A fork of foc-ed_in_the_bot_compact modified to test motors using bayleyw's prius inverter ECU

Dependencies:   FastPWM mbed

Fork of foc-ed_in_the_bot_compact by N K

Committer:
nki
Date:
Wed Jun 15 05:24:52 2016 +0000
Revision:
12:264e942f904f
Parent:
10:6829abb438fc
VFD for induction motor

Who changed what in which revision?

UserRevisionLine numberNew contents of line
bwang 0:bac9c3a3a6ca 1 #include "mbed.h"
bwang 0:bac9c3a3a6ca 2 #include "math.h"
bwang 0:bac9c3a3a6ca 3 #include "PositionSensor.h"
bwang 0:bac9c3a3a6ca 4 #include "FastPWM.h"
bwang 0:bac9c3a3a6ca 5 #include "Transforms.h"
bwang 0:bac9c3a3a6ca 6 #include "config.h"
nki 12:264e942f904f 7 #include "filters.h"
bwang 0:bac9c3a3a6ca 8
bwang 1:7b61790f6be9 9 FastPWM *a;
bwang 1:7b61790f6be9 10 FastPWM *b;
bwang 1:7b61790f6be9 11 FastPWM *c;
bwang 0:bac9c3a3a6ca 12 DigitalOut en(EN);
bwang 1:7b61790f6be9 13 DigitalOut toggle(PC_10);
nki 12:264e942f904f 14 AnalogIn pot1(PC_5);
nki 12:264e942f904f 15 AnalogIn pot2(PC_4);
bwang 0:bac9c3a3a6ca 16
nki 12:264e942f904f 17
nki 12:264e942f904f 18 //PositionSensorEncoder pos(CPR, 0);
bwang 0:bac9c3a3a6ca 19
bwang 0:bac9c3a3a6ca 20 Serial pc(USBTX, USBRX);
bwang 0:bac9c3a3a6ca 21
bwang 1:7b61790f6be9 22 int state = 0;
bwang 1:7b61790f6be9 23 int adval1, adval2;
nki 12:264e942f904f 24 float ia, ib, ic, alpha, beta, d, q, vd, vq, p, flux_cmd, speed_cmd, flux_cmd_raw, speed_cmd_raw, volt_cmd;
bwang 2:eabe8feaaabb 25
bwang 1:7b61790f6be9 26 float ia_supp_offset = 0.0f, ib_supp_offset = 0.0f; //current sensor offset due to bias resistor inaccuracies, etc (mV)
bwang 1:7b61790f6be9 27
bwang 2:eabe8feaaabb 28 float d_integral = 0.0f, q_integral = 0.0f;
bwang 2:eabe8feaaabb 29 float last_d = 0.0f, last_q = 0.0f;
bwang 3:9b20da3f0055 30 float d_ref = -0.0f, q_ref = -50.0f;
bwang 2:eabe8feaaabb 31
nki 12:264e942f904f 32 MeanFilter filter_speed_cmd(0.999f);
nki 12:264e942f904f 33 MeanFilter filter_flux_cmd(0.999f);
nki 12:264e942f904f 34
bwang 4:a6669248ce4d 35 void commutate();
bwang 3:9b20da3f0055 36 void zero_current();
bwang 3:9b20da3f0055 37 void config_globals();
bwang 3:9b20da3f0055 38 void startup_msg();
bwang 2:eabe8feaaabb 39
bwang 1:7b61790f6be9 40 extern "C" void TIM1_UP_TIM10_IRQHandler(void) {
bwang 1:7b61790f6be9 41 if (TIM1->SR & TIM_SR_UIF ) {
bwang 4:a6669248ce4d 42 toggle = 1;
bwang 4:a6669248ce4d 43 ADC1->CR2 |= 0x40000000;
bwang 4:a6669248ce4d 44 volatile int delay;
bwang 4:a6669248ce4d 45 for (delay = 0; delay < 35; delay++);
bwang 4:a6669248ce4d 46 toggle = 0;
bwang 1:7b61790f6be9 47 adval1 = ADC1->DR;
bwang 1:7b61790f6be9 48 adval2 = ADC2->DR;
bwang 4:a6669248ce4d 49 commutate();
bwang 1:7b61790f6be9 50 }
bwang 1:7b61790f6be9 51 TIM1->SR = 0x00;
bwang 1:7b61790f6be9 52 }
bwang 1:7b61790f6be9 53
bwang 1:7b61790f6be9 54 void zero_current(){
bwang 1:7b61790f6be9 55 for (int i = 0; i < 1000; i++){
bwang 1:7b61790f6be9 56 ia_supp_offset += (float) (ADC1->DR);
bwang 1:7b61790f6be9 57 ib_supp_offset += (float) (ADC2->DR);
bwang 1:7b61790f6be9 58 ADC1->CR2 |= 0x40000000;
bwang 1:7b61790f6be9 59 wait_us(100);
bwang 1:7b61790f6be9 60 }
bwang 1:7b61790f6be9 61 ia_supp_offset /= 1000.0f;
