_RATE = 0x0048, + CAL_CONFIG__REPEAT_RATE_HI = 0x0048, + CAL_CONFIG__REPEAT_RATE_LO = 0x0049, + GLOBAL_CONFIG__VCSEL_WIDTH = 0x004A, + PHASECAL_CONFIG__TIMEOUT_MACROP = 0x004B, + PHASECAL_CONFIG__TARGET = 0x004C, + PHASECAL_CONFIG__OVERRIDE = 0x004D, + DSS_CONFIG__ROI_MODE_CONTROL = 0x004F, + SYSTEM__THRESH_RATE_HIGH = 0x0050, + SYSTEM__THRESH_RATE_HIGH_HI = 0x0050, + SYSTEM__THRESH_RATE_HIGH_LO = 0x0051, + SYSTEM__THRESH_RATE_LOW = 0x0052, + SYSTEM__THRESH_RATE_LOW_HI = 0x0052, + SYSTEM__THRESH_RATE_LOW_LO = 0x0053, + DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT = 0x0054, + DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT_HI = 0x0054, + DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT_LO = 0x0055, + DSS_CONFIG__MANUAL_BLOCK_SELECT = 0x0056, + DSS_CONFIG__APERTURE_ATTENUATION = 0x0057, + DSS_CONFIG__MAX_SPADS_LIMIT = 0x0058, + DSS_CONFIG__MIN_SPADS_LIMIT = 0x0059, + MM_CONFIG__TIMEOUT_MACROP_A = 0x005A, // added by Pololu for 16-bit accesses + MM_CONFIG__TIMEOUT_MACROP_A_HI = 0x005A, + MM_CONFIG__TIMEOUT_MACROP_A_LO = 0x005B, + MM_CONFIG__TIMEOUT_MACROP_B = 0x005C, // added by Pololu for 16-bit accesses + MM_CONFIG__TIMEOUT_MACROP_B_HI = 0x005C, + MM_CONFIG__TIMEOUT_MACROP_B_LO = 0x005D, + RANGE_CONFIG__TIMEOUT_MACROP_A = 0x005E, // added by Pololu for 16-bit accesses + RANGE_CONFIG__TIMEOUT_MACROP_A_HI = 0x005E, + RANGE_CONFIG__TIMEOUT_MACROP_A_LO = 0x005F, + RANGE_CONFIG__VCSEL_PERIOD_A = 0x0060, + RANGE_CONFIG__TIMEOUT_MACROP_B = 0x0061, // added by Pololu for 16-bit accesses + RANGE_CONFIG__TIMEOUT_MACROP_B_HI = 0x0061, + RANGE_CONFIG__TIMEOUT_MACROP_B_LO = 0x0062, + RANGE_CONFIG__VCSEL_PERIOD_B = 0x0063, + RANGE_CONFIG__SIGMA_THRESH = 0x0064, + RANGE_CONFIG__SIGMA_THRESH_HI = 0x0064, + RANGE_CONFIG__SIGMA_THRESH_LO = 0x0065, + RANGE_CONFIG__MIN_COUNT_RATE_RTN_LIMIT_MCPS = 0x0066, + RANGE_CONFIG__MIN_COUNT_RATE_RTN_LIMIT_MCPS_HI = 0x0066, + RANGE_CONFIG__MIN_COUNT_RATE_RTN_LIMIT_MCPS_LO = 0x0067, + RANGE_CONFIG__VALID_PHASE_LOW = 0x0068, + RANGE_CONFIG__VALID_PHASE_HIGH = 0x0069, + SYSTEM__INTERMEASUREMENT_PERIOD = 0x006C, + SYSTEM__INTERMEASUREMENT_PERIOD_3 = 0x006C, + SYSTEM__INTERMEASUREMENT_PERIOD_2 = 0x006D, + SYSTEM__INTERMEASUREMENT_PERIOD_1 = 0x006E, + SYSTEM__INTERMEASUREMENT_PERIOD_0 = 0x006F, + SYSTEM__FRACTIONAL_ENABLE = 0x0070, + SYSTEM__GROUPED_PARAMETER_HOLD_0 = 0x0071, + SYSTEM__THRESH_HIGH = 0x0072, + SYSTEM__THRESH_HIGH_HI = 0x0072, + SYSTEM__THRESH_HIGH_LO = 0x0073, + SYSTEM__THRESH_LOW = 0x0074, + SYSTEM__THRESH_LOW_HI = 0x0074, + SYSTEM__THRESH_LOW_LO = 0x0075, + SYSTEM__ENABLE_XTALK_PER_QUADRANT = 0x0076, + SYSTEM__SEED_CONFIG = 0x0077, + SD_CONFIG__WOI_SD0 = 0x0078, + SD_CONFIG__WOI_SD1 = 0x0079, + SD_CONFIG__INITIAL_PHASE_SD0 = 0x007A, + SD_CONFIG__INITIAL_PHASE_SD1 = 0x007B, + SYSTEM__GROUPED_PARAMETER_HOLD_1 = 0x007C, + SD_CONFIG__FIRST_ORDER_SELECT = 0x007D, + SD_CONFIG__QUANTIFIER = 0x007E, + ROI_CONFIG__USER_ROI_CENTRE_SPAD = 0x007F, + ROI_CONFIG__USER_ROI_REQUESTED_GLOBAL_XY_SIZE = 0x0080, + SYSTEM__SEQUENCE_CONFIG = 0x0081, + SYSTEM__GROUPED_PARAMETER_HOLD = 0x0082, + POWER_MANAGEMENT__GO1_POWER_FORCE = 0x0083, + SYSTEM__STREAM_COUNT_CTRL = 0x0084, + FIRMWARE__ENABLE = 0x0085, + SYSTEM__INTERRUPT_CLEAR = 0x0086, + SYSTEM__MODE_START = 0x0087, + RESULT__INTERRUPT_STATUS = 0x0088, + RESULT__RANGE_STATUS = 0x0089, + RESULT__REPORT_STATUS = 0x008A, + RESULT__STREAM_COUNT = 0x008B, + RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD0 = 0x008C, + RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD0_HI = 0x008C, + RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD0_LO = 0x008D, + RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD0 = 0x008E, + RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD0_HI = 0x008E, + RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD0_LO = 0x008F, + RESULT__AMBIENT_COUNT_RATE_MCPS_SD0 = 0x0090, + RESULT__AMBIENT_COUNT_RATE_MCPS_SD0_HI = 0x0090, + RESULT__AMBIENT_COUNT_RATE_MCPS_SD0_LO = 0x0091, + RESULT__SIGMA_SD0 = 0x0092, + RESULT__SIGMA_SD0_HI = 0x0092, + RESULT__SIGMA_SD0_LO = 0x0093, + RESULT__PHASE_SD0 = 0x0094, + RESULT__PHASE_SD0_HI = 0x0094, + RESULT__PHASE_SD0_LO = 0x0095, + RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD0 = 0x0096, + RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD0_HI = 0x0096, + RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD0_LO = 0x0097, + RESULT__PEAK_SIGNAL_COUNT_RATE_CROSSTALK_CORRECTED_MCPS_SD0 = 0x0098, + RESULT__PEAK_SIGNAL_COUNT_RATE_CROSSTALK_CORRECTED_MCPS_SD0_HI = 0x0098, + RESULT__PEAK_SIGNAL_COUNT_RATE_CROSSTALK_CORRECTED_MCPS_SD0_LO = 0x0099, + RESULT__MM_INNER_ACTUAL_EFFECTIVE_SPADS_SD0 = 0x009A, + RESULT__MM_INNER_ACTUAL_EFFECTIVE_SPADS_SD0_HI = 0x009A, + RESULT__MM_INNER_ACTUAL_EFFECTIVE_SPADS_SD0_LO = 0x009B, + RESULT__MM_OUTER_ACTUAL_EFFECTIVE_SPADS_SD0 = 0x009C, + RESULT__MM_OUTER_ACTUAL_EFFECTIVE_SPADS_SD0_HI = 0x009C, + RESULT__MM_OUTER_ACTUAL_EFFECTIVE_SPADS_SD0_LO = 0x009D, + RESULT__AVG_SIGNAL_COUNT_RATE_MCPS_SD0 = 0x009E, + RESULT__AVG_SIGNAL_COUNT_RATE_MCPS_SD0_HI = 0x009E, + RESULT__AVG_SIGNAL_COUNT_RATE_MCPS_SD0_LO = 0x009F, + RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD1 = 0x00A0, + RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD1_HI = 0x00A0, + RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD1_LO = 0x00A1, + RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD1 = 0x00A2, + RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD1_HI = 0x00A2, + RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD1_LO = 0x00A3, + RESULT__AMBIENT_COUNT_RATE_MCPS_SD1 = 0x00A4, + RESULT__AMBIENT_COUNT_RATE_MCPS_SD1_HI = 0x00A4, + RESULT__AMBIENT_COUNT_RATE_MCPS_SD1_LO = 0x00A5, + RESULT__SIGMA_SD1 = 0x00A6, + RESULT__SIGMA_SD1_HI = 0x00A6, + RESULT__SIGMA_SD1_LO = 0x00A7, + RESULT__PHASE_SD1 = 0x00A8, + RESULT__PHASE_SD1_HI = 0x00A8, + RESULT__PHASE_SD1_LO = 0x00A9, + RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD1 = 0x00AA, + RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD1_HI = 0x00AA, + RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD1_LO = 0x00AB, + RESULT__SPARE_0_SD1 = 0x00AC, + RESULT__SPARE_0_SD1_HI = 0x00AC, + RESULT__SPARE_0_SD1_LO = 0x00AD, + RESULT__SPARE_1_SD1 = 0x00AE, + RESULT__SPARE_1_SD1_HI = 0x00AE, + RESULT__SPARE_1_SD1_LO = 0x00AF, + RESULT__SPARE_2_SD1 = 0x00B0, + RESULT__SPARE_2_SD1_HI = 0x00B0, + RESULT__SPARE_2_SD1_LO = 0x00B1, + RESULT__SPARE_3_SD1 = 0x00B2, + RESULT__THRESH_INFO = 0x00B3, + RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD0 = 0x00B4, + RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD0_3 = 0x00B4, + RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD0_2 = 0x00B5, + RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD0_1 = 0x00B6, + RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD0_0 = 0x00B7, + RESULT_CORE__RANGING_TOTAL_EVENTS_SD0 = 0x00B8, + RESULT_CORE__RANGING_TOTAL_EVENTS_SD0_3 = 0x00B8, + RESULT_CORE__RANGING_TOTAL_EVENTS_SD0_2 = 0x00B9, + RESULT_CORE__RANGING_TOTAL_EVENTS_SD0_1 = 0x00BA, + RESULT_CORE__RANGING_TOTAL_EVENTS_SD0_0 = 0x00BB, + RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD0 = 0x00BC, + RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD0_3 = 0x00BC, + RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD0_2 = 0x00BD, + RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD0_1 = 0x00BE, + RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD0_0 = 0x00BF, + RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD0 = 0x00C0, + RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD0_3 = 0x00C0, + RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD0_2 = 0x00C1, + RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD0_1 = 0x00C2, + RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD0_0 = 0x00C3, + RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD1 = 0x00C4, + RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD1_3 = 0x00C4, + RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD1_2 = 0x00C5, + RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD1_1 = 0x00C6, + RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD1_0 = 0x00C7, + RESULT_CORE__RANGING_TOTAL_EVENTS_SD1 = 0x00C8, + RESULT_CORE__RANGING_TOTAL_EVENTS_SD1_3 = 0x00C8, + RESULT_CORE__RANGING_TOTAL_EVENTS_SD1_2 = 0x00C9, + RESULT_CORE__RANGING_TOTAL_EVENTS_SD1_1 = 0x00CA, + RESULT_CORE__RANGING_TOTAL_EVENTS_SD1_0 = 