A simple musical instrument application using pressure and distance measuring sensors

Dependencies:   MjGP2Y0E03 mbed

Information

日本語版がこのページ下半分にあります!

Japanese version is available lower half of this page.

What is this?

Watch this video.

A very simple musical instrument application using pressure and distance measuring sensors.

Hardware

The uchiwa tone has very simple hardware.

  • Microcontroller module : mbed LPC1768
  • Pressure sensor : Interlink Electronics FSR400
  • Distance measuring sensor : Sharp GP2Y0E03

The two sensor output goes into mbed, the pressure sensor controls the sound amplitude and distance controls frequency.
Sound waveform is stored on RAM in mbed. This waveform is played with those sensor parameters.
Output comes from DAC output of mbed, so the output becomes sound through external amplifier and speaker.

IMPORTANT

The distance measuring sensor GP2Y0E03 uses infra-red light reflection from objects.
In my case, for the reflecting object, I used "uchiwa (a Japanese fan)" is used.

Don't be so pessimistic, if you don't have the uchiwa.
It may be OK to use enough size of cardboard or something ;)

uchiwa_dog

hardware

Software

Some customization can be done in software.

Key/Pitch

The key of this instrument is made as "C".
When you get the (reflecting object's) distance of the "C", all 3 LED1, LED2 and LED3 will be turned-ON. This is a mechanism to help the player who does not have perfect pitch like me ;)
This reference tone (key) can be changed by REFERENCE_TONE which is set as an item from "Tone_list".

Pitch can be controlled also. Edit the frequency for "A" by REFERENCE_PITCH.

enum Tone_list {
    Tone_A      = 0,
    Tone_Ais,
    Tone_H,
    Tone_C,
    Tone_Cis,
    Tone_D,
    Tone_Dis,
    Tone_E,
    Tone_Eis,
    Tone_F,
    Tone_G,
    Tone_Gis,
};

#define     REFERENCE_TONE  ((float)Tone_C)
#define     REFERENCE_PITCH 442.0

Frequency control direction

The distance measuring sensor output controls the frequency.
Default setting is it generates lower frequency when the distance is shorter.
If you need opposite direction of frequency control, set CONTROL_DIRECTION as SHORT_HIGH.

#define     SHORT_HIGH  0
#define     SHORT_LOW   1
#define     CONTROL_DIRECTION   SHORT_LOW

Waveform

The uchiwa tone plays sound which is stored in RAM.
This waveform can be changed by selecting options.

The program calculates the waveform before start the instrument operation. The calculation is done in function of init() calling waveform_generator().

Sin wave

The default setting is WAVEFORM_SIN. That calculate sin wave.
By the way, if user press the pressure sensor strong, the amplitude becomes over 100%. The uchiwa tone handles this high amplitude situation as clipping, which becomes distortion.

Other waveform

WAVEFORM_SAWTOOTH and WAVEFORM_CUSTOM_HARMONICS options are available also. The WAVEFORM_SAWTOOTH may give different sound taste.

float waveform_generator( int i )
{
#define WAVEFORM_SIN
//#define WAVEFORM_SAWTOOTH
//#define WAVEFORM_CUSTOM_HARMONICS

WAVEFORM_CUSTOM_HARMONICS

The WAVEFORM_CUSTOM_HARMONICS gives you more options. The waveform is calculated with given parameters.
The waveform can be defined by each harmonics' (normalized) frequency, amplitude and phase.

The number of harmonics is arbitrary but if many harmonics are defined, it will take time.

