Rong Syuan Lin
/
LSM9DS1_project_5_zerotorque
20181105
Fork of LSM9DS1_project_5_zerotorque by
Diff: LSM9DS1.cpp
- Revision:
- 0:c23e915f255b
- Child:
- 9:07de3af99031
diff -r 000000000000 -r c23e915f255b LSM9DS1.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LSM9DS1.cpp Sun Aug 05 13:15:56 2018 +0000 @@ -0,0 +1,401 @@ +#include "LSM9DS1.h" + +LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr) : i2c(sda, scl) +{ + // xgAddress and mAddress will store the 7-bit I2C address, if using I2C. + xgAddress = xgAddr; + mAddress = mAddr; +} + +uint16_t LSM9DS1::begin(gyro_scale gScl, accel_scale aScl, mag_scale mScl, + gyro_odr gODR, accel_odr aODR, mag_odr mODR) +{ + // Store the given scales in class variables. These scale variables + // are used throughout to calculate the actual g's, DPS,and Gs's. + gScale = gScl; + aScale = aScl; + mScale = mScl; + + // Once we have the scale values, we can calculate the resolution + // of each sensor. That's what these functions are for. One for each sensor + calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable + calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable + calcaRes(); // Calculate g / ADC tick, stored in aRes variable + + + // To verify communication, we can read from the WHO_AM_I register of + // each device. Store those in a variable so we can return them. + // The start of the addresses we want to read from + char cmd[2] = { + WHO_AM_I_XG, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + uint8_t xgTest = cmd[1]; // Read the accel/gyro WHO_AM_I + + // Reset to the address of the mag who am i + cmd[1] = WHO_AM_I_M; + // Write the address we are going to read from and don't end the transaction + i2c.write(mAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(mAddress, cmd+1, 1); + uint8_t mTest = cmd[1]; // Read the mag WHO_AM_I + + // Gyro initialization stuff: + initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc. + setGyroODR(gODR); // Set the gyro output data rate and bandwidth. + setGyroScale(gScale); // Set the gyro range + + // Accelerometer initialization stuff: + initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc. + setAccelODR(aODR); // Set the accel data rate. + setAccelScale(aScale); // Set the accel range. + + // Magnetometer initialization stuff: + initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc. + setMagODR(mODR); // Set the magnetometer output data rate. + setMagScale(mScale); // Set the magnetometer's range. + + // Once everything is initialized, return the WHO_AM_I registers we read: + return (xgTest << 8) | mTest; +} + +void LSM9DS1::initGyro() +{ + char cmd[4] = { + CTRL_REG1_G, + gScale | G_ODR_119_BW_14, + 0, // Default data out and int out + 0 // Default power mode and high pass settings + }; + + // Write the data to the gyro control registers + i2c.write(xgAddress, cmd, 4); +} + +void LSM9DS1::initAccel() +{ + char cmd[4] = { + CTRL_REG5_XL, + 0x38, // Enable all axis and don't decimate data in out Registers + (A_ODR_119 << 5) | (aScale << 3) | (A_BW_AUTO_SCALE), // 119 Hz ODR, set scale, and auto BW + 0 // Default resolution mode and filtering settings + }; + + // Write the data to the accel control registers + i2c.write(xgAddress, cmd, 4); +} + +void LSM9DS1::initMag() +{ + char cmd[4] = { + CTRL_REG1_M, + 0x10, // Default data rate, xy axes mode, and temp comp + mScale << 5, // Set mag scale + 0 // Enable I2C, write only SPI, not LP mode, Continuous conversion mode + }; + + // Write the data to the mag control registers + i2c.write(mAddress, cmd, 4); +} + +void LSM9DS1::readAccel() +{ + // The data we are going to read from the accel + char data[6]; + + // The start of the addresses we want to read from + char subAddress = OUT_X_L_XL; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, &subAddress, 1, true); + // Read in all 8 bit registers containing the axes data + i2c.read(xgAddress, data, 6); + + // Reassemble the data and convert to g + ax_raw = data[0] | (data[1] << 8); + ay_raw = data[2] | (data[3] << 8); + az_raw = data[4] | (data[5] << 8); + ax = ax_raw * aRes; + ay = ay_raw * aRes; + az = az_raw * aRes; +} + +void LSM9DS1::readMag() +{ + // The data we are going to read from the mag + char data[6]; + + // The start of the addresses we want to read from + char subAddress = OUT_X_L_M; + + // Write the address we are going to read from and don't end the transaction + i2c.write(mAddress, &subAddress, 1, true); + // Read in all 8 bit registers containing the axes data + i2c.read(mAddress, data, 6); + + // Reassemble the data and convert to degrees + mx_raw = data[0] | (data[1] << 8); + my_raw = data[2] | (data[3] << 8); + mz_raw = data[4] | (data[5] << 8); + mx = mx_raw * mRes; + my = my_raw * mRes; + mz = mz_raw * mRes; +} + +void LSM9DS1::readTemp() +{ + // The data we are going to read from the temp + char data[2]; + + // The start of the addresses we want to read from + char subAddress = OUT_TEMP_L; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, &subAddress, 1, true); + // Read in all 8 