Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Revision 1:57502185804c, committed 2021-10-30
- Comitter:
- natvich
- Date:
- Sat Oct 30 17:17:07 2021 +0000
- Parent:
- 0:dbbdab7e8cdc
- Commit message:
- Projet ATTITUDE IMU
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Fusion/Fusion.h Sat Oct 30 17:17:07 2021 +0000 @@ -0,0 +1,37 @@ +/** + * @file Fusion.h + * @author Seb Madgwick + * @brief Main header file for the library. This is the only file that needs to + * be included when using the library. + * + * Fusion is an ANSI C99 compliment sensor fusion library for sensor arrays of + * gyroscopes, accelerometers, and magnetometers. Fusion was specifically + * developed for use with embedded systems and has been optimised for execution + * speed. The library includes modules for: attitude and heading reference + * system (AHRS) sensor fusion, gyroscope bias correction, and a tilt- + * compensated compass. + */ + +#ifndef FUSION_H +#define FUSION_H + +//------------------------------------------------------------------------------ +// Includes + +#ifdef __cplusplus +extern "C" { +#endif + +#include "FusionAhrs.h" +#include "FusionBias.h" +#include "FusionCalibration.h" +//#include "FusionCompass.h" +#include "FusionTypes.h" + +#ifdef __cplusplus +} +#endif + +#endif +//------------------------------------------------------------------------------ +// End of file \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Fusion/FusionAhrs.c Sat Oct 30 17:17:07 2021 +0000 @@ -0,0 +1,292 @@ +/** + * @file FusionAhrs.c + * @author Seb Madgwick + * @brief The AHRS sensor fusion algorithm to combines gyroscope, accelerometer, + * and magnetometer measurements into a single measurement of orientation + * relative to the Earth (NWU convention). + * + * The algorithm behaviour is governed by a gain. A low gain will decrease the + * influence of the accelerometer and magnetometer so that the algorithm will + * better reject disturbances causes by translational motion and temporary + * magnetic distortions. However, a low gain will also increase the risk of + * drift due to gyroscope calibration errors. A typical gain value suitable for + * most applications is 0.5. + * + * The algorithm allows the application to define a minimum and maximum valid + * magnetic field magnitude. The algorithm will ignore magnetic measurements + * that fall outside of this range. This allows the algorithm to reject + * magnetic measurements that do not represent the direction of magnetic North. + * The typical magnitude of the Earth's magnetic field is between 20 uT and + * 70 uT. + * + * The algorithm can be used without a magnetometer. Measurements of + * orientation obtained using only gyroscope and accelerometer measurements + * can be expected to drift in the yaw component of orientation only. The + * application can reset the drift in yaw by setting the yaw to a specified + * angle at any time. + * + * The algorithm provides the measurement of orientation as a quaternion. The + * library includes functions for converting this quaternion to a rotation + * matrix and Euler angles. + * + * The algorithm also provides a measurement of linear acceleration and Earth + * acceleration. Linear acceleration is equal to the accelerometer measurement + * with the 1 g of gravity removed. Earth acceleration is a measurement of + * linear acceleration in the Earth coordinate frame. + */ + +//------------------------------------------------------------------------------ +// Includes + +#include "FusionAhrs.h" +#include <float.h> // FLT_MAX +#include <math.h> // atan2f, cosf, sinf + +//------------------------------------------------------------------------------ +// Definitions + +/** + * @brief Initial gain used during the initialisation period. The gain used by + * each algorithm iteration will ramp down from this initial gain to the + * specified algorithm gain over the initialisation period. + */ +#define INITIAL_GAIN (10.0f) + +/** + * @brief Initialisation period (in seconds). + */ +#define INITIALISATION_PERIOD (3.0f) + +//------------------------------------------------------------------------------ +// Functions + +/** + * @brief Initialises the AHRS algorithm structure. + * @param fusionAhrs AHRS algorithm structure. + * @param gain AHRS algorithm gain. + */ +void FusionAhrsInitialise(FusionAhrs * const fusionAhrs, const float gain) { + fusionAhrs->gain = gain; + fusionAhrs->minimumMagneticFieldSquared = 0.0f; + fusionAhrs->maximumMagneticFieldSquared = FLT_MAX; + fusionAhrs->quaternion = FUSION_QUATERNION_IDENTITY; + fusionAhrs->linearAcceleration = FUSION_VECTOR3_ZERO; + fusionAhrs->rampedGain = INITIAL_GAIN; + fusionAhrs->zeroYawPending = false; +} + +/** + * @brief Sets the AHRS algorithm gain. The gain must be equal or greater than + * zero. + * @param gain AHRS algorithm gain. + */ +void FusionAhrsSetGain(FusionAhrs * const fusionAhrs, const float gain) { + fusionAhrs->gain = gain; +} + +/** + * @brief Sets the minimum and maximum valid magnetic field magnitudes in uT. + * @param fusionAhrs AHRS algorithm structure. + * @param minimumMagneticField Minimum valid magnetic field magnitude. + * @param maximumMagneticField Maximum valid magnetic field magnitude. + */ +void FusionAhrsSetMagneticField(FusionAhrs * const fusionAhrs, const float minimumMagneticField, const float maximumMagneticField) { + fusionAhrs->minimumMagneticFieldSquared = minimumMagneticField * minimumMagneticField; + fusionAhrs->maximumMagneticFieldSquared = maximumMagneticField * maximumMagneticField; +} + +/** + * @brief Updates the AHRS algorithm. This function should be called for each + * new gyroscope measurement. + * @param fusionAhrs AHRS algorithm structure. + * @param gyroscope Gyroscope measurement in degrees per second. + * @param accelerometer Accelerometer measurement in g. + * @param magnetometer Magnetometer measurement in uT. + * @param samplePeriod Sample period in seconds. This is the difference in time + * between the current and previous gyroscope measurements. + */ +void FusionAhrsUpdate(FusionAhrs * const fusionAhrs, const FusionVector3 gyroscope, const FusionVector3 accelerometer, const FusionVector3 magnetometer, const float samplePeriod) { +#define Q fusionAhrs->quaternion.element // define shorthand label for more readable code + + // Calculate feedback error + FusionVector3 halfFeedbackError = FUSION_VECTOR3_ZERO; // scaled by 0.5 to avoid repeated multiplications by 2 + do { + // Abandon feedback calculation if accelerometer measurement invalid + if ((accelerometer.axis.x == 0.0f) && (accelerometer.axis.y == 0.0f) && (accelerometer.axis.z == 0.0f)) { + break; + } + + // Calculate direction of gravity assumed by quaternion + const FusionVector3 halfGravity = { + .axis.x = Q.x * Q.z - Q.w * Q.y, + .axis.y = Q.w * Q.x + Q.y * Q.z, + .axis.z = Q.w * Q.w - 0.5f + Q.z * Q.z, + }; // equal to 3rd column of rotation matrix representation scaled by 0.5 + + // Calculate accelerometer feedback error + halfFeedbackError = FusionVectorCrossProduct(FusionVectorFastNormalise(accelerometer), halfGravity); + + // Abandon magnetometer feedback calculation if magnetometer measurement invalid + const float magnetometerMagnitudeSquared = FusionVectorMagnitudeSquared(magnetometer); + if ((magnetometerMagnitudeSquared < fusionAhrs->minimumMagneticFieldSquared) || (magnetometerMagnitudeSquared > fusionAhrs->maximumMagneticFieldSquared)) { + break; + } + + // Compute direction of 'magnetic west' assumed by quaternion + const FusionVector3 halfWest = { + .axis.x = Q.x * Q.y + Q.w * Q.z, + .axis.y = Q.w * Q.w - 0.5f + Q.y * Q.y, + .axis.z = Q.y * Q.z - Q.w * Q.x + }; // equal to 2nd column of rotation matrix representation scaled by 0.5 + + // Calculate magnetometer feedback error + halfFeedbackError = FusionVectorAdd(halfFeedbackError, FusionVectorCrossProduct(FusionVectorFastNormalise(FusionVectorCrossProduct(accelerometer, magnetometer)), halfWest)); + + } while (false); + + // Ramp down gain until initialisation complete + if (fusionAhrs->gain == 0) { + fusionAhrs->rampedGain = 0; // skip initialisation if gain is zero + } + float feedbackGain = fusionAhrs->gain; + if (fusionAhrs->rampedGain > fusionAhrs->gain) { + fusionAhrs->rampedGain -= (INITIAL_GAIN - fusionAhrs->gain) * samplePeriod / INITIALISATION_PERIOD; + feedbackGain = fusionAhrs->rampedGain; + } + + // Convert gyroscope to radians per second scaled by 0.5 + FusionVector3 halfGyroscope = FusionVectorMultiplyScalar(gyroscope, 0.5f * FusionDegreesToRadians(1.0f)); + + // Apply feedback to gyroscope + halfGyroscope = FusionVectorAdd(halfGyroscope, FusionVectorMultiplyScalar(halfFeedbackError, feedbackGain)); + + // Integrate rate of change of quaternion + fusionAhrs->quaternion = FusionQuaternionAdd(fusionAhrs->quaternion, FusionQuaternionMultiplyVector(fusionAhrs->quaternion, FusionVectorMultiplyScalar(halfGyroscope, samplePeriod))); + + // Normalise quaternion + fusionAhrs->quaternion = FusionQuaternionFastNormalise(fusionAhrs->quaternion); + + // Calculate linear acceleration + const FusionVector3 gravity = { + .axis.x = 2.0f * (Q.x * Q.z - Q.w * Q.y), + .axis.y = 2.0f * (Q.w * Q.x + Q.y * Q.z), + .axis.z = 2.0f * (Q.w * Q.w - 0.5f + Q.z * Q.z), + }; // equal to 3rd column of rotation matrix representation + fusionAhrs->linearAcceleration = FusionVectorSubtract(accelerometer, gravity); + +#undef Q // undefine shorthand label +} + +/** + * @brief Updates the AHRS algorithm. This function should be called for each + * new gyroscope measurement. + * @param fusionAhrs AHRS algorithm structure. + * @param gyroscope Gyroscope measurement in degrees per second. + * @param accelerometer Accelerometer measurement in g. + * @param samplePeriod Sample period in seconds. This is the difference in time + * between the current and previous gyroscope measurements. + */ +void FusionAhrsUpdateWithoutMagnetometer(FusionAhrs * const fusionAhrs, const FusionVector3 gyroscope, const FusionVector3 accelerometer, const float samplePeriod) { + + // Update AHRS algorithm + FusionAhrsUpdate(fusionAhrs, gyroscope, accelerometer, FUSION_VECTOR3_ZERO, samplePeriod); + + // Zero yaw once initialisation complete + if (FusionAhrsIsInitialising(fusionAhrs) == true) { + fusionAhrs->zeroYawPending = true; + } else { + if (fusionAhrs->zeroYawPending == true) { + FusionAhrsSetYaw(fusionAhrs, 0.0f); + fusionAhrs->zeroYawPending = false; + } + } +} + +/** + * @brief Gets the quaternion describing the sensor relative to the Earth. + * @param fusionAhrs AHRS algorithm structure. + * @return Quaternion describing the sensor relative to the Earth. + */ +FusionQuaternion FusionAhrsGetQuaternion(const FusionAhrs * const fusionAhrs) { + return FusionQuaternionConjugate(fusionAhrs->quaternion); +} + +/** + * @brief Gets the linear acceleration measurement equal to the accelerometer + * measurement with the 1 g of gravity removed. + * @param fusionAhrs AHRS algorithm structure. + * @return Linear acceleration measurement. + */ +FusionVector3 FusionAhrsGetLinearAcceleration(const FusionAhrs * const fusionAhrs) { + return fusionAhrs->linearAcceleration; +} + +/** + * @brief Gets the Earth acceleration measurement equal to linear acceleration + * in the Earth coordinate frame. + * @param fusionAhrs AHRS algorithm structure. + * @return Earth acceleration measurement. + */ +FusionVector3 FusionAhrsGetEarthAcceleration(const FusionAhrs * const fusionAhrs) { +#define Q fusionAhrs->quaternion.element // define shorthand labels for more readable code +#define A fusionAhrs->linearAcceleration.axis + const float qwqw = Q.w * Q.w; // calculate common terms to avoid repeated operations + const float qwqx = Q.w * Q.x; + const float qwqy = Q.w * Q.y; + const float qwqz = Q.w * Q.z; + const float qxqy = Q.x * Q.y; + const float qxqz = Q.x * Q.z; + const float qyqz = Q.y * Q.z; + const FusionVector3 earthAcceleration = { + .axis.x = 2.0f * ((qwqw - 0.5f + Q.x * Q.x) * A.x + (qxqy - qwqz) * A.y + (qxqz + qwqy) * A.z), + .axis.y = 2.0f * ((qxqy + qwqz) * A.x + (qwqw - 0.5f + Q.y * Q.y) * A.y + (qyqz - qwqx) * A.z), + .axis.z = 2.0f * ((qxqz - qwqy) * A.x + (qyqz + qwqx) * A.y + (qwqw - 0.5f + Q.z * Q.z) * A.z), + }; // transpose of a rotation matrix representation of the quaternion multiplied with the linear acceleration + return earthAcceleration; +#undef Q // undefine shorthand label +#undef A +} + +/** + * @brief Reinitialise the AHRS algorithm. + * @param fusionAhrs AHRS algorithm structure. + */ +void FusionAhrsReinitialise(FusionAhrs * const fusionAhrs) { + fusionAhrs->quaternion = FUSION_QUATERNION_IDENTITY; + fusionAhrs->linearAcceleration = FUSION_VECTOR3_ZERO; + fusionAhrs->rampedGain = INITIAL_GAIN; +} + +/** + * @brief Returns true while the AHRS algorithm is initialising. + * @param fusionAhrs AHRS algorithm structure. + * @return True while the AHRS algorithm is initialising. + */ +bool FusionAhrsIsInitialising(const FusionAhrs * const fusionAhrs) { + return fusionAhrs->rampedGain > fusionAhrs->gain; +} + +/** + * @brief Sets the yaw component of the orientation measurement provided by the + * AHRS algorithm. This function can be used to reset drift in yaw when the + * AHRS algorithm is being used without a magnetometer. + * @param fusionAhrs AHRS algorithm structure. + * @param yaw Yaw angle in degrees. + */ +void FusionAhrsSetYaw(FusionAhrs * const fusionAhrs, const float yaw) { +#define Q fusionAhrs->quaternion.element // define shorthand label for more readable code + fusionAhrs->quaternion = FusionQuaternionNormalise(fusionAhrs->quaternion); // quaternion must be normalised accurately (approximation not sufficient) + const float inverseYaw = atan2f(Q.x * Q.y + Q.w * Q.z, Q.w * Q.w - 0.5f + Q.x * Q.x); // Euler angle of conjugate + const float halfInverseYawMinusOffset = 0.5f * (inverseYaw - FusionDegreesToRadians(yaw)); + const FusionQuaternion inverseYawQuaternion = { + .element.w = cosf(halfInverseYawMinusOffset), + .element.x = 0.0f, + .element.y = 0.0f, + .element.z = -1.0f * sinf(halfInverseYawMinusOffset), + }; + fusionAhrs->quaternion = FusionQuaternionMultiply(inverseYawQuaternion, fusionAhrs->quaternion); +#undef Q // undefine shorthand label +} + +//------------------------------------------------------------------------------ +// End of file \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Fusion/FusionAhrs.h Sat Oct 30 17:17:07 2021 +0000 @@ -0,0 +1,82 @@ +/** + * @file FusionAhrs.h + * @author Seb Madgwick + * @brief The AHRS sensor fusion algorithm to combines gyroscope, accelerometer, + * and magnetometer measurements into a single measurement of orientation + * relative to the Earth (NWU convention). + * + * The