0x00CB, + RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD1 = 0x00CC, + RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD1_3 = 0x00CC, + RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD1_2 = 0x00CD, + RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD1_1 = 0x00CE, + RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD1_0 = 0x00CF, + RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD1 = 0x00D0, + RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD1_3 = 0x00D0, + RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD1_2 = 0x00D1, + RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD1_1 = 0x00D2, + RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD1_0 = 0x00D3, + RESULT_CORE__SPARE_0 = 0x00D4, + PHASECAL_RESULT__REFERENCE_PHASE = 0x00D6, + PHASECAL_RESULT__REFERENCE_PHASE_HI = 0x00D6, + PHASECAL_RESULT__REFERENCE_PHASE_LO = 0x00D7, + PHASECAL_RESULT__VCSEL_START = 0x00D8, + REF_SPAD_CHAR_RESULT__NUM_ACTUAL_REF_SPADS = 0x00D9, + REF_SPAD_CHAR_RESULT__REF_LOCATION = 0x00DA, + VHV_RESULT__COLDBOOT_STATUS = 0x00DB, + VHV_RESULT__SEARCH_RESULT = 0x00DC, + VHV_RESULT__LATEST_SETTING = 0x00DD, + RESULT__OSC_CALIBRATE_VAL = 0x00DE, + RESULT__OSC_CALIBRATE_VAL_HI = 0x00DE, + RESULT__OSC_CALIBRATE_VAL_LO = 0x00DF, + ANA_CONFIG__POWERDOWN_GO1 = 0x00E0, + ANA_CONFIG__REF_BG_CTRL = 0x00E1, + ANA_CONFIG__REGDVDD1V2_CTRL = 0x00E2, + ANA_CONFIG__OSC_SLOW_CTRL = 0x00E3, + TEST_MODE__STATUS = 0x00E4, + FIRMWARE__SYSTEM_STATUS = 0x00E5, + FIRMWARE__MODE_STATUS = 0x00E6, + FIRMWARE__SECONDARY_MODE_STATUS = 0x00E7, + FIRMWARE__CAL_REPEAT_RATE_COUNTER = 0x00E8, + FIRMWARE__CAL_REPEAT_RATE_COUNTER_HI = 0x00E8, + FIRMWARE__CAL_REPEAT_RATE_COUNTER_LO = 0x00E9, + FIRMWARE__HISTOGRAM_BIN = 0x00EA, + GPH__SYSTEM__THRESH_HIGH = 0x00EC, + GPH__SYSTEM__THRESH_HIGH_HI = 0x00EC, + GPH__SYSTEM__THRESH_HIGH_LO = 0x00ED, + GPH__SYSTEM__THRESH_LOW = 0x00EE, + GPH__SYSTEM__THRESH_LOW_HI = 0x00EE, + GPH__SYSTEM__THRESH_LOW_LO = 0x00EF, + GPH__SYSTEM__ENABLE_XTALK_PER_QUADRANT = 0x00F0, + GPH__SPARE_0 = 0x00F1, + GPH__SD_CONFIG__WOI_SD0 = 0x00F2, + GPH__SD_CONFIG__WOI_SD1 = 0x00F3, + GPH__SD_CONFIG__INITIAL_PHASE_SD0 = 0x00F4, + GPH__SD_CONFIG__INITIAL_PHASE_SD1 = 0x00F5, + GPH__SD_CONFIG__FIRST_ORDER_SELECT = 0x00F6, + GPH__SD_CONFIG__QUANTIFIER = 0x00F7, + GPH__ROI_CONFIG__USER_ROI_CENTRE_SPAD = 0x00F8, + GPH__ROI_CONFIG__USER_ROI_REQUESTED_GLOBAL_XY_SIZE = 0x00F9, + GPH__SYSTEM__SEQUENCE_CONFIG = 0x00FA, + GPH__GPH_ID = 0x00FB, + SYSTEM__INTERRUPT_SET = 0x00FC, + INTERRUPT_MANAGER__ENABLES = 0x00FD, + INTERRUPT_MANAGER__CLEAR = 0x00FE, + INTERRUPT_MANAGER__STATUS = 0x00FF, + MCU_TO_HOST_BANK__WR_ACCESS_EN = 0x0100, + POWER_MANAGEMENT__GO1_RESET_STATUS = 0x0101, + PAD_STARTUP_MODE__VALUE_RO = 0x0102, + PAD_STARTUP_MODE__VALUE_CTRL = 0x0103, + PLL_PERIOD_US = 0x0104, + PLL_PERIOD_US_3 = 0x0104, + PLL_PERIOD_US_2 = 0x0105, + PLL_PERIOD_US_1 = 0x0106, + PLL_PERIOD_US_0 = 0x0107, + INTERRUPT_SCHEDULER__DATA_OUT = 0x0108, + INTERRUPT_SCHEDULER__DATA_OUT_3 = 0x0108, + INTERRUPT_SCHEDULER__DATA_OUT_2 = 0x0109, + INTERRUPT_SCHEDULER__DATA_OUT_1 = 0x010A, + INTERRUPT_SCHEDULER__DATA_OUT_0 = 0x010B, + NVM_BIST__COMPLETE = 0x010C, + NVM_BIST__STATUS = 0x010D, + IDENTIFICATION__MODEL_ID = 0x010F, + IDENTIFICATION__MODULE_TYPE = 0x0110, + IDENTIFICATION__REVISION_ID = 0x0111, + IDENTIFICATION__MODULE_ID = 0x0112, + IDENTIFICATION__MODULE_ID_HI = 0x0112, + IDENTIFICATION__MODULE_ID_LO = 0x0113, + ANA_CONFIG__FAST_OSC__TRIM_MAX = 0x0114, + ANA_CONFIG__FAST_OSC__FREQ_SET = 0x0115, + ANA_CONFIG__VCSEL_TRIM = 0x0116, + ANA_CONFIG__VCSEL_SELION = 0x0117, + ANA_CONFIG__VCSEL_SELION_MAX = 0x0118, + PROTECTED_LASER_SAFETY__LOCK_BIT = 0x0119, + LASER_SAFETY__KEY = 0x011A, + LASER_SAFETY__KEY_RO = 0x011B, + LASER_SAFETY__CLIP = 0x011C, + LASER_SAFETY__MULT = 0x011D, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_0 = 0x011E, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_1 = 0x011F, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_2 = 0x0120, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_3 = 0x0121, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_4 = 0x0122, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_5 = 0x0123, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_6 = 0x0124, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_7 = 0x0125, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_8 = 0x0126, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_9 = 0x0127, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_10 = 0x0128, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_11 = 0x0129, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_12 = 0x012A, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_13 = 0x012B, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_14 = 0x012C, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_15 = 0x012D, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_16 = 0x012E, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_17 = 0x012F, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_18 = 0x0130, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_19 = 0x0131, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_20 = 0x0132, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_21 = 0x0133, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_22 = 0x0134, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_23 = 0x0135, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_24 = 0x0136, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_25 = 0x0137, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_26 = 0x0138, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_27 = 0x0139, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_28 = 0x013A, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_29 = 0x013B, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_30 = 0x013C, + GLOBAL_CONFIG__SPAD_ENABLES_RTN_31 = 0x013D, + ROI_CONFIG__MODE_ROI_CENTRE_SPAD = 0x013E, + ROI_CONFIG__MODE_ROI_XY_SIZE = 0x013F, + GO2_HOST_BANK_ACCESS__OVERRIDE = 0x0300, + MCU_UTIL_MULTIPLIER__MULTIPLICAND = 0x0400, + MCU_UTIL_MULTIPLIER__MULTIPLICAND_3 = 0x0400, + MCU_UTIL_MULTIPLIER__MULTIPLICAND_2 = 0x0401, + MCU_UTIL_MULTIPLIER__MULTIPLICAND_1 = 0x0402, + MCU_UTIL_MULTIPLIER__MULTIPLICAND_0 = 0x0403, + MCU_UTIL_MULTIPLIER__MULTIPLIER = 0x0404, + MCU_UTIL_MULTIPLIER__MULTIPLIER_3 = 0x0404, + MCU_UTIL_MULTIPLIER__MULTIPLIER_2 = 0x0405, + MCU_UTIL_MULTIPLIER__MULTIPLIER_1 = 0x0406, + MCU_UTIL_MULTIPLIER__MULTIPLIER_0 = 0x0407, + MCU_UTIL_MULTIPLIER__PRODUCT_HI = 0x0408, + MCU_UTIL_MULTIPLIER__PRODUCT_HI_3 = 0x0408, + MCU_UTIL_MULTIPLIER__PRODUCT_HI_2 = 0x0409, + MCU_UTIL_MULTIPLIER__PRODUCT_HI_1 = 0x040A, + MCU_UTIL_MULTIPLIER__PRODUCT_HI_0 = 0x040B, + MCU_UTIL_MULTIPLIER__PRODUCT_LO = 0x040C, + MCU_UTIL_MULTIPLIER__PRODUCT_LO_3 = 0x040C, + MCU_UTIL_MULTIPLIER__PRODUCT_LO_2 = 0x040D, + MCU_UTIL_MULTIPLIER__PRODUCT_LO_1 = 0x040E, + MCU_UTIL_MULTIPLIER__PRODUCT_LO_0 = 0x040F, + MCU_UTIL_MULTIPLIER__START = 0x0410, + MCU_UTIL_MULTIPLIER__STATUS = 0x0411, + MCU_UTIL_DIVIDER__START = 0x0412, + MCU_UTIL_DIVIDER__STATUS = 0x0413, + MCU_UTIL_DIVIDER__DIVIDEND = 0x0414, + MCU_UTIL_DIVIDER__DIVIDEND_3 = 0x0414, + MCU_UTIL_DIVIDER__DIVIDEND_2 = 0x0415, + MCU_UTIL_DIVIDER__DIVIDEND_1 = 0x0416, + MCU_UTIL_DIVIDER__DIVIDEND_0 = 0x0417, + MCU_UTIL_DIVIDER__DIVISOR = 0x0418, + MCU_UTIL_DIVIDER__DIVISOR_3 = 0x0418, + MCU_UTIL_DIVIDER__DIVISOR_2 = 0x0419, + MCU_UTIL_DIVIDER__DIVISOR_1 = 0x041A, + MCU_UTIL_DIVIDER__DIVISOR_0 = 0x041B, + MCU_UTIL_DIVIDER__QUOTIENT = 0x041C, + MCU_UTIL_DIVIDER__QUOTIENT_3 = 0x041C, + MCU_UTIL_DIVIDER__QUOTIENT_2 = 0x041D, + MCU_UTIL_DIVIDER__QUOTIENT_1 = 0x041E, + MCU_UTIL_DIVIDER__QUOTIENT_0 = 0x041F, + TIMER0__VALUE_IN = 0x0420, + TIMER0__VALUE_IN_3 = 0x0420, + TIMER0__VALUE_IN_2 = 0x0421, + TIMER0__VALUE_IN_1 = 0x0422, + TIMER0__VALUE_IN_0 = 0x0423, + TIMER1__VALUE_IN = 0x0424, + TIMER1__VALUE_IN_3 = 0x0424, + TIMER1__VALUE_IN_2 = 0x0425, + TIMER1__VALUE_IN_1 = 0x0426, + TIMER1__VALUE_IN_0 = 0x0427, + TIMER0__CTRL = 0x0428, + TIMER1__CTRL = 0x0429, + MCU_GENERAL_PURPOSE__GP_0 = 0x042C, + MCU_GENERAL_PURPOSE__GP_1 = 0x042D, + MCU_GENERAL_PURPOSE__GP_2 = 0x042E, + MCU_GENERAL_PURPOSE__GP_3 = 0x042F, + MCU_RANGE_CALC__CONFIG = 0x0430, + MCU_RANGE_CALC__OFFSET_CORRECTED_RANGE = 0x0432, + MCU_RANGE_CALC__OFFSET_CORRECTED_RANGE_HI = 0x0432, + MCU_RANGE_CALC__OFFSET_CORRECTED_RANGE_LO = 