bwang 1:7b61790f6be9 62 ib_supp_offset /= 1000.0f;
bwang 1:7b61790f6be9 63 ia_supp_offset = ia_supp_offset / 4096.0f * AVDD - I_OFFSET;
bwang 1:7b61790f6be9 64 ib_supp_offset = ib_supp_offset / 4096.0f * AVDD - I_OFFSET;
bwang 1:7b61790f6be9 65 }
bwang 0:bac9c3a3a6ca 66
bwang 0:bac9c3a3a6ca 67 void config_globals() {
bwang 0:bac9c3a3a6ca 68 pc.baud(115200);
bwang 0:bac9c3a3a6ca 69
bwang 1:7b61790f6be9 70 //Enable clocks for GPIOs
bwang 1:7b61790f6be9 71 RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN;
bwang 1:7b61790f6be9 72 RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN;
bwang 1:7b61790f6be9 73 RCC->AHB1ENR |= RCC_AHB1ENR_GPIOCEN;
bwang 1:7b61790f6be9 74
bwang 1:7b61790f6be9 75 RCC->APB2ENR |= RCC_APB2ENR_TIM1EN; //enable TIM1 clock
bwang 1:7b61790f6be9 76
bwang 1:7b61790f6be9 77 a = new FastPWM(PWMA);
bwang 1:7b61790f6be9 78 b = new FastPWM(PWMB);
bwang 1:7b61790f6be9 79 c = new FastPWM(PWMC);
bwang 1:7b61790f6be9 80
bwang 1:7b61790f6be9 81 NVIC_EnableIRQ(TIM1_UP_TIM10_IRQn); //Enable TIM1 IRQ
bwang 1:7b61790f6be9 82
bwang 1:7b61790f6be9 83 TIM1->DIER |= TIM_DIER_UIE; //enable update interrupt
bwang 1:7b61790f6be9 84 TIM1->CR1 = 0x40; //CMS = 10, interrupt only when counting up
bwang 1:7b61790f6be9 85 TIM1->CR1 |= TIM_CR1_ARPE; //autoreload on,
bwang 1:7b61790f6be9 86 TIM1->RCR |= 0x01; //update event once per up/down count of tim1
bwang 1:7b61790f6be9 87 TIM1->EGR |= TIM_EGR_UG;
bwang 1:7b61790f6be9 88
bwang 1:7b61790f6be9 89 TIM1->PSC = 0x00; //no prescaler, timer counts up in sync with the peripheral clock
bwang 1:7b61790f6be9 90 TIM1->ARR = 0x4650; //5 Khz
bwang 1:7b61790f6be9 91 TIM1->CCER |= ~(TIM_CCER_CC1NP); //Interupt when low side is on.
bwang 1:7b61790f6be9 92 TIM1->CR1 |= TIM_CR1_CEN;
bwang 1:7b61790f6be9 93
bwang 1:7b61790f6be9 94 //ADC Setup
bwang 1:7b61790f6be9 95 RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; // clock for ADC1
bwang 1:7b61790f6be9 96 RCC->APB2ENR |= RCC_APB2ENR_ADC2EN; // clock for ADC2
bwang 1:7b61790f6be9 97
bwang 1:7b61790f6be9 98 ADC->CCR = 0x00000006; //Regular simultaneous mode, 3 channels
bwang 1:7b61790f6be9 99
bwang 1:7b61790f6be9 100 ADC1->CR2 |= ADC_CR2_ADON; //ADC1 on
bwang 1:7b61790f6be9 101 ADC1->SQR3 = 0x0000004; //PA_4 as ADC1, sequence 0
bwang 0:bac9c3a3a6ca 102
bwang 1:7b61790f6be9 103 ADC2->CR2 |= ADC_CR2_ADON; //ADC2 ON
bwang 1:7b61790f6be9 104 ADC2->SQR3 = 0x00000008; //PB_0 as ADC2, sequence 1
bwang 1:7b61790f6be9 105
bwang 1:7b61790f6be9 106 GPIOA->MODER |= (1 << 8);
bwang 1:7b61790f6be9 107 GPIOA->MODER |= (1 << 9);
bwang 1:7b61790f6be9 108
bwang 1:7b61790f6be9 109 GPIOA->MODER |= (1 << 2);
bwang 1:7b61790f6be9 110 GPIOA->MODER |= (1 << 3);
bwang 1:7b61790f6be9 111
bwang 1:7b61790f6be9 112 GPIOA->MODER |= (1 << 0);
bwang 1:7b61790f6be9 113 GPIOA->MODER |= (1 << 1);
bwang 1:7b61790f6be9 114
bwang 1:7b61790f6be9 115 GPIOB->MODER |= (1 << 0);
bwang 1:7b61790f6be9 116 GPIOB->MODER |= (1 << 1);
bwang 1:7b61790f6be9 117
bwang 1:7b61790f6be9 118 GPIOC->MODER |= (1 << 2);
bwang 1:7b61790f6be9 119 GPIOC->MODER |= (1 << 3);
bwang 1:7b61790f6be9 120
bwang 1:7b61790f6be9 121 //DAC setup
bwang 1:7b61790f6be9 122 RCC->APB1ENR |= 0x20000000;