bit registers containing the axes data + i2c.read(xgAddress, data, 2); + + // Temperature is a 12-bit signed integer + temperature_raw = data[0] | (data[1] << 8); + + temperature_c = (float)temperature_raw / 8.0 + 25; + temperature_f = temperature_c * 1.8 + 32; +} + + +void LSM9DS1::readGyro() +{ + // The data we are going to read from the gyro + char data[6]; + + // The start of the addresses we want to read from + char subAddress = OUT_X_L_G; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, &subAddress, 1, true); + // Read in all 8 bit registers containing the axes data + i2c.read(xgAddress, data, 6); + + // Reassemble the data and convert to degrees/sec + gx_raw = data[0] | (data[1] << 8); + gy_raw = data[2] | (data[3] << 8); + gz_raw = data[4] | (data[5] << 8); + gx = gx_raw * gRes; + gy = gy_raw * gRes; + gz = gz_raw * gRes; +} + +void LSM9DS1::setGyroScale(gyro_scale gScl) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL_REG1_G, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + + // Then mask out the gyro scale bits: + cmd[1] &= 0xFF^(0x3 << 3); + // Then shift in our new scale bits: + cmd[1] |= gScl << 3; + + // Write the gyroscale out to the gyro + i2c.write(xgAddress, cmd, 2); + + // We've updated the sensor, but we also need to update our class variables + // First update gScale: + gScale = gScl; + // Then calculate a new gRes, which relies on gScale being set correctly: + calcgRes(); +} + +void LSM9DS1::setAccelScale(accel_scale aScl) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL_REG6_XL, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + + // Then mask out the accel scale bits: + cmd[1] &= 0xFF^(0x3 << 3); + // Then shift in our new scale bits: + cmd[1] |= aScl << 3; + + // Write the accelscale out to the accel + i2c.write(xgAddress, cmd, 2); + + // We've updated the sensor, but we also need to update our class variables + // First update aScale: + aScale = aScl; + // Then calculate a new aRes, which relies on aScale being set correctly: + calcaRes(); +} + +void LSM9DS1::setMagScale(mag_scale mScl) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL_REG2_M, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(mAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(mAddress, cmd+1, 1); + + // Then mask out the mag scale bits: + cmd[1] &= 0xFF^(0x3 << 5); + // Then shift in our new scale bits: + cmd[1] |= mScl << 5; + + // Write the magscale out to the mag + i2c.write(mAddress, cmd, 2); + + // We've updated the sensor, but we also need to update our class variables + // First update mScale: + mScale = mScl; + // Then calculate a new mRes, which relies on mScale being set correctly: + calcmRes(); +} + +void LSM9DS1::setGyroODR(gyro_odr gRate) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL_REG1_G, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + + // Then mask out the gyro odr bits: + cmd[1] &= (0x3 << 3); + // Then shift in our new odr bits: + cmd[1] |= gRate; + + // Write the gyroodr out to the gyro + i2c.write(xgAddress, cmd, 2); +} + +void LSM9DS1::setAccelODR(accel_odr aRate) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL_REG6_XL, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + + // Then mask out the accel odr bits: + cmd[1] &= 0xFF^(0x7 << 5); + // Then shift in our new odr bits: + cmd[1] |= aRate << 5; + + // Write the accelodr out to the accel + i2c.write(xgAddress, cmd, 2); +} + +void LSM9DS1::setMagODR(mag_odr mRate) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL_REG1_M, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(mAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(mAddress, cmd+1, 1); + + // Then mask out the mag odr bits: + cmd[1] &= 0xFF^(0x7 << 2); + // Then shift in our new odr bits: + cmd[1] |= mRate << 2; + + // Write the magodr out to the mag + i2c.write(mAddress, cmd, 2); +} + +void LSM9DS1::calcgRes() +{ + // Possible gyro scales (and their register bit settings) are: + // 245 DPS (00), 500 DPS (01), 2000 DPS (10). + switch (gScale) + { + case G_SCALE_245DPS: + gRes = 245.0 / 32768.0; + break; + case G_SCALE_500DPS: + gRes = 500.0 / 32768.0; + break; + case G_SCALE_2000DPS: + gRes = 2000.0 / 32768.0; + break; + } +} + +void LSM9DS1::calcaRes() +{ + // Possible accelerometer scales (and their register bit settings) are: + // 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100). + switch (aScale) + { + case A_SCALE_2G: + aRes = 2.0 / 32768.0; + break; + case A_SCALE_4G: + aRes = 4.0 / 32768.0; + break; + case A_SCALE_8G: + aRes = 8.0 / 32768.0; + break; + case A_SCALE_16G: + aRes = 16.0 / 32768.0; + break; + } +} + +void LSM9DS1::calcmRes() +{ + // Possible magnetometer scales (and their register bit settings) are: + // 2 Gs (00), 4 Gs (01), 8 Gs (10) 12 Gs (11). + switch (mScale) + { + case M_SCALE_4GS: + mRes = 4.0 / 32768.0; + break; + case M_SCALE_8GS: + mRes = 8.0 / 32768.0; + break; + case M_SCALE_12GS: + mRes = 12.0 / 32768.0; + break; + case M_SCALE_16GS: + mRes = 16.0 / 32768.0; + break; + } +} \ No newline at end of file