algorithm behaviour is governed by a gain. A low gain will decrease the + * influence of the accelerometer and magnetometer so that the algorithm will + * better reject disturbances causes by translational motion and temporary + * magnetic distortions. However, a low gain will also increase the risk of + * drift due to gyroscope calibration errors. A typical gain value suitable for + * most applications is 0.5. + * + * The algorithm allows the application to define a minimum and maximum valid + * magnetic field magnitude. The algorithm will ignore magnetic measurements + * that fall outside of this range. This allows the algorithm to reject + * magnetic measurements that do not represent the direction of magnetic North. + * The typical magnitude of the Earth's magnetic field is between 20 uT and + * 70 uT. + * + * The algorithm can be used without a magnetometer. Measurements of + * orientation obtained using only gyroscope and accelerometer measurements + * can be expected to drift in the yaw component of orientation only. The + * application can reset the drift in yaw by setting the yaw to a specified + * angle at any time. + * + * The algorithm provides the measurement of orientation as a quaternion. The + * library includes functions for converting this quaternion to a rotation + * matrix and Euler angles. + * + * The algorithm also provides a measurement of linear acceleration and Earth + * acceleration. Linear acceleration is equal to the accelerometer measurement + * with the 1 g of gravity removed. Earth acceleration is a measurement of + * linear acceleration in the Earth coordinate frame. + */ + +#ifndef FUSION_AHRS_H +#define FUSION_AHRS_H + +//------------------------------------------------------------------------------ +// Includes + +#include "FusionTypes.h" +#include <stdbool.h> + +//------------------------------------------------------------------------------ +// Definitions + +/** + * @brief AHRS algorithm structure. Structure members are used internally and + * should not be used by the user application. + */ +typedef struct { + float gain; + float minimumMagneticFieldSquared; + float maximumMagneticFieldSquared; + FusionQuaternion quaternion; // describes the Earth relative to the sensor + FusionVector3 linearAcceleration; + float rampedGain; + bool zeroYawPending; +} FusionAhrs; + +//------------------------------------------------------------------------------ +// Function prototypes + +void FusionAhrsInitialise(FusionAhrs * const fusionAhrs, const float gain); +void FusionAhrsSetGain(FusionAhrs * const fusionAhrs, const float gain); +void FusionAhrsSetMagneticField(FusionAhrs * const fusionAhrs, const float minimumMagneticField, const float maximumMagneticField); +void FusionAhrsUpdate(FusionAhrs * const fusionAhrs, const FusionVector3 gyroscope, const FusionVector3 accelerometer, const FusionVector3 magnetometer, const float samplePeriod); +void FusionAhrsUpdateWithoutMagnetometer(FusionAhrs * const fusionAhrs, const FusionVector3 gyroscope, const FusionVector3 accelerometer, const float samplePeriod); +FusionQuaternion FusionAhrsGetQuaternion(const FusionAhrs * const fusionAhrs); +FusionVector3 FusionAhrsGetLinearAcceleration(const FusionAhrs * const fusionAhrs); +FusionVector3 FusionAhrsGetEarthAcceleration(const FusionAhrs * const fusionAhrs); +void FusionAhrsReinitialise(FusionAhrs * const fusionAhrs); +bool FusionAhrsIsInitialising(const FusionAhrs * const fusionAhrs); +void FusionAhrsSetYaw(FusionAhrs * const fusionAhrs, const float yaw); + +#endif + +//------------------------------------------------------------------------------ +// End of file \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Fusion/FusionBias.c Sat Oct 30 17:17:07 2021 +0000 @@ -0,0 +1,89 @@ +/** + * @file FusionBias.c + * @author Seb Madgwick + * @brief The gyroscope bias correction algorithm achieves run-time calibration + * of the gyroscope bias. The algorithm will detect when the gyroscope is + * stationary for a set period of time and then begin to sample gyroscope + * measurements to calculate the bias as an average. + */ + +//------------------------------------------------------------------------------ +// Includes + +#include "FusionBias.h" +#include "math.h" // fabs + +//------------------------------------------------------------------------------ +// Definitions + +/** + * @brief Minimum stationary period (in seconds) after which the the algorithm + * becomes active and begins sampling gyroscope measurements. + */ +#define STATIONARY_PERIOD (5.0f) // 5.0 + +/** + * @brief Corner frequency (in Hz) of the high-pass filter used to sample the + * gyroscope bias. + */ +#define CORNER_FREQUENCY (0.02f) //0.02 + +//------------------------------------------------------------------------------ +// Functions + +/** + * @brief Initialises the gyroscope bias correction algorithm. + * @param fusionBias FusionBias structure. + * @param threshold Gyroscope threshold (in degrees per second) below which the + * gyroscope is detected stationary. + * @param samplePeriod Nominal sample period (in seconds) corresponding the rate + * at which the application will update the algorithm. + */ +void FusionBiasInitialise(FusionBias * const fusionBias, const float threshold, const float samplePeriod) { + fusionBias->threshold = threshold; + fusionBias->samplePeriod = samplePeriod; + fusionBias->filterCoefficient = (2.0f * M_PI * CORNER_FREQUENCY) * fusionBias->samplePeriod; + fusionBias->stationaryTimer = 0.0f; + fusionBias->gyroscopeBias = FUSION_VECTOR3_ZERO; +} + +/** + * @brief Updates the gyroscope bias correction algorithm and returns the + * corrected gyroscope measurement. + * @param fusionBias FusionBias structure. + * @param gyroscope Gyroscope measurement in degrees per second. + * @return Corrected gyroscope measurement in degrees per second. + */ +FusionVector3 FusionBiasUpdate(FusionBias * const fusionBias, FusionVector3 gyroscope) { + + // Subtract bias from gyroscope measurement + gyroscope = FusionVectorSubtract(gyroscope, fusionBias->gyroscopeBias); + + // Reset stationary timer if gyroscope not stationary + if ((fabs(gyroscope.axis.x) > fusionBias->threshold) || (fabs(gyroscope.axis.y) > fusionBias->threshold) || (fabs(gyroscope.axis.z) > fusionBias->threshold)) { + fusionBias->stationaryTimer = 0.0f; + return gyroscope; + } + + // Increment stationary timer while gyroscope stationary + if (fusionBias->stationaryTimer < STATIONARY_PERIOD) { + fusionBias->stationaryTimer += fusionBias->samplePeriod; + return gyroscope; + } + + // Adjust bias if stationary timer has elapsed + fusionBias->gyroscopeBias = FusionVectorAdd(fusionBias->gyroscopeBias, FusionVectorMultiplyScalar(gyroscope, fusionBias->filterCoefficient)); + return gyroscope; +} + +/** + * @brief Returns true if the gyroscope bias correction algorithm is active. + * @param fusionBias FusionBias structure. + * @return True if the gyroscope bias correction algorithm is active. + */ +bool FusionBiasIsActive(FusionBias * const fusionBias) { + return fusionBias->stationaryTimer >= STATIONARY_PERIOD; +} + +//------------------------------------------------------------------------------ +// End of file \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Fusion/FusionBias.h Sat Oct 30 17:17:07 2021 +0000 @@ -0,0 +1,44 @@ +/** + * @file