bwang 1:7b61790f6be9 123 DAC->CR |= DAC_CR_EN2;
bwang 1:7b61790f6be9 124
bwang 1:7b61790f6be9 125 GPIOA->MODER |= (1 << 10);
bwang 1:7b61790f6be9 126 GPIOA->MODER |= (1 << 11);
bwang 1:7b61790f6be9 127
bwang 1:7b61790f6be9 128 //Zero duty cycles
bwang 1:7b61790f6be9 129 set_dtc(a, 0.0f);
bwang 1:7b61790f6be9 130 set_dtc(b, 0.0f);
bwang 1:7b61790f6be9 131 set_dtc(c, 0.0f);
bwang 1:7b61790f6be9 132
bwang 1:7b61790f6be9 133 wait_ms(250);
bwang 1:7b61790f6be9 134 zero_current();
bwang 0:bac9c3a3a6ca 135 en = 1;
bwang 0:bac9c3a3a6ca 136 }
bwang 0:bac9c3a3a6ca 137
bwang 0:bac9c3a3a6ca 138 void startup_msg() {
nki 12:264e942f904f 139 pc.printf("%s\n\r\n\r", "Serial Begin");
bwang 0:bac9c3a3a6ca 140 pc.printf("\n\r");
bwang 0:bac9c3a3a6ca 141 }
bwang 0:bac9c3a3a6ca 142
bwang 4:a6669248ce4d 143 void commutate() {
nki 12:264e942f904f 144 //p = pos.GetElecPosition() - POS_OFFSET;
nki 12:264e942f904f 145 p+=1.0f*speed_cmd; //top speed 800 electrical hz
nki 12:264e942f904f 146
bwang 0:bac9c3a3a6ca 147 if (p < 0) p += 2 * PI;
bwang 0:bac9c3a3a6ca 148
bwang 2:eabe8feaaabb 149 float sin_p = sinf(p);
bwang 2:eabe8feaaabb 150 float cos_p = cosf(p);
nki 12:264e942f904f 151 //DAC->DHR12R2 = (unsigned int) (speed_cmd * 4096);
bwang 2:eabe8feaaabb 152
nki 12:264e942f904f 153 DAC->DHR12R2 = (unsigned int) ((((sin_p + 1.0f)/2.0f)*volt_cmd) * 3000);
bwang 0:bac9c3a3a6ca 154
bwang 1:7b61790f6be9 155 ia = ((float) adval1 / 4096.0f * AVDD - I_OFFSET - ia_supp_offset) / I_SCALE;
bwang 1:7b61790f6be9 156 ib = ((float) adval2 / 4096.0f * AVDD - I_OFFSET - ib_supp_offset) / I_SCALE;
bwang 2:eabe8feaaabb 157 ic = -ia - ib;
bwang 0:bac9c3a3a6ca 158
nki 12:264e942f904f 159 vd = volt_cmd;
nki 12:264e942f904f 160 vq = 0.0f;
nki 12:264e942f904f 161
nki 12:264e942f904f 162 if (vd < -1.0f) vd = -1.0f;
nki 12:264e942f904f 163 if (vd > 1.0f) vd = 1.0f;
nki 12:264e942f904f 164 if (vq < -1.0f) vq = -1.0f;
nki 12:264e942f904f 165 if (vq > 1.0f) vq = 1.0f;
nki 12:264e942f904f 166
nki 12:264e942f904f 167 float valpha = vd * cos_p - vq * sin_p;
nki 12:264e942f904f 168 float vbeta = vd * sin_p + vq * cos_p;
nki 12:264e942f904f 169
nki 12:264e942f904f 170 float va = valpha;
nki 12:264e942f904f 171 float vb = -0.5f * valpha - sqrtf(3) / 2.0f * vbeta;
nki 12:264e942f904f 172 float vc = -0.5f * valpha + sqrtf(3) / 2.0f * vbeta;
nki 12:264e942f904f 173
nki 12:264e942f904f 174 set_dtc(a, 0.5f + 0.5f * va);
nki 12:264e942f904f 175 set_dtc(b, 0.5f + 0.5f * vb);
nki 12:264e942f904f 176 set_dtc(c, 0.5f + 0.5f * vc);
nki 12:264e942f904f 177 }
nki 12:264e942f904f 178
nki 12:264e942f904f 179 int main() {
nki 12:264e942f904f 180 config_globals();
nki 12:264e942f904f 181 startup_msg();
nki 12:264e942f904f 182
nki 12:264e942f904f 183 for (;;) {
nki 12:264e942f904f 184 flux_cmd_raw = pot1.read();
nki 12:264e942f904f 185 speed_cmd_raw = pot2.read();
nki 12:264e942f904f 186 speed_cmd = filter_speed_cmd.Update(speed_cmd_raw);
nki 12:264e942f904f 187 flux_cmd = filter_flux_cmd.Update(flux_cmd_raw);
nki 12:264e942f904f 188
nki 12:264e942f904f 189 volt_cmd = flux_cmd * speed_cmd; // both values range from 0-1. speed corresponds to 0-x, where x is defined at the top of commutate().