0x0433, + MCU_RANGE_CALC__SPARE_4 = 0x0434, + MCU_RANGE_CALC__SPARE_4_3 = 0x0434, + MCU_RANGE_CALC__SPARE_4_2 = 0x0435, + MCU_RANGE_CALC__SPARE_4_1 = 0x0436, + MCU_RANGE_CALC__SPARE_4_0 = 0x0437, + MCU_RANGE_CALC__AMBIENT_DURATION_PRE_CALC = 0x0438, + MCU_RANGE_CALC__AMBIENT_DURATION_PRE_CALC_HI = 0x0438, + MCU_RANGE_CALC__AMBIENT_DURATION_PRE_CALC_LO = 0x0439, + MCU_RANGE_CALC__ALGO_VCSEL_PERIOD = 0x043C, + MCU_RANGE_CALC__SPARE_5 = 0x043D, + MCU_RANGE_CALC__ALGO_TOTAL_PERIODS = 0x043E, + MCU_RANGE_CALC__ALGO_TOTAL_PERIODS_HI = 0x043E, + MCU_RANGE_CALC__ALGO_TOTAL_PERIODS_LO = 0x043F, + MCU_RANGE_CALC__ALGO_ACCUM_PHASE = 0x0440, + MCU_RANGE_CALC__ALGO_ACCUM_PHASE_3 = 0x0440, + MCU_RANGE_CALC__ALGO_ACCUM_PHASE_2 = 0x0441, + MCU_RANGE_CALC__ALGO_ACCUM_PHASE_1 = 0x0442, + MCU_RANGE_CALC__ALGO_ACCUM_PHASE_0 = 0x0443, + MCU_RANGE_CALC__ALGO_SIGNAL_EVENTS = 0x0444, + MCU_RANGE_CALC__ALGO_SIGNAL_EVENTS_3 = 0x0444, + MCU_RANGE_CALC__ALGO_SIGNAL_EVENTS_2 = 0x0445, + MCU_RANGE_CALC__ALGO_SIGNAL_EVENTS_1 = 0x0446, + MCU_RANGE_CALC__ALGO_SIGNAL_EVENTS_0 = 0x0447, + MCU_RANGE_CALC__ALGO_AMBIENT_EVENTS = 0x0448, + MCU_RANGE_CALC__ALGO_AMBIENT_EVENTS_3 = 0x0448, + MCU_RANGE_CALC__ALGO_AMBIENT_EVENTS_2 = 0x0449, + MCU_RANGE_CALC__ALGO_AMBIENT_EVENTS_1 = 0x044A, + MCU_RANGE_CALC__ALGO_AMBIENT_EVENTS_0 = 0x044B, + MCU_RANGE_CALC__SPARE_6 = 0x044C, + MCU_RANGE_CALC__SPARE_6_HI = 0x044C, + MCU_RANGE_CALC__SPARE_6_LO = 0x044D, + MCU_RANGE_CALC__ALGO_ADJUST_VCSEL_PERIOD = 0x044E, + MCU_RANGE_CALC__ALGO_ADJUST_VCSEL_PERIOD_HI = 0x044E, + MCU_RANGE_CALC__ALGO_ADJUST_VCSEL_PERIOD_LO = 0x044F, + MCU_RANGE_CALC__NUM_SPADS = 0x0450, + MCU_RANGE_CALC__NUM_SPADS_HI = 0x0450, + MCU_RANGE_CALC__NUM_SPADS_LO = 0x0451, + MCU_RANGE_CALC__PHASE_OUTPUT = 0x0452, + MCU_RANGE_CALC__PHASE_OUTPUT_HI = 0x0452, + MCU_RANGE_CALC__PHASE_OUTPUT_LO = 0x0453, + MCU_RANGE_CALC__RATE_PER_SPAD_MCPS = 0x0454, + MCU_RANGE_CALC__RATE_PER_SPAD_MCPS_3 = 0x0454, + MCU_RANGE_CALC__RATE_PER_SPAD_MCPS_2 = 0x0455, + MCU_RANGE_CALC__RATE_PER_SPAD_MCPS_1 = 0x0456, + MCU_RANGE_CALC__RATE_PER_SPAD_MCPS_0 = 0x0457, + MCU_RANGE_CALC__SPARE_7 = 0x0458, + MCU_RANGE_CALC__SPARE_8 = 0x0459, + MCU_RANGE_CALC__PEAK_SIGNAL_RATE_MCPS = 0x045A, + MCU_RANGE_CALC__PEAK_SIGNAL_RATE_MCPS_HI = 0x045A, + MCU_RANGE_CALC__PEAK_SIGNAL_RATE_MCPS_LO = 0x045B, + MCU_RANGE_CALC__AVG_SIGNAL_RATE_MCPS = 0x045C, + MCU_RANGE_CALC__AVG_SIGNAL_RATE_MCPS_HI = 0x045C, + MCU_RANGE_CALC__AVG_SIGNAL_RATE_MCPS_LO = 0x045D, + MCU_RANGE_CALC__AMBIENT_RATE_MCPS = 0x045E, + MCU_RANGE_CALC__AMBIENT_RATE_MCPS_HI = 0x045E, + MCU_RANGE_CALC__AMBIENT_RATE_MCPS_LO = 0x045F, + MCU_RANGE_CALC__XTALK = 0x0460, + MCU_RANGE_CALC__XTALK_HI = 0x0460, + MCU_RANGE_CALC__XTALK_LO = 0x0461, + MCU_RANGE_CALC__CALC_STATUS = 0x0462, + MCU_RANGE_CALC__DEBUG = 0x0463, + MCU_RANGE_CALC__PEAK_SIGNAL_RATE_XTALK_CORR_MCPS = 0x0464, + MCU_RANGE_CALC__PEAK_SIGNAL_RATE_XTALK_CORR_MCPS_HI = 0x0464, + MCU_RANGE_CALC__PEAK_SIGNAL_RATE_XTALK_CORR_MCPS_LO = 0x0465, + MCU_RANGE_CALC__SPARE_0 = 0x0468, + MCU_RANGE_CALC__SPARE_1 = 0x0469, + MCU_RANGE_CALC__SPARE_2 = 0x046A, + MCU_RANGE_CALC__SPARE_3 = 0x046B, + PATCH__CTRL = 0x0470, + PATCH__JMP_ENABLES = 0x0472, + PATCH__JMP_ENABLES_HI = 0x0472, + PATCH__JMP_ENABLES_LO = 0x0473, + PATCH__DATA_ENABLES = 0x0474, + PATCH__DATA_ENABLES_HI = 0x0474, + PATCH__DATA_ENABLES_LO = 0x0475, + PATCH__OFFSET_0 = 0x0476, + PATCH__OFFSET_0_HI = 0x0476, + PATCH__OFFSET_0_LO = 0x0477, + PATCH__OFFSET_1 = 0x0478, + PATCH__OFFSET_1_HI = 0x0478, + PATCH__OFFSET_1_LO = 0x0479, + PATCH__OFFSET_2 = 0x047A, + PATCH__OFFSET_2_HI = 0x047A, + PATCH__OFFSET_2_LO = 0x047B, + PATCH__OFFSET_3 = 0x047C, + PATCH__OFFSET_3_HI = 0x047C, + PATCH__OFFSET_3_LO = 0x047D, + PATCH__OFFSET_4 = 0x047E, + PATCH__OFFSET_4_HI = 0x047E, + PATCH__OFFSET_4_LO = 0x047F, + PATCH__OFFSET_5 = 0x0480, + PATCH__OFFSET_5_HI = 0x0480, + PATCH__OFFSET_5_LO = 0x0481, + PATCH__OFFSET_6 = 0x0482, + PATCH__OFFSET_6_HI = 0x0482, + PATCH__OFFSET_6_LO = 0x0483, + PATCH__OFFSET_7 = 0x0484, + PATCH__OFFSET_7_HI = 0x0484, + PATCH__OFFSET_7_LO = 0x0485, + PATCH__OFFSET_8 = 0x0486, + PATCH__OFFSET_8_HI = 0x0486, + PATCH__OFFSET_8_LO = 0x0487, + PATCH__OFFSET_9 = 0x0488, + PATCH__OFFSET_9_HI = 0x0488, + PATCH__OFFSET_9_LO = 0x0489, + PATCH__OFFSET_10 = 0x048A, + PATCH__OFFSET_10_HI = 0x048A, + PATCH__OFFSET_10_LO = 0x048B, + PATCH__OFFSET_11 = 0x048C, + PATCH__OFFSET_11_HI = 0x048C, + PATCH__OFFSET_11_LO = 0x048D, + PATCH__OFFSET_12 = 0x048E, + PATCH__OFFSET_12_HI = 0x048E, + PATCH__OFFSET_12_LO = 0x048F, + PATCH__OFFSET_13 = 0x0490, + PATCH__OFFSET_13_HI = 0x0490, + PATCH__OFFSET_13_LO = 0x0491, + PATCH__OFFSET_14 = 0x0492, + PATCH__OFFSET_14_HI = 0x0492, + PATCH__OFFSET_14_LO = 0x0493, + PATCH__OFFSET_15 = 0x0494, + PATCH__OFFSET_15_HI = 0x0494, + PATCH__OFFSET_15_LO = 0x0495, + PATCH__ADDRESS_0 = 0x0496, + PATCH__ADDRESS_0_HI = 0x0496, + PATCH__ADDRESS_0_LO = 0x0497, + PATCH__ADDRESS_1 = 0x0498, + PATCH__ADDRESS_1_HI = 0x0498, + PATCH__ADDRESS_1_LO = 0x0499, + PATCH__ADDRESS_2 = 0x049A, + PATCH__ADDRESS_2_HI = 0x049A, + PATCH__ADDRESS_2_LO = 0x049B, + PATCH__ADDRESS_3 = 0x049C, + PATCH__ADDRESS_3_HI = 0x049C, + PATCH__ADDRESS_3_LO = 0x049D, + PATCH__ADDRESS_4 = 0x049E, + PATCH__ADDRESS_4_HI = 0x049E, + PATCH__ADDRESS_4_LO = 0x049F, + PATCH__ADDRESS_5 = 0x04A0, + PATCH__ADDRESS_5_HI = 0x04A0, + PATCH__ADDRESS_5_LO = 0x04A1, + PATCH__ADDRESS_6 = 0x04A2, + PATCH__ADDRESS_6_HI = 0x04A2, + PATCH__ADDRESS_6_LO = 0x04A3, + PATCH__ADDRESS_7 = 0x04A4, + PATCH__ADDRESS_7_HI = 0x04A4, + PATCH__ADDRESS_7_LO = 0x04A5, + PATCH__ADDRESS_8 = 0x04A6, + PATCH__ADDRESS_8_HI = 0x04A6, + PATCH__ADDRESS_8_LO = 0x04A7, + PATCH__ADDRESS_9 = 0x04A8, + PATCH__ADDRESS_9_HI = 0x04A8, + PATCH__ADDRESS_9_LO = 0x04A9, + PATCH__ADDRESS_10 = 0x04AA, + PATCH__ADDRESS_10_HI = 0x04AA, + PATCH__ADDRESS_10_LO = 0x04AB, + PATCH__ADDRESS_11 = 0x04AC, + PATCH__ADDRESS_11_HI = 0x04AC, + PATCH__ADDRESS_11_LO = 0x04AD, + PATCH__ADDRESS_12 = 0x04AE, + PATCH__ADDRESS_12_HI = 0x04AE, + PATCH__ADDRESS_12_LO = 0x04AF, + PATCH__ADDRESS_13 = 0x04B0, + PATCH__ADDRESS_13_HI = 0x04B0, + PATCH__ADDRESS_13_LO = 0x04B1, + PATCH__ADDRESS_14 = 0x04B2, + PATCH__ADDRESS_14_HI = 0x04B2, + PATCH__ADDRESS_14_LO = 0x04B3, + PATCH__ADDRESS_15 = 0x04B4, + PATCH__ADDRESS_15_HI = 0x04B4, + PATCH__ADDRESS_15_LO = 0x04B5, + SPI_ASYNC_MUX__CTRL = 0x04C0, + CLK__CONFIG = 0x04C4, + GPIO_LV_MUX__CTRL = 0x04CC, + GPIO_LV_PAD__CTRL = 0x04CD, + PAD_I2C_LV__CONFIG = 0x04D0, + PAD_STARTUP_MODE__VALUE_RO_GO1 = 0x04D4, + HOST_IF__STATUS_GO1 = 0x04D5, + MCU_CLK_GATING__CTRL = 0x04D8, + TEST__BIST_ROM_CTRL = 0x04E0, + TEST__BIST_ROM_RESULT = 0x04E1, + TEST__BIST_ROM_MCU_SIG = 0x04E2, + TEST__BIST_ROM_MCU_SIG_HI = 0x04E2, + TEST__BIST_ROM_MCU_SIG_LO = 0x04E3, + TEST__BIST_RAM_CTRL = 0x04E4, + TEST__BIST_RAM_RESULT = 0x04E5, + TEST__TMC = 0x04E8, + TEST__PLL_BIST_MIN_THRESHOLD = 0x04F0, + TEST__PLL_BIST_MIN_THRESHOLD_HI = 0x04F0, + TEST__PLL_BIST_MIN_THRESHOLD_LO = 0x04F1, + TEST__PLL_BIST_MAX_THRESHOLD = 0x04F2, + TEST__PLL_BIST_MAX_THRESHOLD_HI = 0x04F2, + TEST__PLL_BIST_MAX_THRESHOLD_LO = 0x04F3, + TEST__PLL_BIST_COUNT_OUT = 0x04F4, + TEST__PLL_BIST_COUNT_OUT_HI = 0x04F4, + TEST__PLL_BIST_COUNT_OUT_LO = 0x04F5, + TEST__PLL_BIST_GONOGO = 0x04F6, + TEST__PLL_BIST_CTRL = 0x04F7, + RANGING_CORE__DEVICE_ID = 0x0680, + RANGING_CORE__REVISION_ID = 0x0681, + RANGING_CORE__CLK_CTRL1 = 0x0683, + RANGING_CORE__CLK_CTRL2 = 0x0684, + RANGING_CORE__WOI_1 = 0x0685, + RANGING_CORE__WOI_REF_1 = 0x0686, + RANGING_CORE__START_RANGING = 0x0687, + RANGING_CORE__LOW_LIMIT_1 = 0x0690, + RANGING_CORE__HIGH_LIMIT_1 = 0x0691, + RANGING_CORE__LOW_LIMIT_REF_1 = 0x0692, + RANGING_CORE__HIGH_LIMIT_REF_1 = 0x0693, + RANGING_CORE__QUANTIFIER_1_MSB = 0x0694, + RANGING_CORE__QUANTIFIER_1_LSB = 0x0695, + RANGING_CORE__QUANTIFIER_REF_1_MSB = 0x0696, + RANGING_CORE__QUANTIFIER_REF_1_LSB = 0x0697, + RANGING_CORE__AMBIENT_OFFSET_1_MSB = 0x0698, + RANGING_CORE__AMBIENT_OFFSET_1_LSB = 0x0699, + RANGING_CORE__AMBIENT_OFFSET_REF_1_MSB = 0x069A, + RANGING_CORE__AMBIENT_OFFSET_REF_1_LSB = 0x069B, + RANGING_CORE__FILTER_STRENGTH_1 = 0x069C, + RANGING_CORE__FILTER_STRENGTH_REF_1 = 0x069D, + RANGING_CORE__SIGNAL_EVENT_LIMIT_1_MSB = 0x069E, + RANGING_CORE__SIGNAL_EVENT_LIMIT_1_LSB = 0x069F, + RANGING_CORE__SIGNAL_EVENT_LIMIT_REF_1_MSB = 0x06A0, + RANGING_CORE__SIGNAL_EVENT_LIMIT_REF_1_LSB = 0x06A1, + RANGING_CORE__TIMEOUT_OVERALL_PERIODS_MSB = 0x06A4, + RANGING_CORE__TIMEOUT_OVERALL_PERIODS_LSB = 0x06A5, + RANGING_CORE__INVERT_HW = 0x06A6, + RANGING_CORE__FORCE_HW = 0x06A7, + RANGING_CORE__STATIC_HW_VALUE = 0x06A8, + RANGING_CORE__FORCE_CONTINUOUS_AMBIENT = 0x06A9, + RANGING_CORE__TEST_PHASE_SELECT_TO_FILTER = 0x06AA, + RANGING_CORE__TEST_PHASE_SELECT_TO_TIMING_GEN = 0x06AB, + RANGING_CORE__INITIAL_PHASE_VALUE_1 = 0x06AC, + RANGING_CORE__INITIAL_PHASE_VALUE_REF_1 = 0x06AD, + RANGING_CORE__FORCE_UP_IN = 0x06AE, + RANGING_CORE__FORCE_DN_IN = 0x06AF, + RANGING_CORE__STATIC_UP_VALUE_1 = 0x06B0, + RANGING_CORE__STATIC_UP_VALUE_REF_1 = 0x06B1, + RANGING_CORE__STATIC_DN_VALUE_1 = 0x06B2, + RANGING_CORE__STATIC_DN_VALUE_REF_1 = 0x06B3, + RANGING_CORE__MONITOR_UP_DN = 0x06B4, + RANGING_CORE__INVERT_UP_DN = 0x06B5, + RANGING_CORE__CPUMP_1 = 0x06B6, + RANGING_CORE__CPUMP_2 = 0x06B7, + RANGING_CORE__CPUMP_3 = 0x06B8, + RANGING_CORE__OSC_1 = 0x06B9, + RANGING_CORE__PLL_1 = 0x06BB, + RANGING_CORE__PLL_2 = 0x06BC, + RANGING_CORE__REFERENCE_1 = 0x06BD, + RANGING_CORE__REFERENCE_3 = 0x06BF, + RANGING_CORE__REFERENCE_4 = 0x06C0, + RANGING_CORE__REFERENCE_5 = 0x06C1, + RANGING_CORE__REGAVDD1V2 = 0x06C3, + RANGING_CORE__CALIB_1 = 0x06C4, + RANGING_CORE__CALIB_2 = 0x06C5, + RANGING_CORE__CALIB_3 = 0x06C6, + RANGING_CORE__TST_MUX_SEL1 = 0x06C9, + RANGING_CORE__TST_MUX_SEL2 = 0x06CA, + RANGING_CORE__TST_MUX = 0x06CB, + RANGING_CORE__GPIO_OUT_TESTMUX = 0x06CC, + RANGING_CORE__CUSTOM_FE = 0x06CD, + RANGING_CORE__CUSTOM_FE_2 = 0x06CE, + RANGING_CORE__SPAD_READOUT = 0x06CF, + RANGING_CORE__SPAD_READOUT_1 = 0x06D0, + RANGING_CORE__SPAD_READOUT_2 = 0x06D1, + RANGING_CORE__SPAD_PS = 0x06D2, + RANGING_CORE__LASER_SAFETY_2 = 0x06D4, + RANGING_CORE__NVM_CTRL__MODE = 0x0780, + RANGING_CORE__NVM_CTRL__PDN = 0x0781, + RANGING_CORE__NVM_CTRL__PROGN = 0x0782, + RANGING_CORE__NVM_CTRL__READN = 0x0783, + RANGING_CORE__NVM_CTRL__PULSE_WIDTH_MSB = 0x0784, + RANGING_CORE__NVM_CTRL__PULSE_WIDTH_LSB = 0x0785, + RANGING_CORE__NVM_CTRL__HV_RISE_MSB = 0x0786, + RANGING_CORE__NVM_CTRL__HV_RISE_LSB = 0x0787, + RANGING_CORE__NVM_CTRL__HV_FALL_MSB = 0x0788, + RANGING_CORE__NVM_CTRL__HV_FALL_LSB = 0x0789, + RANGING_CORE__NVM_CTRL__TST = 0x078A, + RANGING_CORE__NVM_CTRL__TESTREAD = 0x078B, + RANGING_CORE__NVM_CTRL__DATAIN_MMM = 0x078C, + RANGING_CORE__NVM_CTRL__DATAIN_LMM = 0x078D, + RANGING_CORE__NVM_CTRL__DATAIN_LLM = 0x078E, + RANGING_CORE__NVM_CTRL__DATAIN_LLL = 0x078F, + RANGING_CORE__NVM_CTRL__DATAOUT_MMM = 0x0790, + RANGING_CORE__NVM_CTRL__DATAOUT_LMM = 0x0791, + RANGING_CORE__NVM_CTRL__DATAOUT_LLM = 0x0792, + RANGING_CORE__NVM_CTRL__DATAOUT_LLL = 0x0793, + RANGING_CORE__NVM_CTRL__ADDR = 0x0794, + RANGING_CORE__NVM_CTRL__DATAOUT_ECC = 0x0795, + RANGING_CORE__RET_SPAD_EN_0 = 0x0796, + RANGING_CORE__RET_SPAD_EN_1 = 0x0797, + RANGING_CORE__RET_SPAD_EN_2 = 0x0798, + RANGING_CORE__RET_SPAD_EN_3 = 0x0799, + RANGING_CORE__RET_SPAD_EN_4 = 0x079A, + RANGING_CORE__RET_SPAD_EN_5 = 0x079B, + RANGING_CORE__RET_SPAD_EN_6 = 0x079C, + RANGING_CORE__RET_SPAD_EN_7 = 0x079D, + RANGING_CORE__RET_SPAD_EN_8 = 0x079E, + RANGING_CORE__RET_SPAD_EN_9 = 0x079F, + RANGING_CORE__RET_SPAD_EN_10 = 0x07A0, + RANGING_CORE__RET_SPAD_EN_11 = 0x07A1, + RANGING_CORE__RET_SPAD_EN_12 = 0x07A2, + RANGING_CORE__RET_SPAD_EN_13 = 0x07A3, + RANGING_CORE__RET_SPAD_EN_14 = 0x07A4, + RANGING_CORE__RET_SPAD_EN_15 = 0x07A5, + RANGING_CORE__RET_SPAD_EN_16 = 0x07A6, + RANGING_CORE__RET_SPAD_EN_17 = 0x07A7, + RANGING_CORE__SPAD_SHIFT_EN = 0x07BA, + RANGING_CORE__SPAD_DISABLE_CTRL = 0x07BB, + RANGING_CORE__SPAD_EN_SHIFT_OUT_DEBUG = 0x07BC, + RANGING_CORE__SPI_MODE = 0x07BD, + RANGING_CORE__GPIO_DIR = 0x07BE, + RANGING_CORE__VCSEL_PERIOD = 0x0880, + RANGING_CORE__VCSEL_START = 0x0881, + RANGING_CORE__VCSEL_STOP = 0x0882, + RANGING_CORE__VCSEL_1 = 0x0885, + RANGING_CORE__VCSEL_STATUS = 0x088D, + RANGING_CORE__STATUS = 0x0980, + RANGING_CORE__LASER_CONTINUITY_STATE = 0x0981, + RANGING_CORE__RANGE_1_MMM = 0x0982, + RANGING_CORE__RANGE_1_LMM = 0x0983, + RANGING_CORE__RANGE_1_LLM = 0x0984, + RANGING_CORE__RANGE_1_LLL = 0x0985, + RANGING_CORE__RANGE_REF_1_MMM = 0x0986, + RANGING_CORE__RANGE_REF_1_LMM = 0x0987, + RANGING_CORE__RANGE_REF_1_LLM = 0x0988, + RANGING_CORE__RANGE_REF_1_LLL = 0x0989, + RANGING_CORE__AMBIENT_WINDOW_EVENTS_1_MMM = 0x098A, + RANGING_CORE__AMBIENT_WINDOW_EVENTS_1_LMM = 0x098B, + RANGING_CORE__AMBIENT_WINDOW_EVENTS_1_LLM = 0x098C, + RANGING_CORE__AMBIENT_WINDOW_EVENTS_1_LLL = 0x098D, + RANGING_CORE__RANGING_TOTAL_EVENTS_1_MMM = 0x098E, + RANGING_CORE__RANGING_TOTAL_EVENTS_1_LMM = 0x098F, + RANGING_CORE__RANGING_TOTAL_EVENTS_1_LLM = 0x0990, + RANGING_CORE__RANGING_TOTAL_EVENTS_1_LLL = 0x0991, + RANGING_CORE__SIGNAL_TOTAL_EVENTS_1_MMM = 0x0992, + RANGING_CORE__SIGNAL_TOTAL_EVENTS_1_LMM = 0x0993, + RANGING_CORE__SIGNAL_TOTAL_EVENTS_1_LLM = 0x0994, + RANGING_CORE__SIGNAL_TOTAL_EVENTS_1_LLL = 0x0995, + RANGING_CORE__TOTAL_PERIODS_ELAPSED_1_MM = 0x0996, + RANGING_CORE__TOTAL_PERIODS_ELAPSED_1_LM = 0x0997, + RANGING_CORE__TOTAL_PERIODS_ELAPSED_1_LL = 0x0998, + RANGING_CORE__AMBIENT_MISMATCH_MM = 0x0999, + RANGING_CORE__AMBIENT_MISMATCH_LM = 0x099A, + RANGING_CORE__AMBIENT_MISMATCH_LL = 0x099B, + RANGING_CORE__AMBIENT_WINDOW_EVENTS_REF_1_MMM = 0x099C, + RANGING_CORE__AMBIENT_WINDOW_EVENTS_REF_1_LMM = 0x099D, + RANGING_CORE__AMBIENT_WINDOW_EVENTS_REF_1_LLM = 0x099E, + RANGING_CORE__AMBIENT_WINDOW_EVENTS_REF_1_LLL = 0x099F, + RANGING_CORE__RANGING_TOTAL_EVENTS_REF_1_MMM = 0x09A0, + RANGING_CORE__RANGING_TOTAL_EVENTS_REF_1_LMM = 0x09A1, + RANGING_CORE__RANGING_TOTAL_EVENTS_REF_1_LLM = 0x09A2, + RANGING_CORE__RANGING_TOTAL_EVENTS_REF_1_LLL = 0x09A3, + RANGING_CORE__SIGNAL_TOTAL_EVENTS_REF_1_MMM = 0x09A4, + RANGING_CORE__SIGNAL_TOTAL_EVENTS_REF_1_LMM = 0x09A5, + RANGING_CORE__SIGNAL_TOTAL_EVENTS_REF_1_LLM = 0x09A6, + RANGING_CORE__SIGNAL_TOTAL_EVENTS_REF_1_LLL = 0x09A7, + RANGING_CORE__TOTAL_PERIODS_ELAPSED_REF_1_MM = 0x09A8, + RANGING_CORE__TOTAL_PERIODS_ELAPSED_REF_1_LM = 0x09A9, + RANGING_CORE__TOTAL_PERIODS_ELAPSED_REF_1_LL = 0x09AA, + RANGING_CORE__AMBIENT_MISMATCH_REF_MM = 0x09AB, + RANGING_CORE__AMBIENT_MISMATCH_REF_LM = 0x09AC, + RANGING_CORE__AMBIENT_MISMATCH_REF_LL = 0x09AD, + RANGING_CORE__GPIO_CONFIG__A0 = 0x0A00, + RANGING_CORE__RESET_CONTROL__A0 = 0x0A01, + RANGING_CORE__INTR_MANAGER__A0 = 0x0A02, + RANGING_CORE__POWER_FSM_TIME_OSC__A0 = 0x0A06, + RANGING_CORE__VCSEL_ATEST__A0 = 0x0A07, + RANGING_CORE__VCSEL_PERIOD_CLIPPED__A0 = 0x0A08, + RANGING_CORE__VCSEL_STOP_CLIPPED__A0 = 0x0A09, + RANGING_CORE__CALIB_2__A0 = 0x0A0A, + RANGING_CORE__STOP_CONDITION__A0 = 0x0A0B, + RANGING_CORE__STATUS_RESET__A0 = 0x0A0C, + RANGING_CORE__READOUT_CFG__A0 = 0x0A0D, + RANGING_CORE__WINDOW_SETTING__A0 = 0x0A0E, + RANGING_CORE__VCSEL_DELAY__A0 = 0x0A1A, + RANGING_CORE__REFERENCE_2__A0 = 0x0A1B, + RANGING_CORE__REGAVDD1V2__A0 = 0x0A1D, + RANGING_CORE__TST_MUX__A0 = 0x0A1F, + RANGING_CORE__CUSTOM_FE_2__A0 = 0x0A20, + RANGING_CORE__SPAD_READOUT__A0 = 0x0A21, + RANGING_CORE__CPUMP_1__A0 = 0x0A22, + RANGING_CORE__SPARE_REGISTER__A0 = 0x0A23, + RANGING_CORE__VCSEL_CONT_STAGE5_BYPASS__A0 = 0x0A24, + RANGING_CORE__RET_SPAD_EN_18 = 0x0A25, + RANGING_CORE__RET_SPAD_EN_19 = 0x0A26, + RANGING_CORE__RET_SPAD_EN_20 = 0x0A27, + RANGING_CORE__RET_SPAD_EN_21 = 0x0A28, + RANGING_CORE__RET_SPAD_EN_22 = 0x0A29, + RANGING_CORE__RET_SPAD_EN_23 = 0x0A2A, + RANGING_CORE__RET_SPAD_EN_24 = 0x0A2B, + RANGING_CORE__RET_SPAD_EN_25 = 0x0A2C, + RANGING_CORE__RET_SPAD_EN_26 = 0x0A2D, + RANGING_CORE__RET_SPAD_EN_27 = 0x0A2E, + RANGING_CORE__RET_SPAD_EN_28 = 0x0A2F, + RANGING_CORE__RET_SPAD_EN_29 = 0x0A30, + RANGING_CORE__RET_SPAD_EN_30 = 0x0A31, + RANGING_CORE__RET_SPAD_EN_31 = 0x0A32, + RANGING_CORE__REF_SPAD_EN_0__EWOK = 0x0A33, + RANGING_CORE__REF_SPAD_EN_1__EWOK = 0x0A34, + RANGING_CORE__REF_SPAD_EN_2__EWOK = 0x0A35, + RANGING_CORE__REF_SPAD_EN_3__EWOK = 0x0A36, + RANGING_CORE__REF_SPAD_EN_4__EWOK = 0x0A37, + RANGING_CORE__REF_SPAD_EN_5__EWOK = 0x0A38, + RANGING_CORE__REF_EN_START_SELECT = 0x0A39, + RANGING_CORE__REGDVDD1V2_ATEST__EWOK = 0x0A41, + SOFT_RESET_GO1 = 0x0B00, + PRIVATE__PATCH_BASE_ADDR_RSLV = 0x0E00, + PREV_SHADOW_RESULT__INTERRUPT_STATUS = 0x0ED0, + PREV_SHADOW_RESULT__RANGE_STATUS = 0x0ED1, + PREV_SHADOW_RESULT__REPORT_STATUS = 0x0ED2, + PREV_SHADOW_RESULT__STREAM_COUNT = 0x0ED3, + PREV_SHADOW_RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD0 = 