FusionBias.h + * @author Seb Madgwick + * @brief The gyroscope bias correction algorithm achieves run-time calibration + * of the gyroscope bias. The algorithm will detect when the gyroscope is + * stationary for a set period of time and then begin to sample gyroscope + * measurements to calculate the bias as an average. + */ + +#ifndef FUSION_BIAS_H +#define FUSION_BIAS_H + +//------------------------------------------------------------------------------ +// Includes + +#include "FusionTypes.h" +#include <stdbool.h> + +//------------------------------------------------------------------------------ +// Definitions + +/** + * @brief Gyroscope bias correction algorithm structure. Structure members are + * used internally and should not be used by the user application. + */ +typedef struct { + float threshold; + float samplePeriod; + float filterCoefficient; + float stationaryTimer; + FusionVector3 gyroscopeBias; +} FusionBias; + +//------------------------------------------------------------------------------ +// Function prototypes + +void FusionBiasInitialise(FusionBias * const fusionBias, const float threshold, const float samplePeriod); +FusionVector3 FusionBiasUpdate(FusionBias * const fusionBias, FusionVector3 gyroscope); +bool FusionBiasIsActive(FusionBias * const fusionBias); + +#endif + +//------------------------------------------------------------------------------ +// End of file \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Fusion/FusionCalibration.h Sat Oct 30 17:17:07 2021 +0000 @@ -0,0 +1,49 @@ +/** + * @file FusionCalibration.h + * @author Seb Madgwick + * @brief Gyroscope, accelerometer, and magnetometer calibration model. + * + * Static inline implementations are used to optimise for increased execution + * speed. + */ + +#ifndef FUSION_CALIBRATION_H +#define FUSION_CALIBRATION_H + +//------------------------------------------------------------------------------ +// Includes + +#include "FusionTypes.h" + +//------------------------------------------------------------------------------ +// Inline functions + +/** + * @brief Gyroscope and accelerometer calibration model. + * @param uncalibrated Uncalibrated gyroscope or accelerometer measurement in + * lsb. + * @param misalignment Misalignment matrix (may not be a true rotation matrix). + * @param sensitivity Sensitivity in g per lsb for an accelerometer and degrees + * per second per lsb for a gyroscope. + * @param bias Bias in lsb. + * @return Calibrated gyroscope or accelerometer measurement. + */ +static inline __attribute__((always_inline)) FusionVector3 FusionCalibrationInertial(const FusionVector3 uncalibrated, const FusionRotationMatrix misalignment, const FusionVector3 sensitivity, const FusionVector3 bias) { + return FusionRotationMatrixMultiplyVector(misalignment, FusionVectorHadamardProduct(FusionVectorSubtract(uncalibrated, bias), sensitivity)); +} + +/** + * @brief Magnetometer calibration model. + * @param magnetometer Uncalibrated magnetometer measurement in uT. + * @param softIronMatrix Soft-iron matrix (may not be a true rotation matrix). + * @param hardIronBias Hard-iron bias in uT. + * @return Calibrated magnetometer measurement. + */ +static inline __attribute__((always_inline)) FusionVector3 FusionCalibrationMagnetic(const FusionVector3 uncalibrated, const FusionRotationMatrix softIronMatrix, const FusionVector3 hardIronBias) { + return FusionVectorSubtract(FusionRotationMatrixMultiplyVector(softIronMatrix, uncalibrated), hardIronBias); +} + +#endif + +//------------------------------------------------------------------------------ +// End of file \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Fusion/FusionTypes.h Sat Oct 30 17:17:07 2021 +0000 @@ -0,0 +1,473 @@ +/** + * @file FusionTypes.h + * @author Seb Madgwick + * @brief Common types and their associated operations. + * + * Static inline implementations are used to optimise for increased execution + * speed. + */ + +#ifndef FUSION_TYPES_H +#define FUSION_TYPES_H + +//------------------------------------------------------------------------------ +// Includes + +#include <math.h> // M_PI, sqrtf, atan2f, asinf +#include <stdint.h> // int32_t + +//------------------------------------------------------------------------------ +// Definitions + +/** + * @brief Three-dimensional spacial vector. + */ +typedef union { + float array[3]; + + struct { + float x; + float y; + float z; + } axis; +} FusionVector3; + +/** + * @brief Quaternion. This library uses the conversion of placing the 'w' + * element as the first element. Other implementations may place the 'w' + * element as the last element. + */ +typedef union { + float array[4]; + + struct { + float w; + float x; + float y; + float z; + } element; +} FusionQuaternion; + +/** + * @brief Rotation matrix in row-major order. + * See http://en.wikipedia.org/wiki/Row-major_order + */ +typedef union { + float array[9]; + + struct { + float xx; + float xy; + float xz; + float yx; + float yy; + float yz; + float zx; + float zy; + float zz; + } element; +} FusionRotationMatrix; + +/** + * @brief Euler angles union. The Euler angles are in the Aerospace sequence + * also known as the ZYX sequence. + */ +typedef union { + float array[3]; + + struct { + float roll; + float pitch; + float yaw; + } angle; +} FusionEulerAngles; + +/** + * @brief Zero-length vector definition. + */ +#define FUSION_VECTOR3_ZERO ((FusionVector3){ .array = {0.0f, 0.0f, 0.0f} }) + +/** + * @brief Quaternion identity definition to represent an aligned of + * orientation. + */ +#define FUSION_QUATERNION_IDENTITY ((FusionQuaternion){ .array = {1.0f, 0.0f, 0.0f, 0.0f} }) + +/** + * @brief Rotation matrix identity definition to represent an aligned of + * orientation. + */ +#define FUSION_ROTATION_MATRIX_IDENTITY ((FusionRotationMatrix){ .array = {1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f} }) + +/** + * @brief Euler angles zero definition to represent an aligned of orientation. + */ +#define FUSION_EULER_ANGLES_ZERO ((FusionEulerAngles){ .array = {0.0f, 0.0f, 0.0f} }) + +/** + * @brief Definition of M_PI. Some compilers may not define this in math.h. + */ +#ifndef M_PI +#define M_PI 3.14159265358979323846 +#endif + +//------------------------------------------------------------------------------ +// Inline functions - Degrees and radians conversion + +/** + * @brief Converts degrees to radians. + * @param degrees Degrees. + * @return Radians. + */ +static inline __attribute__((always_inline)) float FusionDegreesToRadians(const float degrees) { + return degrees * ((float) M_PI / 180.0f); +} + +/** + * @brief Converts radians to degrees. + * @param radians Radians. + * @return Degrees. + */ +static inline __attribute__((always_inline)) float FusionRadiansToDegrees(const float radians) { + return radians * (180.0f / (float) M_PI); +} + +//------------------------------------------------------------------------------ +// Inline functions - Fast inverse square root + +/** + * @brief Calculates the reciprocal of the square root. + * See http://en.wikipedia.org/wiki/Fast_inverse_square_root + * @param x Operand. + * @return Reciprocal of the square root of x. + */ +static inline __attribute__((always_inline)) float FusionFastInverseSqrt(const float x) { + float halfx = 0.5f * x; + float y = x; + int32_t i = *(int32_t*) & y; + i = 