#ifdef  WAVEFORM_CUSTOM_HARMONICS

    typedef struct  element_st {
        float   frequency;
        float   amplitude;
        float   phase;
    }
    element;

#define REF_AMPLITUDE   1.0
    static element e[] = {
        { 1.0,      REF_AMPLITUDE / 1.0,    0 * PI },
        { 3.0,      REF_AMPLITUDE / 3.0,    0 * PI },
        { 5.0,      REF_AMPLITUDE / 5.0,    0 * PI },
        { 3.33333,  REF_AMPLITUDE / 2.0,    0 * PI },//  nonintegral harmonics
    };

    float   f;
    r   = 0.0;

    for ( int x = 0; x < sizeof( e ) / sizeof( element ); x++ ) {
        f   = e[ x ].frequency * 2.0 * PI * ((float)i / (float)N_SAMPLES);
        r  += e[ x ].amplitude * cos( e[ x ].phase ) * sin( f );
        r  += e[ x ].amplitude * sin( e[ x ].phase ) * cos( f );
    }
#endif

Fully custom waveform

Of course you can make the waveform anything you want.
Fill up sample[16384] array with one cycle of your waveform.

Tips

Playing in right frequency

In default setting, when the distance measuring sensor gets distance for reference tone, all 3 LED1, LED2 and LED3 will be turned-ON.

There is an option to indicate the distance in heptatonic scale intervals. If the code compiled with #define OPERATION_AID, the LED, LED2 and LED3 will show the frequency is in those range (eighth note accuracy).

degreesol-faLED1LED2LED3
IdoONoffoff
IIreoffONoff
IIImiONONoff
IVfaoffoffON
VsolONoffON
VIlaoffONON
VIIsiONONON

Remark








これはなに?

このビデオを御覧ください.

圧力,測距センサを使った非常に単純な楽器アプリケーションです.

ハードウェア

「うちわトーン」のハードウェアはとても単純です.

2つのセンサの出力をmbedに接続.圧力センサが振幅を,距離が周波数を制御します.
音声波形はmbed内のRAMに保存されます.この音声波形がセンサからのパラメータに従って再生されます.
mbedのDAC出力を外部のアンプとスピーカと通すことによって音にします.

重要

測距センサ:GP2Y0E03は対象物からの赤外線の反射を用います.
私の場合,「うちわ」をその反射させるモノとして使いました.

でもうちわが用意できなくても凹む必要はありません
厚紙などでその代用が可能です.
uchiwa_dog

hardware

ソフトウェア

ソフトウェアによるカスタマイズが可能です.

キー/ピッチ

この楽器のキーは"C"にしてあります.
反射物(うちわ)を,その"C"の位置に持ってくると3個のLED,LED1,LED2,LED3が全て点灯します.これは私のような絶対音感の無い演奏者のために用意された仕組みです (^ ^;
この基準音(キー)はREFERENCE_TONEを「Tone_list」内の別のアイテムに設定することで変更可能です.

ピッチも変更可能です.基準音Aの周波数をREFERENCE_PITCHの値によって変更できます.

enum Tone_list {
    Tone_A      = 0,
    Tone_Ais,
    Tone_H,
    Tone_C,
    Tone_Cis,
    Tone_D,
    Tone_Dis,
    Tone_E,
    Tone_Eis,
    Tone_F,
    Tone_G,
    Tone_Gis,
};

#define     REFERENCE_TONE  ((float)Tone_C)
#define     REFERENCE_PITCH 442.0

周波数制御の方向

測距センサの出力で周波数が変わります.
デフォルト設定では測定された距離が近いほど低い音となります.
これを逆に設定するにはCONTROL_DIRECTIONをSHORT_HIGHに設定してください.

#define     SHORT_HIGH  0
#define     SHORT_LOW   1
#define     CONTROL_DIRECTION   SHORT_LOW

波形

うちわトーンではRAMに保存された音声を再生します.
波形はプション選択で変更可能です.

プログラムは楽器としての動作前に波形を計算します.計算はinit()関数から呼び出されるwaveform_generator()で行われます.

サイン波

WAVEFORM_SINがデフォルト設定となっています.サイン波を計算します.
ところで圧力センサを強く押すと振幅は100%を超えるようになっています.この場合,うちわトーンはクリッピング波形による歪んだ音を出力します.