0x0ED4, + PREV_SHADOW_RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD0_HI = 0x0ED4, + PREV_SHADOW_RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD0_LO = 0x0ED5, + PREV_SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD0 = 0x0ED6, + PREV_SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD0_HI = 0x0ED6, + PREV_SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD0_LO = 0x0ED7, + PREV_SHADOW_RESULT__AMBIENT_COUNT_RATE_MCPS_SD0 = 0x0ED8, + PREV_SHADOW_RESULT__AMBIENT_COUNT_RATE_MCPS_SD0_HI = 0x0ED8, + PREV_SHADOW_RESULT__AMBIENT_COUNT_RATE_MCPS_SD0_LO = 0x0ED9, + PREV_SHADOW_RESULT__SIGMA_SD0 = 0x0EDA, + PREV_SHADOW_RESULT__SIGMA_SD0_HI = 0x0EDA, + PREV_SHADOW_RESULT__SIGMA_SD0_LO = 0x0EDB, + PREV_SHADOW_RESULT__PHASE_SD0 = 0x0EDC, + PREV_SHADOW_RESULT__PHASE_SD0_HI = 0x0EDC, + PREV_SHADOW_RESULT__PHASE_SD0_LO = 0x0EDD, + PREV_SHADOW_RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD0 = 0x0EDE, + PREV_SHADOW_RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD0_HI = 0x0EDE, + PREV_SHADOW_RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD0_LO = 0x0EDF, + PREV_SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_CROSSTALK_CORRECTED_MCPS_SD0 = 0x0EE0, + PREV_SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_CROSSTALK_CORRECTED_MCPS_SD0_HI = 0x0EE0, + PREV_SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_CROSSTALK_CORRECTED_MCPS_SD0_LO = 0x0EE1, + PREV_SHADOW_RESULT__MM_INNER_ACTUAL_EFFECTIVE_SPADS_SD0 = 0x0EE2, + PREV_SHADOW_RESULT__MM_INNER_ACTUAL_EFFECTIVE_SPADS_SD0_HI = 0x0EE2, + PREV_SHADOW_RESULT__MM_INNER_ACTUAL_EFFECTIVE_SPADS_SD0_LO = 0x0EE3, + PREV_SHADOW_RESULT__MM_OUTER_ACTUAL_EFFECTIVE_SPADS_SD0 = 0x0EE4, + PREV_SHADOW_RESULT__MM_OUTER_ACTUAL_EFFECTIVE_SPADS_SD0_HI = 0x0EE4, + PREV_SHADOW_RESULT__MM_OUTER_ACTUAL_EFFECTIVE_SPADS_SD0_LO = 0x0EE5, + PREV_SHADOW_RESULT__AVG_SIGNAL_COUNT_RATE_MCPS_SD0 = 0x0EE6, + PREV_SHADOW_RESULT__AVG_SIGNAL_COUNT_RATE_MCPS_SD0_HI = 0x0EE6, + PREV_SHADOW_RESULT__AVG_SIGNAL_COUNT_RATE_MCPS_SD0_LO = 0x0EE7, + PREV_SHADOW_RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD1 = 0x0EE8, + PREV_SHADOW_RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD1_HI = 0x0EE8, + PREV_SHADOW_RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD1_LO = 0x0EE9, + PREV_SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD1 = 0x0EEA, + PREV_SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD1_HI = 0x0EEA, + PREV_SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD1_LO = 0x0EEB, + PREV_SHADOW_RESULT__AMBIENT_COUNT_RATE_MCPS_SD1 = 0x0EEC, + PREV_SHADOW_RESULT__AMBIENT_COUNT_RATE_MCPS_SD1_HI = 0x0EEC, + PREV_SHADOW_RESULT__AMBIENT_COUNT_RATE_MCPS_SD1_LO = 0x0EED, + PREV_SHADOW_RESULT__SIGMA_SD1 = 0x0EEE, + PREV_SHADOW_RESULT__SIGMA_SD1_HI = 0x0EEE, + PREV_SHADOW_RESULT__SIGMA_SD1_LO = 0x0EEF, + PREV_SHADOW_RESULT__PHASE_SD1 = 0x0EF0, + PREV_SHADOW_RESULT__PHASE_SD1_HI = 0x0EF0, + PREV_SHADOW_RESULT__PHASE_SD1_LO = 0x0EF1, + PREV_SHADOW_RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD1 = 0x0EF2, + PREV_SHADOW_RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD1_HI = 0x0EF2, + PREV_SHADOW_RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD1_LO = 0x0EF3, + PREV_SHADOW_RESULT__SPARE_0_SD1 = 0x0EF4, + PREV_SHADOW_RESULT__SPARE_0_SD1_HI = 0x0EF4, + PREV_SHADOW_RESULT__SPARE_0_SD1_LO = 0x0EF5, + PREV_SHADOW_RESULT__SPARE_1_SD1 = 0x0EF6, + PREV_SHADOW_RESULT__SPARE_1_SD1_HI = 0x0EF6, + PREV_SHADOW_RESULT__SPARE_1_SD1_LO = 0x0EF7, + PREV_SHADOW_RESULT__SPARE_2_SD1 = 0x0EF8, + PREV_SHADOW_RESULT__SPARE_2_SD1_HI = 0x0EF8, + PREV_SHADOW_RESULT__SPARE_2_SD1_LO = 0x0EF9, + PREV_SHADOW_RESULT__SPARE_3_SD1 = 0x0EFA, + PREV_SHADOW_RESULT__SPARE_3_SD1_HI = 0x0EFA, + PREV_SHADOW_RESULT__SPARE_3_SD1_LO = 0x0EFB, + PREV_SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD0 = 0x0EFC, + PREV_SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD0_3 = 0x0EFC, + PREV_SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD0_2 = 0x0EFD, + PREV_SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD0_1 = 0x0EFE, + PREV_SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD0_0 = 0x0EFF, + PREV_SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD0 = 0x0F00, + PREV_SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD0_3 = 0x0F00, + PREV_SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD0_2 = 0x0F01, + PREV_SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD0_1 = 0x0F02, + PREV_SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD0_0 = 0x0F03, + PREV_SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD0 = 0x0F04, + PREV_SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD0_3 = 0x0F04, + PREV_SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD0_2 = 0x0F05, + PREV_SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD0_1 = 0x0F06, + PREV_SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD0_0 = 0x0F07, + PREV_SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD0 = 0x0F08, + PREV_SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD0_3 = 0x0F08, + PREV_SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD0_2 = 0x0F09, + PREV_SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD0_1 = 0x0F0A, + PREV_SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD0_0 = 0x0F0B, + PREV_SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD1 = 0x0F0C, + PREV_SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD1_3 = 0x0F0C, + PREV_SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD1_2 = 0x0F0D, + PREV_SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD1_1 = 0x0F0E, + PREV_SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD1_0 = 0x0F0F, + PREV_SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD1 = 0x0F10, + PREV_SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD1_3 = 0x0F10, + PREV_SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD1_2 = 0x0F11, + PREV_SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD1_1 = 0x0F12, + PREV_SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD1_0 = 0x0F13, + PREV_SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD1 = 0x0F14, + PREV_SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD1_3 = 0x0F14, + PREV_SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD1_2 = 0x0F15, + PREV_SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD1_1 = 0x0F16, + PREV_SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD1_0 = 0x0F17, + PREV_SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD1 = 0x0F18, + PREV_SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD1_3 = 0x0F18, + PREV_SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD1_2 = 0x0F19, + PREV_SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD1_1 = 0x0F1A, + PREV_SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD1_0 = 0x0F1B, + PREV_SHADOW_RESULT_CORE__SPARE_0 = 0x0F1C, + RESULT__DEBUG_STATUS = 0x0F20, + RESULT__DEBUG_STAGE = 0x0F21, + GPH__SYSTEM__THRESH_RATE_HIGH = 0x0F24, + GPH__SYSTEM__THRESH_RATE_HIGH_HI = 0x0F24, + GPH__SYSTEM__THRESH_RATE_HIGH_LO = 0x0F25, + GPH__SYSTEM__THRESH_RATE_LOW = 0x0F26, + GPH__SYSTEM__THRESH_RATE_LOW_HI = 0x0F26, + GPH__SYSTEM__THRESH_RATE_LOW_LO = 0x0F27, + GPH__SYSTEM__INTERRUPT_CONFIG_GPIO = 0x0F28, + GPH__DSS_CONFIG__ROI_MODE_CONTROL = 0x0F2F, + GPH__DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT = 0x0F30, + GPH__DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT_HI = 0x0F30, + GPH__DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT_LO = 0x0F31, + GPH__DSS_CONFIG__MANUAL_BLOCK_SELECT = 0x0F32, + GPH__DSS_CONFIG__MAX_SPADS_LIMIT = 0x0F33, + GPH__DSS_CONFIG__MIN_SPADS_LIMIT = 0x0F34, + GPH__MM_CONFIG__TIMEOUT_MACROP_A_HI = 0x0F36, + GPH__MM_CONFIG__TIMEOUT_MACROP_A_LO = 0x0F37, + GPH__MM_CONFIG__TIMEOUT_MACROP_B_HI = 0x0F38, + GPH__MM_CONFIG__TIMEOUT_MACROP_B_LO = 0x0F39, + GPH__RANGE_CONFIG__TIMEOUT_MACROP_A_HI = 0x0F3A, + GPH__RANGE_CONFIG__TIMEOUT_MACROP_A_LO = 0x0F3B, + GPH__RANGE_CONFIG__VCSEL_PERIOD_A = 0x0F3C, + GPH__RANGE_CONFIG__VCSEL_PERIOD_B = 0x0F3D, + GPH__RANGE_CONFIG__TIMEOUT_MACROP_B_HI = 0x0F3E, + GPH__RANGE_CONFIG__TIMEOUT_MACROP_B_LO = 0x0F3F, + GPH__RANGE_CONFIG__SIGMA_THRESH = 0x0F40, + GPH__RANGE_CONFIG__SIGMA_THRESH_HI = 0x0F40, + GPH__RANGE_CONFIG__SIGMA_THRESH_LO = 0x0F41, + GPH__RANGE_CONFIG__MIN_COUNT_RATE_RTN_LIMIT_MCPS = 0x0F42, + GPH__RANGE_CONFIG__MIN_COUNT_RATE_RTN_LIMIT_MCPS_HI = 0x0F42, + GPH__RANGE_CONFIG__MIN_COUNT_RATE_RTN_LIMIT_MCPS_LO = 