0x5f3759df - (i >> 1); + y = *(float*) &i; + y = y * (1.5f - (halfx * y * y)); + return y; +} + +//------------------------------------------------------------------------------ +// Inline functions - Vector operations + +/** + * @brief Adds two vectors. + * @param vectorA First vector of the operation. + * @param vectorB Second vector of the operation. + * @return Sum of vectorA and vectorB. + */ +static inline __attribute__((always_inline)) FusionVector3 FusionVectorAdd(const FusionVector3 vectorA, const FusionVector3 vectorB) { + FusionVector3 result; + result.axis.x = vectorA.axis.x + vectorB.axis.x; + result.axis.y = vectorA.axis.y + vectorB.axis.y; + result.axis.z = vectorA.axis.z + vectorB.axis.z; + return result; +} + +/** + * @brief Subtracts two vectors. + * @param vectorA First vector of the operation. + * @param vectorB Second vector of the operation. + * @return vectorB subtracted from vectorA. + */ +static inline __attribute__((always_inline)) FusionVector3 FusionVectorSubtract(const FusionVector3 vectorA, const FusionVector3 vectorB) { + FusionVector3 result; + result.axis.x = vectorA.axis.x - vectorB.axis.x; + result.axis.y = vectorA.axis.y - vectorB.axis.y; + result.axis.z = vectorA.axis.z - vectorB.axis.z; + return result; +} + +/** + * @brief Multiplies vector by a scalar. + * @param vector Vector to be multiplied. + * @param scalar Scalar to be multiplied. + * @return Vector multiplied by scalar. + */ +static inline __attribute__((always_inline)) FusionVector3 FusionVectorMultiplyScalar(const FusionVector3 vector, const float scalar) { + FusionVector3 result; + result.axis.x = vector.axis.x * scalar; + result.axis.y = vector.axis.y * scalar; + result.axis.z = vector.axis.z * scalar; + return result; +} + +/** + * @brief Calculates the Hadamard product (element-wise multiplication) of two + * vectors. + * @param vectorA First vector of the operation. + * @param vectorB Second vector of the operation. + * @return Hadamard product of vectorA and vectorB. + */ +static inline __attribute__((always_inline)) FusionVector3 FusionVectorHadamardProduct(const FusionVector3 vectorA, const FusionVector3 vectorB) { + FusionVector3 result; + result.axis.x = vectorA.axis.x * vectorB.axis.x; + result.axis.y = vectorA.axis.y * vectorB.axis.y; + result.axis.z = vectorA.axis.z * vectorB.axis.z; + return result; +} + +/** + * @brief Calculates the cross-product of two vectors. + * @param vectorA First vector of the operation. + * @param vectorB Second vector of the operation. + * @return Cross-product of vectorA and vectorB. + */ +static inline __attribute__((always_inline)) FusionVector3 FusionVectorCrossProduct(const FusionVector3 vectorA, const FusionVector3 vectorB) { +#define A vectorA.axis // define shorthand labels for more readable code +#define B vectorB.axis + FusionVector3 result; + result.axis.x = A.y * B.z - A.z * B.y; + result.axis.y = A.z * B.x - A.x * B.z; + result.axis.z = A.x * B.y - A.y * B.x; + return result; +#undef A // undefine shorthand labels +#undef B +} + +/** + * @brief Calculates the vector magnitude squared. + * @param vector Vector of the operation. + * @return Vector magnitude squared. + */ +static inline __attribute__((always_inline)) float FusionVectorMagnitudeSquared(const FusionVector3 vector) { +#define V vector.axis // define shorthand label for more readable code + return V.x * V.x + V.y * V.y + V.z * V.z; +#undef V // undefine shorthand label +} + +/** + * @brief Calculates the magnitude of a vector. + * @param vector Vector to be used in calculation. + * @return Vector magnitude. + */ +static inline __attribute__((always_inline)) float FusionVectorMagnitude(const FusionVector3 vector) { + return sqrtf(FusionVectorMagnitudeSquared(vector)); +} + +/** + * @brief Normalises a vector to be of unit magnitude. + * @param vector Vector to be normalised. + * @return Normalised vector. + */ +static inline __attribute__((always_inline)) FusionVector3 FusionVectorNormalise(const FusionVector3 vector) { + const float magnitudeReciprocal = 1.0f / sqrtf(FusionVectorMagnitudeSquared(vector)); + return FusionVectorMultiplyScalar(vector, magnitudeReciprocal); +} + +/** + * @brief Normalises a vector to be of unit magnitude using the fast inverse + * square root approximation. + * @param vector Vector to be normalised. + * @return Normalised vector. + */ +static inline __attribute__((always_inline)) FusionVector3 FusionVectorFastNormalise(const FusionVector3 vector) { + const float magnitudeReciprocal = FusionFastInverseSqrt(FusionVectorMagnitudeSquared(vector)); + return FusionVectorMultiplyScalar(vector, magnitudeReciprocal); +} + +//------------------------------------------------------------------------------ +// Inline functions - Quaternion operations + +/** + * @brief Adds two quaternions. + * @param quaternionA First quaternion of the operation. + * @param quaternionB Second quaternion of the operation. + * @return Sum of quaternionA and quaternionB. + */ +static inline __attribute__((always_inline)) FusionQuaternion FusionQuaternionAdd(const FusionQuaternion quaternionA, const FusionQuaternion quaternionB) { + FusionQuaternion result; + result.element.w = quaternionA.element.w + quaternionB.element.w; + result.element.x = quaternionA.element.x + quaternionB.element.x; + result.element.y = quaternionA.element.y + quaternionB.element.y; + result.element.z = quaternionA.element.z + quaternionB.element.z; + return result; +} + +/** + * @brief Multiplies two quaternions. + * @param quaternionA First quaternion of the operation. + * @param quaternionB Second quaternion of the operation. + * @return quaternionA multiplied by quaternionB. + */ +static inline __attribute__((always_inline)) FusionQuaternion FusionQuaternionMultiply(const FusionQuaternion quaternionA, const FusionQuaternion quaternionB) { +#define A quaternionA.element // define shorthand labels for more readable code +#define B quaternionB.element + FusionQuaternion result; + result.element.w = A.w * B.w - A.x * B.x - A.y * B.y - A.z * B.z; + result.element.x = A.w * B.x + A.x * B.w + A.y * B.z - A.z * B.y; + result.element.y = A.w * B.y - A.x * B.z + A.y * B.w + A.z * B.x; + result.element.z = A.w * B.z + A.x * B.y - A.y * B.x + A.z * B.w; + return result; +#undef A // undefine shorthand labels +#undef B +} + +/** + * @brief Multiplies quaternion by a vector. This is a normal quaternion + * multiplication where the vector is treated a quaternion with a 'w' element + * value of 0. The quaternion is post multiplied by the vector. + * @param quaternion Quaternion to be multiplied. + * @param vector Vector to be multiplied. + * @return Quaternion multiplied by vector. + */ +static inline __attribute__((always_inline)) FusionQuaternion FusionQuaternionMultiplyVector(const FusionQuaternion quaternion, const FusionVector3 vector) { +#define Q quaternion.element // define shorthand labels for more readable code +#define V vector.axis + FusionQuaternion result; + result.element.w = -Q.x * V.x - Q.y * V.y - Q.z * V.z; + result.element.x = Q.w * V.x + Q.y * V.z - Q.z * V.y; + result.element.y = Q.w * V.y - Q.x * V.z + Q.z * V.x; + result.element.z = Q.w * V.z + Q.x * V.y - Q.y * V.x; + return result; +#undef Q // undefine shorthand labels +#undef V +} + +/** + * @brief Returns the quaternion conjugate. + * @param quaternion