Het is kut
Dependencies: HIDScope biquadFilter mbed
Fork of KUT_HIDSCOPE by
main.cpp
- Committer:
- ofosakar
- Date:
- 2016-10-31
- Revision:
- 3:d4b8692e6697
- Parent:
- 2:ef6c30f459a5
- Child:
- 4:c8bab10bc897
File content as of revision 3:d4b8692e6697:
#include "mbed.h" #include "HIDScope.h" #include "BiQuad.h" #include "math.h" AnalogIn emg1(A0); HIDScope scope(6); Ticker ticker; //BiQuadChain bqc; //Bandpass butterworth filter + Notch butterworth filter. //Bandpass: 10 --- 500 Hz //Nothc: 50 +- 2 Hz //BiQuad bq1( 4.97164e-02, 9.94328e-02, 4.97164e-02, -3.04503e-01, 6.36149e-02 ); //BiQuad bq2( 1.00000e+00, -2.00000e+00, 1.00000e+00, -3.87549e-01, 4.72280e-01 ); //BiQuad bq3( 1.00000e+00, 2.00000e+00, 1.00000e+00, -1.95093e+00, 9.51645e-01 ); //BiQuad bq4( 1.00000e+00, -2.00000e+00, 1.00000e+00, -1.97996e+00, 9.80645e-01 ); //BiQuad bq5( 9.97389e-01, -1.97771e+00, 9.97389e-01, -1.97771e+00, 9.94778e-01 ); volatile float TOTAL_SAMPLE_SUM = 0; volatile long NUMBER_SAMPLES = 0; const int numEmgCache = 50; float emgCache[numEmgCache]; //sorted from new to old; const int numAvgCache = 50; float averageCache[numAvgCache]; //sorted from new to old; void addFirst(float newValue, float array[], int size) { for (int i = size - 2; i >= 0; i--) { array[i+1] = array[i]; } array[0] = newValue; } //shifts the array by adding the new emg value up front. //returns the new calculated average float movingAverage(float newValue) { float sum = 0; for (int i = numEmgCache - 2; i >= 0; i--) { emgCache[i+1] = emgCache[i]; sum += emgCache[i]; } emgCache[0] = newValue; sum += newValue; return sum / numEmgCache; } float sum(float array[], int size) { float sum = 0; for (int i = 0; i < size; i++) { sum += array[i]; } return sum; } float mean(float array[], int size) { return sum(array, size) / size; } float meanSquare(float array[], int size) { for(int i = 0; i < size; i++) { array[i] *= array[i]; } return sum(array, size) / size; } float variance(float array[], int size, float avg) { float squaredDifferences[size]; for (int i = 0; i < size; i++) { float difference = array[i] - avg; squaredDifferences[i] = difference*difference; } return mean(squaredDifferences, size); } float standardDeviation(float array[], int size, float avg) { return sqrt(variance(array, size, avg)); } int decide(float value, float threshold) { return value < threshold ? 0 : 1; } void tick() { float emg = emg1.read(); scope.set(0, emg); float filtered = movingAverage( fabs(emg) ); scope.set(1, filtered); TOTAL_SAMPLE_SUM += emg; NUMBER_SAMPLES++; addFirst(filtered, averageCache, numAvgCache); float avg = TOTAL_SAMPLE_SUM / NUMBER_SAMPLES; //TODO calibrate this value. float stdDev = standardDeviation(averageCache, numAvgCache, avg); scope.set(2, stdDev); float blocksize = 1000; if ((sizeof(averageCache)) > blocksize) { float rmsWithoutSquareRoot = meanSquare(averageCache, blocksize); float rms = sqrt(rmsWithoutSquareRoot); scope.set(3, rms); } else { float rmsWithoutSquareRoot = meanSquare(averageCache, ( sizeof(averageCache))); float rms = sqrt(rmsWithoutSquareRoot); scope.set(3, rms); } //float filtered = bqc.step( emg ); //scope.set(1, filtered); //scope.set(2, decide(filtered, 0.2f)); //scope.set(3, decide(filtered, 0.3f)); //scope.set(4, decide(filtered, 0.4f)); //scope.set(5, decide(filtered, 0.5f)); scope.send(); } int main() { //bqc.add( &bq1 ).add( &bq2 );//.add( &bq3 ).add( &bq4 ).add( &bq5 ); ticker.attach(&tick, 0.005); while (true); }