その他の波形

その他WAVEFORM_SAWTOOTHWAVEFORM_CUSTOM_HARMONICSが用意されています. WAVEFORM_SAWTOOTHを選択すると違う音色が楽しめます.

float waveform_generator( int i )
{
#define WAVEFORM_SIN
//#define WAVEFORM_SAWTOOTH
//#define WAVEFORM_CUSTOM_HARMONICS

WAVEFORM_CUSTOM_HARMONICS (高調波カスタマイズ)

WAVEFORM_CUSTOM_HARMONICSによって更にカスタマイズ可能です.波形は設定したパラメータを元に計算します.
この波形は高調波毎の(正規化した)周波数,振幅,位相で定義されます.

高調波の数は任意ですが,たくさん定義すると計算に時間がかかります.

#ifdef  WAVEFORM_CUSTOM_HARMONICS

    typedef struct  element_st {
        float   frequency;
        float   amplitude;
        float   phase;
    }
    element;

#define REF_AMPLITUDE   1.0
    static element e[] = {
        { 1.0,      REF_AMPLITUDE / 1.0,    0 * PI },
        { 3.0,      REF_AMPLITUDE / 3.0,    0 * PI },
        { 5.0,      REF_AMPLITUDE / 5.0,    0 * PI },
        { 3.33333,  REF_AMPLITUDE / 2.0,    0 * PI },//  nonintegral harmonics
    };

    float   f;
    r   = 0.0;

    for ( int x = 0; x < sizeof( e ) / sizeof( element ); x++ ) {
        f   = e[ x ].frequency * 2.0 * PI * ((float)i / (float)N_SAMPLES);
        r  += e[ x ].amplitude * cos( e[ x ].phase ) * sin( f );
        r  += e[ x ].amplitude * sin( e[ x ].phase ) * cos( f );
    }
#endif

完全カスタム波形

もちろん波形は自由に作成したものを使うこともできます.
配列sample[16384]に一周期分の波形を保存ししてください.

ちょっとしたコツ

正確な周波数で演奏する

デフォルトの設定では,測距センサーの測定値が基準音を出すものになった時にLED1〜LED3が全て点灯するようになっています.

この他に7音階の距離を表示するオプションが用意されています. #define OPERATION_AIDを有効にしてコンパイルすると,周波数がそれぞれの範囲に入った時に,LED1〜LED3がそれを表示してくれます (1/8音精度).

degreesol-faLED1LED2LED3
IdoONoffoff
IIreoffONoff
IIImiONONoff
IVfaoffoffON
VsolONoffON
VIlaoffONON
VIIsiONONON

備考

Committer:
okano
Date:
Tue Apr 28 22:54:13 2015 +0000
Revision:
2:225f68a31496
Parent:
1:86ac6f8d9713
Child:
3:b72b559aaee0
test

Who changed what in which revision?