0x0F43, + GPH__RANGE_CONFIG__VALID_PHASE_LOW = 0x0F44, + GPH__RANGE_CONFIG__VALID_PHASE_HIGH = 0x0F45, + FIRMWARE__INTERNAL_STREAM_COUNT_DIV = 0x0F46, + FIRMWARE__INTERNAL_STREAM_COUNTER_VAL = 0x0F47, + DSS_CALC__ROI_CTRL = 0x0F54, + DSS_CALC__SPARE_1 = 0x0F55, + DSS_CALC__SPARE_2 = 0x0F56, + DSS_CALC__SPARE_3 = 0x0F57, + DSS_CALC__SPARE_4 = 0x0F58, + DSS_CALC__SPARE_5 = 0x0F59, + DSS_CALC__SPARE_6 = 0x0F5A, + DSS_CALC__SPARE_7 = 0x0F5B, + DSS_CALC__USER_ROI_SPAD_EN_0 = 0x0F5C, + DSS_CALC__USER_ROI_SPAD_EN_1 = 0x0F5D, + DSS_CALC__USER_ROI_SPAD_EN_2 = 0x0F5E, + DSS_CALC__USER_ROI_SPAD_EN_3 = 0x0F5F, + DSS_CALC__USER_ROI_SPAD_EN_4 = 0x0F60, + DSS_CALC__USER_ROI_SPAD_EN_5 = 0x0F61, + DSS_CALC__USER_ROI_SPAD_EN_6 = 0x0F62, + DSS_CALC__USER_ROI_SPAD_EN_7 = 0x0F63, + DSS_CALC__USER_ROI_SPAD_EN_8 = 0x0F64, + DSS_CALC__USER_ROI_SPAD_EN_9 = 0x0F65, + DSS_CALC__USER_ROI_SPAD_EN_10 = 0x0F66, + DSS_CALC__USER_ROI_SPAD_EN_11 = 0x0F67, + DSS_CALC__USER_ROI_SPAD_EN_12 = 0x0F68, + DSS_CALC__USER_ROI_SPAD_EN_13 = 0x0F69, + DSS_CALC__USER_ROI_SPAD_EN_14 = 0x0F6A, + DSS_CALC__USER_ROI_SPAD_EN_15 = 0x0F6B, + DSS_CALC__USER_ROI_SPAD_EN_16 = 0x0F6C, + DSS_CALC__USER_ROI_SPAD_EN_17 = 0x0F6D, + DSS_CALC__USER_ROI_SPAD_EN_18 = 0x0F6E, + DSS_CALC__USER_ROI_SPAD_EN_19 = 0x0F6F, + DSS_CALC__USER_ROI_SPAD_EN_20 = 0x0F70, + DSS_CALC__USER_ROI_SPAD_EN_21 = 0x0F71, + DSS_CALC__USER_ROI_SPAD_EN_22 = 0x0F72, + DSS_CALC__USER_ROI_SPAD_EN_23 = 0x0F73, + DSS_CALC__USER_ROI_SPAD_EN_24 = 0x0F74, + DSS_CALC__USER_ROI_SPAD_EN_25 = 0x0F75, + DSS_CALC__USER_ROI_SPAD_EN_26 = 0x0F76, + DSS_CALC__USER_ROI_SPAD_EN_27 = 0x0F77, + DSS_CALC__USER_ROI_SPAD_EN_28 = 0x0F78, + DSS_CALC__USER_ROI_SPAD_EN_29 = 0x0F79, + DSS_CALC__USER_ROI_SPAD_EN_30 = 0x0F7A, + DSS_CALC__USER_ROI_SPAD_EN_31 = 0x0F7B, + DSS_CALC__USER_ROI_0 = 0x0F7C, + DSS_CALC__USER_ROI_1 = 0x0F7D, + DSS_CALC__MODE_ROI_0 = 0x0F7E, + DSS_CALC__MODE_ROI_1 = 0x0F7F, + SIGMA_ESTIMATOR_CALC__SPARE_0 = 0x0F80, + VHV_RESULT__PEAK_SIGNAL_RATE_MCPS = 0x0F82, + VHV_RESULT__PEAK_SIGNAL_RATE_MCPS_HI = 0x0F82, + VHV_RESULT__PEAK_SIGNAL_RATE_MCPS_LO = 0x0F83, + VHV_RESULT__SIGNAL_TOTAL_EVENTS_REF = 0x0F84, + VHV_RESULT__SIGNAL_TOTAL_EVENTS_REF_3 = 0x0F84, + VHV_RESULT__SIGNAL_TOTAL_EVENTS_REF_2 = 0x0F85, + VHV_RESULT__SIGNAL_TOTAL_EVENTS_REF_1 = 0x0F86, + VHV_RESULT__SIGNAL_TOTAL_EVENTS_REF_0 = 0x0F87, + PHASECAL_RESULT__PHASE_OUTPUT_REF = 0x0F88, + PHASECAL_RESULT__PHASE_OUTPUT_REF_HI = 0x0F88, + PHASECAL_RESULT__PHASE_OUTPUT_REF_LO = 0x0F89, + DSS_RESULT__TOTAL_RATE_PER_SPAD = 0x0F8A, + DSS_RESULT__TOTAL_RATE_PER_SPAD_HI = 0x0F8A, + DSS_RESULT__TOTAL_RATE_PER_SPAD_LO = 0x0F8B, + DSS_RESULT__ENABLED_BLOCKS = 0x0F8C, + DSS_RESULT__NUM_REQUESTED_SPADS = 0x0F8E, + DSS_RESULT__NUM_REQUESTED_SPADS_HI = 0x0F8E, + DSS_RESULT__NUM_REQUESTED_SPADS_LO = 0x0F8F, + MM_RESULT__INNER_INTERSECTION_RATE = 0x0F92, + MM_RESULT__INNER_INTERSECTION_RATE_HI = 0x0F92, + MM_RESULT__INNER_INTERSECTION_RATE_LO = 0x0F93, + MM_RESULT__OUTER_COMPLEMENT_RATE = 0x0F94, + MM_RESULT__OUTER_COMPLEMENT_RATE_HI = 0x0F94, + MM_RESULT__OUTER_COMPLEMENT_RATE_LO = 0x0F95, + MM_RESULT__TOTAL_OFFSET = 0x0F96, + MM_RESULT__TOTAL_OFFSET_HI = 0x0F96, + MM_RESULT__TOTAL_OFFSET_LO = 0x0F97, + XTALK_CALC__XTALK_FOR_ENABLED_SPADS = 0x0F98, + XTALK_CALC__XTALK_FOR_ENABLED_SPADS_3 = 0x0F98, + XTALK_CALC__XTALK_FOR_ENABLED_SPADS_2 = 0x0F99, + XTALK_CALC__XTALK_FOR_ENABLED_SPADS_1 = 0x0F9A, + XTALK_CALC__XTALK_FOR_ENABLED_SPADS_0 = 0x0F9B, + XTALK_RESULT__AVG_XTALK_USER_ROI_KCPS = 0x0F9C, + XTALK_RESULT__AVG_XTALK_USER_ROI_KCPS_3 = 0x0F9C, + XTALK_RESULT__AVG_XTALK_USER_ROI_KCPS_2 = 0x0F9D, + XTALK_RESULT__AVG_XTALK_USER_ROI_KCPS_1 = 0x0F9E, + XTALK_RESULT__AVG_XTALK_USER_ROI_KCPS_0 = 0x0F9F, + XTALK_RESULT__AVG_XTALK_MM_INNER_ROI_KCPS = 0x0FA0, + XTALK_RESULT__AVG_XTALK_MM_INNER_ROI_KCPS_3 = 0x0FA0, + XTALK_RESULT__AVG_XTALK_MM_INNER_ROI_KCPS_2 = 0x0FA1, + XTALK_RESULT__AVG_XTALK_MM_INNER_ROI_KCPS_1 = 0x0FA2, + XTALK_RESULT__AVG_XTALK_MM_INNER_ROI_KCPS_0 = 0x0FA3, + XTALK_RESULT__AVG_XTALK_MM_OUTER_ROI_KCPS = 0x0FA4, + XTALK_RESULT__AVG_XTALK_MM_OUTER_ROI_KCPS_3 = 0x0FA4, + XTALK_RESULT__AVG_XTALK_MM_OUTER_ROI_KCPS_2 = 0x0FA5, + XTALK_RESULT__AVG_XTALK_MM_OUTER_ROI_KCPS_1 = 0x0FA6, + XTALK_RESULT__AVG_XTALK_MM_OUTER_ROI_KCPS_0 = 0x0FA7, + RANGE_RESULT__ACCUM_PHASE = 0x0FA8, + RANGE_RESULT__ACCUM_PHASE_3 = 0x0FA8, + RANGE_RESULT__ACCUM_PHASE_2 = 0x0FA9, + RANGE_RESULT__ACCUM_PHASE_1 = 0x0FAA, + RANGE_RESULT__ACCUM_PHASE_0 = 0x0FAB, + RANGE_RESULT__OFFSET_CORRECTED_RANGE = 0x0FAC, + RANGE_RESULT__OFFSET_CORRECTED_RANGE_HI = 0x0FAC, + RANGE_RESULT__OFFSET_CORRECTED_RANGE_LO = 0x0FAD, + SHADOW_PHASECAL_RESULT__VCSEL_START = 0x0FAE, + SHADOW_RESULT__INTERRUPT_STATUS = 0x0FB0, + SHADOW_RESULT__RANGE_STATUS = 0x0FB1, + SHADOW_RESULT__REPORT_STATUS = 0x0FB2, + SHADOW_RESULT__STREAM_COUNT = 0x0FB3, + SHADOW_RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD0 = 0x0FB4, + SHADOW_RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD0_HI = 0x0FB4, + SHADOW_RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD0_LO = 0x0FB5, + SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD0 = 0x0FB6, + SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD0_HI = 0x0FB6, + SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD0_LO = 0x0FB7, + SHADOW_RESULT__AMBIENT_COUNT_RATE_MCPS_SD0 = 0x0FB8, + SHADOW_RESULT__AMBIENT_COUNT_RATE_MCPS_SD0_HI = 0x0FB8, + SHADOW_RESULT__AMBIENT_COUNT_RATE_MCPS_SD0_LO = 0x0FB9, + SHADOW_RESULT__SIGMA_SD0 = 0x0FBA, + SHADOW_RESULT__SIGMA_SD0_HI = 0x0FBA, + SHADOW_RESULT__SIGMA_SD0_LO = 0x0FBB, + SHADOW_RESULT__PHASE_SD0 = 0x0FBC, + SHADOW_RESULT__PHASE_SD0_HI = 0x0FBC, + SHADOW_RESULT__PHASE_SD0_LO = 0x0FBD, + SHADOW_RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD0 = 0x0FBE, + SHADOW_RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD0_HI = 0x0FBE, + SHADOW_RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD0_LO = 0x0FBF, + SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_CROSSTALK_CORRECTED_MCPS_SD0 = 0x0FC0, + SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_CROSSTALK_CORRECTED_MCPS_SD0_HI = 0x0FC0, + SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_CROSSTALK_CORRECTED_MCPS_SD0_LO = 0x0FC1, + SHADOW_RESULT__MM_INNER_ACTUAL_EFFECTIVE_SPADS_SD0 = 0x0FC2, + SHADOW_RESULT__MM_INNER_ACTUAL_EFFECTIVE_SPADS_SD0_HI = 0x0FC2, + SHADOW_RESULT__MM_INNER_ACTUAL_EFFECTIVE_SPADS_SD0_LO = 0x0FC3, + SHADOW_RESULT__MM_OUTER_ACTUAL_EFFECTIVE_SPADS_SD0 = 0x0FC4, + SHADOW_RESULT__MM_OUTER_ACTUAL_EFFECTIVE_SPADS_SD0_HI = 0x0FC4, + SHADOW_RESULT__MM_OUTER_ACTUAL_EFFECTIVE_SPADS_SD0_LO = 0x0FC5, + SHADOW_RESULT__AVG_SIGNAL_COUNT_RATE_MCPS_SD0 = 0x0FC6, + SHADOW_RESULT__AVG_SIGNAL_COUNT_RATE_MCPS_SD0_HI = 0x0FC6, + SHADOW_RESULT__AVG_SIGNAL_COUNT_RATE_MCPS_SD0_LO = 0x0FC7, + SHADOW_RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD1 = 0x0FC8, + SHADOW_RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD1_HI = 0x0FC8, + SHADOW_RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD1_LO = 0x0FC9, + SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD1 = 0x0FCA, + SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD1_HI = 0x0FCA, + SHADOW_RESULT__PEAK_SIGNAL_COUNT_RATE_MCPS_SD1_LO = 0x0FCB, + SHADOW_RESULT__AMBIENT_COUNT_RATE_MCPS_SD1 = 0x0FCC, + SHADOW_RESULT__AMBIENT_COUNT_RATE_MCPS_SD1_HI = 0x0FCC, + SHADOW_RESULT__AMBIENT_COUNT_RATE_MCPS_SD1_LO = 0x0FCD, + SHADOW_RESULT__SIGMA_SD1 = 0x0FCE, + SHADOW_RESULT__SIGMA_SD1_HI = 0x0FCE, + SHADOW_RESULT__SIGMA_SD1_LO = 0x0FCF, + SHADOW_RESULT__PHASE_SD1 = 0x0FD0, + SHADOW_RESULT__PHASE_SD1_HI = 0x0FD0, + SHADOW_RESULT__PHASE_SD1_LO = 0x0FD1, + SHADOW_RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD1 = 0x0FD2, + SHADOW_RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD1_HI = 0x0FD2, + SHADOW_RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD1_LO = 0x0FD3, + SHADOW_RESULT__SPARE_0_SD1 = 0x0FD4, + SHADOW_RESULT__SPARE_0_SD1_HI = 0x0FD4, + SHADOW_RESULT__SPARE_0_SD1_LO = 0x0FD5, + SHADOW_RESULT__SPARE_1_SD1 = 0x0FD6, + SHADOW_RESULT__SPARE_1_SD1_HI = 0x0FD6, + SHADOW_RESULT__SPARE_1_SD1_LO = 0x0FD7, + SHADOW_RESULT__SPARE_2_SD1 = 0x0FD8, + SHADOW_RESULT__SPARE_2_SD1_HI = 0x0FD8, + SHADOW_RESULT__SPARE_2_SD1_LO = 0x0FD9, + SHADOW_RESULT__SPARE_3_SD1 = 0x0FDA, + SHADOW_RESULT__THRESH_INFO = 0x0FDB, + SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD0 = 0x0FDC, + SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD0_3 = 0x0FDC, + SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD0_2 = 0x0FDD, + SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD0_1 = 0x0FDE, + SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD0_0 = 0x0FDF, + SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD0 = 0x0FE0, + SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD0_3 = 0x0FE0, + SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD0_2 = 0x0FE1, + SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD0_1 = 0x0FE2, + SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD0_0 = 0x0FE3, + SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD0 = 0x0FE4, + SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD0_3 = 0x0FE4, + SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD0_2 = 0x0FE5, + SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD0_1 = 0x0FE6, + SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD0_0 = 0x0FE7, + SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD0 = 0x0FE8, + SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD0_3 = 0x0FE8, + SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD0_2 = 0x0FE9, + SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD0_1 = 0x0FEA, + SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD0_0 = 0x0FEB, + SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD1 = 0x0FEC, + SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD1_3 = 0x0FEC, + SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD1_2 = 0x0FED, + SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD1_1 = 0x0FEE, + SHADOW_RESULT_CORE__AMBIENT_WINDOW_EVENTS_SD1_0 = 0x0FEF, + SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD1 = 0x0FF0, + SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD1_3 = 0x0FF0, + SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD1_2 = 0x0FF1, + SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD1_1 = 0x0FF2, + SHADOW_RESULT_CORE__RANGING_TOTAL_EVENTS_SD1_0 = 0x0FF3, + SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD1 = 0x0FF4, + SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD1_3 = 0x0FF4, + SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD1_2 = 0x0FF5, + SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD1_1 = 0x0FF6, + SHADOW_RESULT_CORE__SIGNAL_TOTAL_EVENTS_SD1_0 = 0x0FF7, + SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD1 = 0x0FF8, + SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD1_3 = 0x0FF8, + SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD1_2 = 0x0FF9, + SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD1_1 = 0x0FFA, + SHADOW_RESULT_CORE__TOTAL_PERIODS_ELAPSED_SD1_0 = 0x0FFB, + SHADOW_RESULT_CORE__SPARE_0 = 0x0FFC, + SHADOW_PHASECAL_RESULT__REFERENCE_PHASE_HI = 0x0FFE, + SHADOW_PHASECAL_RESULT__REFERENCE_PHASE_LO = 0x0FFF, + }; + + enum DistanceMode { Short, Medium, Long, Unknown }; + + enum RangeStatus : uint8_t + { + RangeValid = 0, + + // "sigma estimator check is above the internal defined threshold" + // (sigma = standard deviation of measurement) + SigmaFail = 1, + + // "signal value is below the internal defined threshold" + SignalFail = 2, + + // "Target is below minimum detection threshold." + RangeValidMinRangeClipped = 3, + + // "phase is out of bounds" + // (nothing detected in range; try a longer distance mode if applicable) + OutOfBoundsFail = 4, + + // "HW or VCSEL failure" + HardwareFail = 5, + + // "The Range is valid but the wraparound check has not been done." + RangeValidNoWrapCheckFail = 6, + + // "Wrapped target, not matching phases" + // "no matching phase in other VCSEL period timing." + WrapTargetFail = 7, + + // "Internal algo underflow or overflow in lite ranging." + // ProcessingFail = 8: not used in API + + // "Specific to lite ranging." + // should never occur with this lib (which uses low power auto ranging, + // as the API does) + XtalkSignalFail = 9, + + // "1st interrupt when starting ranging in back to back mode. Ignore + // data." + // should never occur with this lib + SynchronizationInt = 10, // (the API spells this "syncronisation") + + // "All Range ok but object is result of multiple pulses merging together. + // Used by RQL for merged pulse detection" + // RangeValid MergedPulse = 11: not used in API + + // "Used by RQL as different to phase fail." + // TargetPresentLackOfSignal = 12: + + // "Target is below minimum detection threshold." + MinRangeFail = 13, + + // "The reported range is invalid" + // RangeInvalid = 14: can't actually be returned by API (range can never become negative, even after correction) + + // "No Update." + None = 255, + }; + + struct RangingData + { + uint16_t range_mm; + RangeStatus range_status; + float peak_signal_count_rate_MCPS; + float ambient_count_rate_MCPS; + }; + + RangingData ranging_data; + + uint8_t last_status; // status of last I2C transmission + VL53L1X(); + + void setAddress(uint8_t new_addr); + uint8_t getAddress() { return address; } + + bool init(bool io_2v8 = true); + + void writeReg(uint16_t registerAddr, uint8_t data); + void writeReg16Bit(uint16_t registerAddr, uint16_t data); + void writeReg32Bit(uint16_t registerAddr, uint32_t data); + uint8_t readReg(uint16_t registerAddr); + uint16_t readReg16Bit(uint16_t registerAddr); + uint32_t readReg32Bit(uint16_t registerAddr); + + bool setDistanceMode(DistanceMode mode); + DistanceMode getDistanceMode() { return distance_mode; } + + bool setMeasurementTimingBudget(uint32_t budget_us); + uint32_t getMeasurementTimingBudget(); + + void startContinuous(uint32_t period_ms); + void stopContinuous(); + uint16_t read(bool blocking = true); + uint16_t readRangeContinuousMillimeters(bool blocking = true) { return read(blocking); } // alias of read() + + // check if sensor has new reading available + // assumes interrupt is active low (GPIO_HV_MUX__CTRL bit 4 is 1) + bool dataReady() { + int isThereData = readReg(GPIO__TIO_HV_STATUS); + // printf("%x\r\n", isThereData); + return (isThereData & 0x01) == 0; + } + + static const char * rangeStatusToString(RangeStatus status); + + void setTimeout(uint16_t timeout) { io_timeout = timeout; } + uint16_t getTimeout() { return io_timeout; } + bool timeoutOccurred(); + + bool initReading(int addr, int timing_budget); + void turnOff(void); + void resetPin(void); + void turnOn(void); + int readFromOneSensor(void); + + + + private: + I2C _i2c; + DigitalOut _shutDown; + + // The Arduino two-wire interface uses a 7-bit number for the address, + // and sets the last bit correctly based on reads and writes + static const uint8_t AddressDefault = 0b0101001; + + // value used in measurement timing budget calculations + // assumes PresetMode is LOWPOWER_AUTONOMOUS + // + // vhv = LOWPOWER_AUTO_VHV_LOOP_DURATION_US + LOWPOWERAUTO_VHV_LOOP_BOUND + // (tuning parm default) * LOWPOWER_AUTO_VHV_LOOP_DURATION_US + // = 245 + 3 * 245 = 980 + // TimingGuard = LOWPOWER_AUTO_OVERHEAD_BEFORE_A_RANGING + + // LOWPOWER_AUTO_OVERHEAD_BETWEEN_A_B_RANGING + vhv + // = 1448 + 2100 + 980 = 4528 + static const uint32_t TimingGuard = 4528; + + // value in DSS_CONFIG__TARGET_TOTAL_RATE_MCPS register, used in DSS + // calculations + static const uint16_t TargetRate = 0x0A00; + + // for storing values read from RESULT__RANGE_STATUS (0x0089) + // through RESULT__PEAK_SIGNAL_COUNT_RATE_CROSSTALK_CORRECTED_MCPS_SD0_LOW + // (0x0099) + struct ResultBuffer + { + uint8_t range_status; + // uint8_t report_status: not used + uint8_t stream_count; + uint16_t dss_actual_effective_spads_sd0; + // uint16_t peak_signal_count_rate_mcps_sd0: not used + uint16_t ambient_count_rate_mcps_sd0; + // uint16_t sigma_sd0: not used + // uint16_t phase_sd0: not used + uint16_t final_crosstalk_corrected_range_mm_sd0; + uint16_t peak_signal_count_rate_crosstalk_corrected_mcps_sd0; + }; + + // making this static would save RAM for multiple instances as long as there + // aren't multiple sensors being read at the same time (e.g. on separate + // I2C buses) + ResultBuffer results; + + bool didInitialize; + + uint8_t address; + + uint16_t io_timeout; + bool did_timeout; + uint16_t timeout_start_ms; + + uint16_t fast_osc_frequency; + uint16_t osc_calibrate_val; + + bool calibrated; + uint8_t saved_vhv_init; + uint8_t saved_vhv_timeout; + + DistanceMode distance_mode; + + // Record the current time to check an upcoming timeout against + void startTimeout() { timeout_start_ms = t.read()*1000; } + + // Check if timeout is enabled (set to nonzero value) and has expired + bool checkTimeoutExpired() {return (io_timeout > 0) && ((uint16_t)(t.read()*1000 - timeout_start_ms) > io_timeout); } + + void setupManualCalibration(); + void readResults(); + void updateDSS(); + void getRangingData(); + + static uint32_t decodeTimeout(uint16_t reg_val); + static uint16_t encodeTimeout(uint32_t timeout_mclks); + static uint32_t timeoutMclksToMicroseconds(uint32_t timeout_mclks, uint32_t macro_period_us); + static uint32_t timeoutMicrosecondsToMclks(uint32_t timeout_us, uint32_t macro_period_us); + uint32_t calcMacroPeriod(uint8_t vcsel_period); + + // Convert count rate from fixed point 9.7 format to float + float countRateFixedToFloat(uint16_t count_rate_fixed) { return (float)count_rate_fixed / (1 << 7); } +}; +#endif \ No newline at end of file