Quaternion to be conjugated. + * @return Conjugated quaternion. + */ +static inline __attribute__((always_inline)) FusionQuaternion FusionQuaternionConjugate(const FusionQuaternion quaternion) { + FusionQuaternion conjugate; + conjugate.element.w = quaternion.element.w; + conjugate.element.x = -1.0f * quaternion.element.x; + conjugate.element.y = -1.0f * quaternion.element.y; + conjugate.element.z = -1.0f * quaternion.element.z; + return conjugate; +} + +/** + * @brief Normalises a quaternion to be of unit magnitude. + * @param quaternion Quaternion to be normalised. + * @return Normalised quaternion. + */ +static inline __attribute__((always_inline)) FusionQuaternion FusionQuaternionNormalise(const FusionQuaternion quaternion) { +#define Q quaternion.element // define shorthand label for more readable code + const float magnitudeReciprocal = 1.0f / sqrtf(Q.w * Q.w + Q.x * Q.x + Q.y * Q.y + Q.z * Q.z); + FusionQuaternion normalisedQuaternion; + normalisedQuaternion.element.w = Q.w * magnitudeReciprocal; + normalisedQuaternion.element.x = Q.x * magnitudeReciprocal; + normalisedQuaternion.element.y = Q.y * magnitudeReciprocal; + normalisedQuaternion.element.z = Q.z * magnitudeReciprocal; + return normalisedQuaternion; +#undef Q // undefine shorthand label +} + +/** + * @brief Normalises a quaternion to be of unit magnitude using the fast inverse + * square root approximation. + * @param quaternion Quaternion to be normalised. + * @return Normalised quaternion. + */ +static inline __attribute__((always_inline)) FusionQuaternion FusionQuaternionFastNormalise(const FusionQuaternion quaternion) { +#define Q quaternion.element // define shorthand label for more readable code + const float magnitudeReciprocal = FusionFastInverseSqrt(Q.w * Q.w + Q.x * Q.x + Q.y * Q.y + Q.z * Q.z); + FusionQuaternion normalisedQuaternion; + normalisedQuaternion.element.w = Q.w * magnitudeReciprocal; + normalisedQuaternion.element.x = Q.x * magnitudeReciprocal; + normalisedQuaternion.element.y = Q.y * magnitudeReciprocal; + normalisedQuaternion.element.z = Q.z * magnitudeReciprocal; + return normalisedQuaternion; +#undef Q // undefine shorthand label +} + +//------------------------------------------------------------------------------ +// Inline functions - Rotation matrix operations + +/** + * @brief Multiplies two rotation matrices. + * @param rotationMatrixA First rotation matrix of the operation. + * @param rotationMatrixB Second rotation matrix of the operation. + * @return rotationMatrixA with rotationMatrixB. + */ +static inline __attribute__((always_inline)) FusionRotationMatrix FusionRotationMatrixMultiply(const FusionRotationMatrix rotationMatrixA, const FusionRotationMatrix rotationMatrixB) { +#define A rotationMatrixA.element // define shorthand label for more readable code +#define B rotationMatrixB.element + FusionRotationMatrix result; + result.element.xx = A.xx * B.xx + A.xy * B.yx + A.xz * B.zx; + result.element.xy = A.xx * B.xy + A.xy * B.yy + A.xz * B.zy; + result.element.xz = A.xx * B.xz + A.xy * B.yz + A.xz * B.zz; + result.element.yx = A.yx * B.xx + A.yy * B.yx + A.yz * B.zx; + result.element.yy = A.yx * B.xy + A.yy * B.yy + A.yz * B.zy; + result.element.yz = A.yx * B.xz + A.yy * B.yz + A.yz * B.zz; + result.element.zx = A.zx * B.xx + A.zy * B.yx + A.zz * B.zx; + result.element.zy = A.zx * B.xy + A.zy * B.yy + A.zz * B.zy; + result.element.zz = A.zx * B.xz + A.zy * B.yz + A.zz * B.zz; + return result; +#undef A // undefine shorthand label +#undef B +} + +/** + * @brief Multiplies rotation matrix with scalar. + * @param rotationMatrix Rotation matrix to be multiplied. + * @param vector Vector to be multiplied. + * @return Rotation matrix multiplied with scalar. + */ +static inline __attribute__((always_inline)) FusionVector3 FusionRotationMatrixMultiplyVector(const FusionRotationMatrix rotationMatrix, const FusionVector3 vector) { +#define R rotationMatrix.element // define shorthand label for more readable code + FusionVector3 result; + result.axis.x = R.xx * vector.axis.x + R.xy * vector.axis.y + R.xz * vector.axis.z; + result.axis.y = R.yx * vector.axis.x + R.yy * vector.axis.y + R.yz * vector.axis.z; + result.axis.z = R.zx * vector.axis.x + R.zy * vector.axis.y + R.zz * vector.axis.z; + return result; +#undef R // undefine shorthand label +} + +//------------------------------------------------------------------------------ +// Inline functions - Conversion operations + +/** + * @brief Converts a quaternion to a rotation matrix. + * @param quaternion Quaternion to be converted. + * @return Rotation matrix. + */ +static inline __attribute__((always_inline)) FusionRotationMatrix FusionQuaternionToRotationMatrix(const FusionQuaternion quaternion) { +#define Q quaternion.element // define shorthand label for more readable code + const float qwqw = Q.w * Q.w; // calculate common terms to avoid repeated operations + const float qwqx = Q.w * Q.x; + const float qwqy = Q.w * Q.y; + const float qwqz = Q.w * Q.z; + const float qxqy = Q.x * Q.y; + const float qxqz = Q.x * Q.z; + const float qyqz = Q.y * Q.z; + FusionRotationMatrix rotationMatrix; + rotationMatrix.element.xx = 2.0f * (qwqw - 0.5f + Q.x * Q.x); + rotationMatrix.element.xy = 2.0f * (qxqy + qwqz); + rotationMatrix.element.xz = 2.0f * (qxqz - qwqy); + rotationMatrix.element.yx = 2.0f * (qxqy - qwqz); + rotationMatrix.element.yy = 2.0f * (qwqw - 0.5f + Q.y * Q.y); + rotationMatrix.element.yz = 2.0f * (qyqz + qwqx); + rotationMatrix.element.zx = 2.0f * (qxqz + qwqy); + rotationMatrix.element.zy = 2.0f * (qyqz - qwqx); + rotationMatrix.element.zz = 2.0f * (qwqw - 0.5f + Q.z * Q.z); + return rotationMatrix; +#undef Q // undefine shorthand label +} + +/** + * @brief Converts a quaternion to Euler angles in degrees. + * @param quaternion Quaternion to be converted. + * @return Euler angles in degrees. + */ +static inline __attribute__((always_inline)) FusionEulerAngles FusionQuaternionToEulerAngles(const FusionQuaternion quaternion) { +#define Q quaternion.element // define shorthand label for more readable code + const float qwqwMinusHalf = Q.w * Q.w - 0.5f; // calculate common terms to avoid repeated operations + FusionEulerAngles eulerAngles; + eulerAngles.angle.roll = FusionRadiansToDegrees(atan2f(Q.y * Q.z - Q.w * Q.x, qwqwMinusHalf + Q.z * Q.z)); + eulerAngles.angle.pitch = FusionRadiansToDegrees(-1.0f * asinf(2.0f * (Q.x * Q.z + Q.w * Q.y))); + eulerAngles.angle.yaw = FusionRadiansToDegrees(atan2f(Q.x * Q.y - Q.w * Q.z, qwqwMinusHalf + Q.x * Q.x)); + return eulerAngles; +#undef Q // undefine shorthand label +} + +#endif + +//------------------------------------------------------------------------------ +// End of file \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LSM9DS1.cpp Sat Oct 30 17:17:07 2021 +0000 @@ -0,0 +1,1198 @@ +/****************************************************************************** +SFE_LSM9DS1.cpp +SFE_LSM9DS1 Library Source File +Jim Lindblom @ SparkFun Electronics +Original Creation Date: February 27, 2015 +https://github.com/sparkfun/LSM9DS1_Breakout + +This file implements all functions of the LSM9DS1 class. Functions here range +from higher level stuff, like reading/writing LSM9DS1 registers to low-level, +hardware reads and writes. Both SPI and I2C handler functions can be found +towards the bottom of this file. + +Development