Het is kut

Dependencies:   HIDScope biquadFilter mbed

Fork of KUT_HIDSCOPE by Jan Boerman

main.cpp

Committer:
ofosakar
Date:
2016-10-31
Revision:
3:d4b8692e6697
Parent:
2:ef6c30f459a5
Child:
4:c8bab10bc897

File content as of revision 3:d4b8692e6697:

#include "mbed.h"
#include "HIDScope.h"
#include "BiQuad.h"
#include "math.h"

AnalogIn emg1(A0);

HIDScope scope(6);
Ticker ticker;

//BiQuadChain bqc;
//Bandpass butterworth filter + Notch butterworth filter.
//Bandpass: 10 --- 500 Hz
//Nothc:    50 +- 2 Hz
//BiQuad bq1( 4.97164e-02, 9.94328e-02, 4.97164e-02, -3.04503e-01, 6.36149e-02 );
//BiQuad bq2( 1.00000e+00, -2.00000e+00, 1.00000e+00, -3.87549e-01, 4.72280e-01 );
//BiQuad bq3( 1.00000e+00, 2.00000e+00, 1.00000e+00, -1.95093e+00, 9.51645e-01 );
//BiQuad bq4( 1.00000e+00, -2.00000e+00, 1.00000e+00, -1.97996e+00, 9.80645e-01 );
//BiQuad bq5( 9.97389e-01, -1.97771e+00, 9.97389e-01, -1.97771e+00, 9.94778e-01 );

volatile float TOTAL_SAMPLE_SUM = 0;
volatile long NUMBER_SAMPLES = 0;

const int numEmgCache = 50;
float emgCache[numEmgCache]; //sorted from new to old;

const int numAvgCache = 50;
float averageCache[numAvgCache]; //sorted from new to old;

void addFirst(float newValue, float array[], int size) {
    for (int i = size - 2; i >= 0; i--) {
        array[i+1] = array[i];
    }
    array[0] = newValue;
}

//shifts the array by adding the new emg value up front.
//returns the new calculated average
float movingAverage(float newValue) {
    float sum = 0;
    for (int i = numEmgCache - 2; i >= 0; i--) {
        emgCache[i+1] = emgCache[i];
        sum += emgCache[i];
    }
    emgCache[0] = newValue;
    sum += newValue;
    return sum / numEmgCache;
}

float sum(float array[], int size) {
    float sum = 0;
    for (int i = 0; i < size; i++) {
        sum += array[i];
    }
    return sum;
}

float mean(float array[], int size) {
    return sum(array, size) / size;
}

float meanSquare(float array[], int size) {
    for(int i = 0; i < size; i++) {
        array[i] *= array[i];
    }
    return sum(array, size) / size;
}

float variance(float array[], int size, float avg) {  
    float squaredDifferences[size];
    for (int i = 0; i < size; i++) {
        float difference = array[i] - avg;
        squaredDifferences[i] = difference*difference;
    }
    return mean(squaredDifferences, size);
}

float standardDeviation(float array[], int size, float avg) {
    return sqrt(variance(array, size, avg));
}

int decide(float value, float threshold) {
    return value < threshold ? 0 : 1;
}


void tick() {
    float emg = emg1.read();
    scope.set(0, emg);
    float filtered = movingAverage( fabs(emg) );
    scope.set(1, filtered);
    
    TOTAL_SAMPLE_SUM += emg;
    NUMBER_SAMPLES++;
    
    addFirst(filtered, averageCache, numAvgCache);
    float avg = TOTAL_SAMPLE_SUM / NUMBER_SAMPLES; //TODO calibrate this value.
    float stdDev = standardDeviation(averageCache, numAvgCache, avg);
    scope.set(2, stdDev);
    
    float blocksize = 1000;
    if ((sizeof(averageCache)) > blocksize) {
        float rmsWithoutSquareRoot = meanSquare(averageCache, blocksize);
        float rms = sqrt(rmsWithoutSquareRoot);
        scope.set(3, rms);
    } else {
        float rmsWithoutSquareRoot = meanSquare(averageCache, ( sizeof(averageCache)));
        float rms = sqrt(rmsWithoutSquareRoot);
        scope.set(3, rms);

    }    

    //float filtered = bqc.step( emg );
    //scope.set(1, filtered);
    
    //scope.set(2, decide(filtered, 0.2f));
    //scope.set(3, decide(filtered, 0.3f));
    //scope.set(4, decide(filtered, 0.4f));
    //scope.set(5, decide(filtered, 0.5f));
    
    scope.send();
}

int main()
{
   //bqc.add( &bq1 ).add( &bq2 );//.add( &bq3 ).add( &bq4 ).add( &bq5 );
   
   ticker.attach(&tick, 0.005);
   while (true);
}