--- a/main.cpp Tue Apr 23 09:45:23 2019 +0000 +++ b/main.cpp Mon May 27 05:38:15 2019 +0000 @@ -1,19 +1,3 @@ -/* WiFi Example - * Copyright (c) 2018 ARM Limited - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - //MQTT+WIFI @@ -30,7 +14,8 @@ #include "mbed.h" #include "TCPSocket.h" - +#include "VL53L1X.h" +#include <string> #define WIFI_IDW0XX1 2 #if (defined(TARGET_DISCO_L475VG_IOT01A) || defined(TARGET_DISCO_F413ZH)) @@ -52,7 +37,7 @@ MQTT::Message &message = md.message; logMessage("Message arrived: qos %d, retained %d, dup %d, packetid %d\r\n", message.qos, message.retained, message.dup, message.id); logMessage("Payload %.*s\r\n", message.payloadlen, (char*)message.payload); - ++arrivedcount; + //++arrivedcount; } @@ -146,14 +131,205 @@ // Close the socket to return its memory and bring down the network interface socket.close(); } +bool s1_init = true; +bool s2_init = true; +bool s3_init = true; +bool s4_init = true; +VL53L1X sensor1(PC_1,PC_0, PC_2); +VL53L1X sensor2(PC_1,PC_0, PC_3); +VL53L1X sensor3(PC_1,PC_0, PC_4); +VL53L1X sensor4(PC_1,PC_0, PC_5); +SPI acc (PA_7,PA_6,PA_5); +DigitalOut cs(PB_8); +char buffer[6]; +int16_t data[3]; +float x,y,z,w; +Timer t; +AnalogIn analog_value1(PA_2); +AnalogIn analog_value2(PA_4); +AnalogIn analog_value3(PB_1); +AnalogIn analog_value4(PA_3); +AnalogIn analog_value5(PB_0); +Serial pc(USBTX,USBRX); + +void sensor(void) +{ + double meas_a; + double meas_a1; + double meas_b; + double meas_b1; + double meas_c; + double meas_c1; + double meas_d; + double meas_d1; + double meas_e; + double meas_e1; + double outputv; + + double D1; + double D2; + double D3; + double D4; + + + + + sensor1.initReading(0x52,50000); + sensor2.initReading(0x27,50000); + sensor3.initReading(0x35,50000); + sensor4.initReading(0x37,50000); + sensor1.setDistanceMode(VL53L1X::Short); + sensor2.setDistanceMode(VL53L1X::Short); + sensor3.setDistanceMode(VL53L1X::Short); + sensor4.setDistanceMode(VL53L1X::Short); + cs=1; + acc.format(8,3); + acc.frequency(2000000); + cs=0; + acc.write(0x31); + acc.write(0x0B); + cs=1; + cs=0; + acc.write(0x2D); + acc.write(0x08); + cs=1; + + D1 = sensor1.readFromOneSensor(); + wait(0.1); + D2 = sensor2.readFromOneSensor(); + wait(0.1); + D3 = sensor3.readFromOneSensor(); + wait(0.1); + D4 = sensor4.readFromOneSensor(); + wait(0.1); + + cs=0; + acc.write(0x80|0x40|0x32); + for (int i=0;i<=5;i++) + { + buffer[i]=acc.write(0x00); + } + cs= 1; + data[0]=buffer[1]<<8|buffer[0]; + data[1]=buffer[3]<<8|buffer[2]; + data[2]=buffer[5]<<8|buffer[4]; + x=0.004*data[0]; + wait(0.1); + y=0.004*data[1]; + wait(0.1); + z=0.004*data[2]; + wait(0.1); + w=atan2(x,y)*(57.4); + wait(0.1); + meas_a = analog_value1.read(); + meas_a1 = meas_a * 3*25; + meas_b = analog_value2.read(); + meas_b1 = meas_b * 3*25; + meas_c = analog_value3.read(); + meas_c1 = meas_c * 3*25; + meas_d = analog_value4.read(); + meas_d1 = meas_d * 3*25; + meas_e = analog_value5.read(); + meas_e1 = meas_e * 3*25; + + + + + } + int main() -{ +{ + + + pc.baud (115200) ; + + double meas_a; + double meas_a1; + double meas_b; + double meas_b1; + double meas_c; + double meas_c1; + double meas_d; + double meas_d1; + double meas_e; + double meas_e1; + double outputv; + + double D1; + double D2; + double D3; + double D4; + + + + + sensor1.initReading(0x52,50000); + sensor2.initReading(0x27,50000); + sensor3.initReading(0x35,50000); + sensor4.initReading(0x37,50000); + sensor1.setDistanceMode(VL53L1X::Short); + sensor2.setDistanceMode(VL53L1X::Short); + sensor3.setDistanceMode(VL53L1X::Short); + sensor4.setDistanceMode(VL53L1X::Short); + cs=1; + acc.format(8,3); + acc.frequency(2000000); + cs=0; + acc.write(0x31); + acc.write(0x0B); + cs=1; + cs=0; + acc.write(0x2D); + acc.write(0x08); + cs=1; + + D1 = sensor1.readFromOneSensor(); + wait(0.1); + D2 = sensor2.readFromOneSensor(); + wait(0.1); + D3 = sensor3.readFromOneSensor(); + wait(0.1); + D4 = sensor4.readFromOneSensor(); + wait(0.1); + + cs=0; + acc.write(0x80|0x40|0x32); + for (int i=0;i<=5;i++) + { + buffer[i]=acc.write(0x00); + } + cs= 1; + data[0]=buffer[1]<<8|buffer[0]; + data[1]=buffer[3]<<8|buffer[2]; + data[2]=buffer[5]<<8|buffer[4]; + x=0.004*data[0]; + wait(0.1); + y=0.004*data[1]; + wait(0.1); + z=0.004*data[2]; + wait(0.1); + w=atan2(x,y)*(57.4); + wait(0.1); + meas_a = analog_value1.read(); + meas_a1 = meas_a * 3*25; + meas_b = analog_value2.read(); + meas_b1 = meas_b * 3*25; + meas_c = analog_value3.read(); + meas_c1 = meas_c * 3*25; + meas_d = analog_value4.read(); + meas_d1 = meas_d * 3*25; + meas_e = analog_value5.read(); + meas_e1 = meas_e * 3*25; + + + int count = 0; printf("WiFi example\n\n"); count = scan_demo(&wifi); + if (count == 0) { printf("No WIFI APNs found - can't continue further.\n"); return -1; @@ -182,7 +358,7 @@ // MQTT Example Start float version = 0.6; - char* topic = "test1"; + char* topic = "192.168.0.164"; logMessage("HelloMQTT: version is %.2f\r\n", version); @@ -195,7 +371,7 @@ MQTT::Client<MQTTNetwork, Countdown> client(mqttNetwork); - const char* hostname = "192.168.0.120"; + const char* hostname = "192.168.0.164"; int port = 1883; logMessage("Connecting to %s:%d\r\n", hostname, port); int rc = mqttNetwork.connect(hostname, port); @@ -212,48 +388,33 @@ if ((rc = client.subscribe(topic, MQTT::QOS2, messageArrived)) != 0) logMessage("rc from MQTT subscribe is %d\r\n", rc); - + MQTT::Message message; - + //pc.printf("%d,%d,%d,%d,%+1.2f,%+1.2f,%+1.2f,%+1.2f,%1.0f,%1.0f,%1.0f,%1.0f,%1.0f\n\r", +//sensor1.readFromOneSensor(), sensor2.readFromOneSensor(), sensor3.readFromOneSensor(), sensor4.readFromOneSensor(), +//x,y,z,w, meas_a1, meas_b1, meas_c1, meas_d1, meas_e1); // QoS 0 + char buf[100]; - sprintf(buf, "Hello World! QoS 0 message from app version %f\r\n", version); - message.qos = MQTT::QOS0; + sprintf(buf, "100"); + + + //sprintf(buf, "%d,%d,%d,%d,%+1.2f,%+1.2f,%+1.2f,%+1.2f,%1.0f,%1.0f,%1.0f,%1.0f,%1.0f\n\r", +//sensor1.readFromOneSensor(), sensor2.readFromOneSensor(), sensor3.readFromOneSensor(), sensor4.readFromOneSensor(), +//x,y,z,w, meas_a1, meas_b1, meas_c1, meas_d1, meas_e1); + + + + message.qos = MQTT::QOS1; message.retained = false; message.dup = false; message.payload = (void*)buf; message.payloadlen = strlen(buf)+1; rc = client.publish(topic, message); - while (arrivedcount < 1) - client.yield(100); - - // QoS 1 - sprintf(buf, "Hello World! QoS 1 message from app version %f\r\n", version); - message.qos = MQTT::QOS1; - message.payloadlen = strlen(buf)+1; - rc = client.publish(topic, message); - while (arrivedcount < 2) - client.yield(100); - - // QoS 2 - sprintf(buf, "Hello World! QoS 2 message from app version %f\r\n", version); - message.qos = MQTT::QOS2; - message.payloadlen = strlen(buf)+1; - rc = client.publish(topic, message); - while (arrivedcount < 3) - client.yield(100); - - if ((rc = client.unsubscribe(topic)) != 0) - logMessage("rc from unsubscribe was %d\r\n", rc); - - if ((rc = client.disconnect()) != 0) - logMessage("rc from disconnect was %d\r\n", rc); - - mqttNetwork.disconnect(); - - logMessage("Version %.2f: finish %d msgs\r\n", version, arrivedcount); - - return 0; - - + client.yield(100); + + + + + }
--- a/mbed_app.json Tue Apr 23 09:45:23 2019 +0000 +++ b/mbed_app.json Mon May 27 05:38:15 2019 +0000 @@ -6,11 +6,11 @@ }, "wifi-ssid": { "help": "WiFi SSID", - "value": "\"note9\"" + "value": "\"Tenda_267770\"" }, "wifi-password": { "help": "WiFi Password", - "value": "\"tp67651209\"" + "value": "\"0963354403\"" }, "wifi-tx": { "help": "TX pin for serial connection to external device",