environment specifics: + IDE: Arduino 1.6 + Hardware Platform: Arduino Uno + LSM9DS1 Breakout Version: 1.0 + +This code is beerware; if you see me (or any other SparkFun employee) at the +local, and you've found our code helpful, please buy us a round! + +Distributed as-is; no warranty is given. +******************************************************************************/ + +#include "LSM9DS1.h" +#include "LSM9DS1_Registers.h" +#include "LSM9DS1_Types.h" +//#include <Wire.h> // Wire library is used for I2C +//#include <SPI.h> // SPI library is used for...SPI. + +//#if defined(ARDUINO) && ARDUINO >= 100 +// #include "Arduino.h" +//#else +// #include "WProgram.h" +//#endif + +#define LSM9DS1_COMMUNICATION_TIMEOUT 1000 + +float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058}; +extern Serial pc; + +LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr) + :i2c(sda, scl) +{ + init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B +} +/* +LSM9DS1::LSM9DS1() +{ + init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1)); +} + +LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr) +{ + init(interface, xgAddr, mAddr); +} +*/ + +void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr) +{ + settings.device.commInterface = interface; + settings.device.agAddress = xgAddr; + settings.device.mAddress = mAddr; + + settings.gyro.enabled = true; + settings.gyro.enableX = true; + settings.gyro.enableY = true; + settings.gyro.enableZ = true; + // gyro scale can be 245, 500, or 2000 + settings.gyro.scale = 245; + // gyro sample rate: value between 1-6 + // 1 = 14.9 4 = 238 + // 2 = 59.5 5 = 476 + // 3 = 119 6 = 952 + settings.gyro.sampleRate = 6; + // gyro cutoff frequency: value between 0-3 + // Actual value of cutoff frequency depends + // on sample rate. + settings.gyro.bandwidth = 0; + settings.gyro.lowPowerEnable = false; + settings.gyro.HPFEnable = false; + // Gyro HPF cutoff frequency: value between 0-9 + // Actual value depends on sample rate. Only applies + // if gyroHPFEnable is true. + settings.gyro.HPFCutoff = 0; + settings.gyro.flipX = false; + settings.gyro.flipY = false; + settings.gyro.flipZ = false; + settings.gyro.orientation = 0; + settings.gyro.latchInterrupt = true; + + settings.accel.enabled = true; + settings.accel.enableX = true; + settings.accel.enableY = true; + settings.accel.enableZ = true; + // accel scale can be 2, 4, 8, or 16 + settings.accel.scale = 2; + // accel sample rate can be 1-6 + // 1 = 10 Hz 4 = 238 Hz + // 2 = 50 Hz 5 = 476 Hz + // 3 = 119 Hz 6 = 952 Hz + settings.accel.sampleRate = 6; + // Accel cutoff freqeuncy can be any value between -1 - 3. + // -1 = bandwidth determined by sample rate + // 0 = 408 Hz 2 = 105 Hz + // 1 = 211 Hz 3 = 50 Hz + settings.accel.bandwidth = -1; + settings.accel.highResEnable = false; + // accelHighResBandwidth can be any value between 0-3 + // LP cutoff is set to a factor of sample rate + // 0 = ODR/50 2 = ODR/9 + // 1 = ODR/100 3 = ODR/400 + settings.accel.highResBandwidth = 0; + + settings.mag.enabled = true; + // mag scale can be 4, 8, 12, or 16 + settings.mag.scale = 4; + // mag data rate can be 0-7 + // 0 = 0.625 Hz 4 = 10 Hz + // 1 = 1.25 Hz 5 = 20 Hz + // 2 = 2.5 Hz 6 = 40 Hz + // 3 = 5 Hz 7 = 80 Hz + settings.mag.sampleRate = 7; + settings.mag.tempCompensationEnable = false; + // magPerformance can be any value between 0-3 + // 0 = Low power mode 2 = high performance + // 1 = medium performance 3 = ultra-high performance + settings.mag.XYPerformance = 3; + settings.mag.ZPerformance = 3; + settings.mag.lowPowerEnable = false; + // magOperatingMode can be 0-2 + // 0 = continuous conversion + // 1 = single-conversion + // 2 = power down + settings.mag.operatingMode = 0; + + settings.temp.enabled = true; + for (int i=0; i<3; i++) + { + gBias[i] = 0; + aBias[i] = 0; + mBias[i] = 0; + gBiasRaw[i] = 0; + aBiasRaw[i] = 0; + mBiasRaw[i] = 0; + } + _autoCalc = false; +} + + +uint16_t LSM9DS1::begin() +{ + //! Todo: don't use _xgAddress or _mAddress, duplicating memory + _xgAddress = settings.device.agAddress; + _mAddress = settings.device.mAddress; + + constrainScales(); + // Once we have the scale values, we can calculate the resolution + // of each sensor. That's what these functions are for. One for each sensor + calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable + calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable + calcaRes(); // Calculate g / ADC tick, stored in aRes variable + + // Now, initialize our hardware interface. + if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C + initI2C(); // Initialize I2C + else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI + initSPI(); // Initialize SPI + + // To verify communication, we can read from the WHO_AM_I register of + // each device. Store those in a variable so we can return them. + + uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I + uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I + // pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress); + uint16_t whoAmICombined = (xgTest << 8) | mTest; + + if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP)) + return 0; + + // Gyro initialization stuff: + initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc. + + // Accelerometer initialization stuff: + initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc. + + // Magnetometer initialization stuff: + initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc. + + // Once everything is initialized, return the WHO_AM_I registers we read: + // return whoAmICombined; +} + +void LSM9DS1::initGyro() +{ + uint8_t tempRegValue = 0; + + // CTRL_REG1_G (Default value: 0x00) + // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0] + // ODR_G[2:0] - Output data rate selection + // FS_G[1:0] - Gyroscope full-scale selection + // BW_G[1:0] - Gyroscope bandwidth selection + + // To disable gyro, set sample rate bits to 0. We'll only set sample + // rate if the gyro is enabled. + if (settings.gyro.enabled) + { + tempRegValue = (settings.gyro.sampleRate & 0x07) << 5; + } + switch (settings.gyro.scale) + { + case 500: + tempRegValue |= (0x1 << 3); + break; + case 2000: + tempRegValue |= (0x3 << 3); + break; + // Otherwise we'll set it to 245 dps (0x0 << 4) + } + tempRegValue |= (settings.gyro.bandwidth & 0x3); + xgWriteByte(CTRL_REG1_G, tempRegValue); + + // CTRL_REG2_G (Default value: 0x00) + // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0] + // INT_SEL[1:0] - INT selection configuration + // OUT_SEL[1:0] - Out selection configuration + xgWriteByte(CTRL_REG2_G, 0x00); + + // CTRL_REG3_G (Default value: 0x00) + // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G] + // LP_mode - Low-power mode enable (0: disabled, 1: enabled) + // HP_EN - HPF enable (0:disabled, 1: enabled) + // HPCF_G[3:0] - HPF cutoff frequency + tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0; + if (settings.gyro.HPFEnable) + { + tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F); + } + xgWriteByte(CTRL_REG3_G, tempRegValue); + + // CTRL_REG4 (Default value: 0x38) + // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1] + // Zen_G - Z-axis output enable (0:disable, 1:enable) + // Yen_G - Y-axis output enable (0:disable, 1:enable) + // Xen_G - X-axis output enable (0:disable, 1:enable) + // LIR_XL1 - Latched interrupt (0:not