UserRevisionLine numberNew contents of line
okano 0:cc77dd0427d8 1 #include "mbed.h"
okano 0:cc77dd0427d8 2 #include "GP2Y0E03.h"
okano 0:cc77dd0427d8 3
okano 1:86ac6f8d9713 4 DigitalOut led( LED1 );
okano 0:cc77dd0427d8 5 AnalogIn key0( p19 );
okano 0:cc77dd0427d8 6 AnalogOut ao( p18 );
okano 0:cc77dd0427d8 7
okano 0:cc77dd0427d8 8 I2C i2c( p28, p27 );
okano 0:cc77dd0427d8 9 GP2Y0E03 distanceSensor(&i2c, 0x80);
okano 0:cc77dd0427d8 10
okano 0:cc77dd0427d8 11 #define PI 3.14159265
okano 1:86ac6f8d9713 12 #define N_SAMPLES 15000
okano 1:86ac6f8d9713 13 #define K 3.0
okano 2:225f68a31496 14 #define K2 10.0
okano 0:cc77dd0427d8 15
okano 1:86ac6f8d9713 16 Ticker out;
okano 1:86ac6f8d9713 17 short sample[ N_SAMPLES ];
okano 1:86ac6f8d9713 18 float amp;
okano 1:86ac6f8d9713 19 int count = 0;
okano 1:86ac6f8d9713 20 float ci = 1.0;
okano 2:225f68a31496 21 float base_tone;
okano 2:225f68a31496 22
okano 2:225f68a31496 23 enum Tone_list {
okano 2:225f68a31496 24 Tone_A = 0,
okano 2:225f68a31496 25 Tone_Ais,
okano 2:225f68a31496 26 Tone_B,
okano 2:225f68a31496 27 Tone_C,
okano 2:225f68a31496 28 Tone_Cis,
okano 2:225f68a31496 29 Tone_D,
okano 2:225f68a31496 30 Tone_Dis,
okano 2:225f68a31496 31 Tone_E,
okano 2:225f68a31496 32 Tone_Eis,
okano 2:225f68a31496 33 Tone_F,
okano 2:225f68a31496 34 Tone_G,
okano 2:225f68a31496 35 Tone_Gis,
okano 2:225f68a31496 36 };
okano 2:225f68a31496 37
okano 2:225f68a31496 38 void init( void );
okano 2:225f68a31496 39 void out_sample();
okano 2:225f68a31496 40
okano 2:225f68a31496 41 int main() {
okano 2:225f68a31496 42
okano 2:225f68a31496 43 float ai;
okano 2:225f68a31496 44
okano 2:225f68a31496 45 init();
okano 2:225f68a31496 46
okano 2:225f68a31496 47 while(1) {
okano 2:225f68a31496 48 amp = key0 * 2.0;
okano 2:225f68a31496 49 ai = distanceSensor.rd();
okano 2:225f68a31496 50
okano 2:225f68a31496 51 ci = (2.25 - ai * 1.5);
okano 2:225f68a31496 52
okano 2:225f68a31496 53 if ( (0.95 < ci) && (ci < 1.05) )
okano 2:225f68a31496 54 led = 1;
okano 2:225f68a31496 55 else
okano 2:225f68a31496 56 led = 0;
okano 2:225f68a31496 57
okano 2:225f68a31496 58 wait( 0.001 );
okano 2:225f68a31496 59 }
okano 2:225f68a31496 60 }
okano 0:cc77dd0427d8 61
okano 0:cc77dd0427d8 62 void init( void )
okano 0:cc77dd0427d8 63 {
okano 0:cc77dd0427d8 64 #if 1
okano 0:cc77dd0427d8 65 for ( int i = 0; i < N_SAMPLES; i++ )
okano 0:cc77dd0427d8 66 {
okano 1:86ac6f8d9713 67 sample[ i ] = (short)(32767.0 * sin( 2 * PI * ((float)i / (float)N_SAMPLES) ));
okano 0:cc77dd0427d8 68 }
okano 0:cc77dd0427d8 69 #else
okano 0:cc77dd0427d8 70 for ( int i = 0; i < N_SAMPLES; i++ )
okano 0:cc77dd0427d8 71 {
okano 0:cc77dd0427d8 72 sample[ i ] = (float)i / (float)N_SAMPLES;
okano 0:cc77dd0427d8 73 }
okano 0:cc77dd0427d8 74 #endif
okano 2:225f68a31496 75
okano 2:225f68a31496 76 base_tone = (442.0 * pow( 2.0, (float)Tone_C / 12.0 )) /K2 * K;
okano 2:225f68a31496 77
okano 2:225f68a31496 78 i2c.frequency(400000);
okano 2:225f68a31496 79 out.attach( &out_sample, 1.0 / ((float)(N_SAMPLES / K) * K2) );
okano 0:cc77dd0427d8 80 }
okano 0:cc77dd0427d8 81
okano 0:cc77dd0427d8 82 void out_sample()
okano 0:cc77dd0427d8 83 {
okano 1:86ac6f8d9713 84 ao = 0.5 + (amp * ((float)sample[ count % N_SAMPLES ] / 65536.0));
okano 2:225f68a31496 85 count += (int)(base_tone * ci);
okano 0:cc77dd0427d8 86 }