nki 12:264e942f904f 190 //increase the coefficient of flux_cmd and cap volt_cmd from 0-1 to adjust location of the transition to constant voltage:frequency
nki 12:264e942f904f 191 volt_cmd *= 2.0f;
nki 12:264e942f904f 192 if(volt_cmd > 1.0f) {volt_cmd = 1.0f;}
nki 12:264e942f904f 193
nki 12:264e942f904f 194
nki 12:264e942f904f 195 //pc.printf("%f\t%f\r\n", flux_cmd, speed_cmd);
nki 12:264e942f904f 196 //wait_ms(50);
nki 12:264e942f904f 197 }
nki 12:264e942f904f 198 }
nki 12:264e942f904f 199
nki 12:264e942f904f 200 /*
nki 12:264e942f904f 201 if commutate() runs at 5kHz,
nki 12:264e942f904f 202 assume a 4 pole motor running at 6000RPM. 100RPS mechanical. 400Hz electrical. speed_cmd(0:1) should map from 0 to 400Hz.
nki 12:264e942f904f 203 since commutate() runs at 5kHz, position+= x*speed_cmd(0:1)
nki 12:264e942f904f 204
nki 12:264e942f904f 205 in a second, position should be 400*2pi. the increment per loop is 400*2pi/5000 8*pi/50 or 4*pi/25, or about 0.5
nki 12:264e942f904f 206 */
nki 12:264e942f904f 207 /*
nki 10:6829abb438fc 208 float u = ia;
nki 10:6829abb438fc 209 float v = ib;
bwang 2:eabe8feaaabb 210
bwang 2:eabe8feaaabb 211 alpha = u;
bwang 2:eabe8feaaabb 212 beta = 1 / sqrtf(3.0f) * u + 2 / sqrtf(3.0f) * v;
bwang 2:eabe8feaaabb 213
bwang 2:eabe8feaaabb 214 d = alpha * cos_p - beta * sin_p;
bwang 2:eabe8feaaabb 215 q = -alpha * sin_p - beta * cos_p;
bwang 2:eabe8feaaabb 216
bwang 3:9b20da3f0055 217 float d_err = d_ref - d;
bwang 3:9b20da3f0055 218 float q_err = q_ref - q;
bwang 2:eabe8feaaabb 219
bwang 2:eabe8feaaabb 220 d_integral += d_err * KI;
bwang 2:eabe8feaaabb 221 q_integral += q_err * KI;
bwang 2:eabe8feaaabb 222
bwang 2:eabe8feaaabb 223 if (q_integral > INTEGRAL_MAX) q_integral = INTEGRAL_MAX;
bwang 2:eabe8feaaabb 224 if (d_integral > INTEGRAL_MAX) d_integral = INTEGRAL_MAX;
bwang 2:eabe8feaaabb 225 if (q_integral < -INTEGRAL_MAX) q_integral = -INTEGRAL_MAX;
bwang 2:eabe8feaaabb 226 if (d_integral < -INTEGRAL_MAX) d_integral = -INTEGRAL_MAX;
bwang 2:eabe8feaaabb 227
bwang 2:eabe8feaaabb 228 vd = KP * d_err + d_integral;
bwang 2:eabe8feaaabb 229 vq = KP * q_err + q_integral;
nki 12:264e942f904f 230 */