latched, 1:latched) + // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used) + tempRegValue = 0; + if (settings.gyro.enableZ) tempRegValue |= (1<<5); + if (settings.gyro.enableY) tempRegValue |= (1<<4); + if (settings.gyro.enableX) tempRegValue |= (1<<3); + if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1); + xgWriteByte(CTRL_REG4, tempRegValue); + + // ORIENT_CFG_G (Default value: 0x00) + // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0] + // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative) + // Orient [2:0] - Directional user orientation selection + tempRegValue = 0; + if (settings.gyro.flipX) tempRegValue |= (1<<5); + if (settings.gyro.flipY) tempRegValue |= (1<<4); + if (settings.gyro.flipZ) tempRegValue |= (1<<3); + xgWriteByte(ORIENT_CFG_G, tempRegValue); +} + +void LSM9DS1::initAccel() +{ + uint8_t tempRegValue = 0; + + // CTRL_REG5_XL (0x1F) (Default value: 0x38) + // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0] + // DEC[0:1] - Decimation of accel data on OUT REG and FIFO. + // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples + // Zen_XL - Z-axis output enabled + // Yen_XL - Y-axis output enabled + // Xen_XL - X-axis output enabled + if (settings.accel.enableZ) tempRegValue |= (1<<5); + if (settings.accel.enableY) tempRegValue |= (1<<4); + if (settings.accel.enableX) tempRegValue |= (1<<3); + + xgWriteByte(CTRL_REG5_XL, tempRegValue); + + // CTRL_REG6_XL (0x20) (Default value: 0x00) + // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0] + // ODR_XL[2:0] - Output data rate & power mode selection + // FS_XL[1:0] - Full-scale selection + // BW_SCAL_ODR - Bandwidth selection + // BW_XL[1:0] - Anti-aliasing filter bandwidth selection + tempRegValue = 0; + // To disable the accel, set the sampleRate bits to 0. + if (settings.accel.enabled) + { + tempRegValue |= (settings.accel.sampleRate & 0x07) << 5; + } + switch (settings.accel.scale) + { + case 4: + tempRegValue |= (0x2 << 3); + break; + case 8: + tempRegValue |= (0x3 << 3); + break; + case 16: + tempRegValue |= (0x1 << 3); + break; + // Otherwise it'll be set to 2g (0x0 << 3) + } + if (settings.accel.bandwidth >= 0) + { + tempRegValue |= (1<<2); // Set BW_SCAL_ODR + tempRegValue |= (settings.accel.bandwidth & 0x03); + } + xgWriteByte(CTRL_REG6_XL, tempRegValue); + + // CTRL_REG7_XL (0x21) (Default value: 0x00) + // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1] + // HR - High resolution mode (0: disable, 1: enable) + // DCF[1:0] - Digital filter cutoff frequency + // FDS - Filtered data selection + // HPIS1 - HPF enabled for interrupt function + tempRegValue = 0; + if (settings.accel.highResEnable) + { + tempRegValue |= (1<<7); // Set HR bit + tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5; + } + xgWriteByte(CTRL_REG7_XL, tempRegValue); +} + +// This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average +// them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch +// for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store +// the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to +// subtract the biases ourselves. This results in a more accurate measurement in general and can +// remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner +// is good practice. +void LSM9DS1::calibrate(bool autoCalc) +{ + uint8_t data[6] = {0, 0, 0, 0, 0, 0}; + uint8_t samples = 0; + int ii; + int32_t aBiasRawTemp[3] = {0, 0, 0}; + int32_t gBiasRawTemp[3] = {0, 0, 0}; + + // Turn on FIFO and set threshold to 32 samples + enableFIFO(true); + setFIFO(FIFO_THS, 0x1F); + while (samples < 0x1F) + { + samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples + } + for(ii = 0; ii < samples ; ii++) + { // Read the gyro data stored in the FIFO + readGyro(); + gBiasRawTemp[0] += gx; + gBiasRawTemp[1] += gy; + gBiasRawTemp[2] += gz; + readAccel(); + aBiasRawTemp[0] += ax; + aBiasRawTemp[1] += ay; + aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up! + } + for (ii = 0; ii < 3; ii++) + { + gBiasRaw[ii] = gBiasRawTemp[ii] / samples; + gBias[ii] = calcGyro(gBiasRaw[ii]); + aBiasRaw[ii] = aBiasRawTemp[ii] / samples; + aBias[ii] = calcAccel(aBiasRaw[ii]); + } + + enableFIFO(false); + setFIFO(FIFO_OFF, 0x00); + + if (autoCalc) _autoCalc = true; +} + +void LSM9DS1::calibrateMag(bool loadIn) +{ + int i, j; + int16_t magMin[3] = {0, 0, 0}; + int16_t magMax[3] = {0, 0, 0}; // The road warrior + + for (i=0; i<128; i++) + { + while (!magAvailable()) + ; + readMag(); + int16_t magTemp[3] = {0, 0, 0}; + magTemp[0] = mx; + magTemp[1] = my; + magTemp[2] = mz; + for (j = 0; j < 3; j++) + { + if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j]; + if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j]; + } + } + for (j = 0; j < 3; j++) + { + mBiasRaw[j] = (magMax[j] + magMin[j]) / 2; + mBias[j] = calcMag(mBiasRaw[j]); + if (loadIn) + magOffset(j, mBiasRaw[j]); + } + +} +void LSM9DS1::magOffset(uint8_t axis, int16_t offset) +{ + if (axis > 2) + return; + uint8_t msb, lsb; + msb = (offset & 0xFF00) >> 8; + lsb = offset & 0x00FF; + mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb); + mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb); +} + +void LSM9DS1::initMag() +{ + uint8_t tempRegValue = 0; + + // CTRL_REG1_M (Default value: 0x10) + // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST] + // TEMP_COMP - Temperature compensation + // OM[1:0] - X & Y axes op mode selection + // 00:low-power, 01:medium performance + // 10: high performance, 11:ultra-high performance + // DO[2:0] - Output data rate selection + // ST - Self-test enable + if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7); + tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5; + tempRegValue |= (settings.mag.sampleRate & 0x7) << 2; + mWriteByte(CTRL_REG1_M, tempRegValue); + + // CTRL_REG2_M (Default value 0x00) + // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0] + // FS[1:0] - Full-scale configuration + // REBOOT - Reboot memory content (0:normal, 1:reboot) + // SOFT_RST - Reset config and user registers (0:default, 1:reset) + tempRegValue = 0; + switch (settings.mag.scale) + { + case 8: + tempRegValue |= (0x1 << 5); + break; + case 12: + tempRegValue |= (0x2 << 5); + break; + case 16: + tempRegValue |= (0x3 << 5); + break; + // Otherwise we'll default to 4 gauss (00) + } + mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss + + // CTRL_REG3_M (Default value: 0x03) + // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0] + // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable) + // LP - Low-power mode cofiguration (1:enable) + // SIM - SPI mode selection (0:write-only, 1:read/write enable) + // MD[1:0] - Operating mode + // 00:continuous conversion, 01:single-conversion, + // 10,11: Power-down + tempRegValue = 0; + if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5); + tempRegValue |= (settings.mag.operatingMode & 0x3); + mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode + + // CTRL_REG4_M (Default value: 0x00) + // [0][0][0][0][OMZ1][OMZ0][BLE][0] + // OMZ[1:0] - Z-axis operative mode selection + // 00:low-power mode, 01:medium performance + // 10:high performance, 10:ultra-high performance + // BLE - Big/little endian data + tempRegValue = 0; + tempRegValue = (settings.mag.ZPerformance & 0x3) << 2; + mWriteByte(CTRL_REG4_M, tempRegValue); + + // CTRL_REG5_M (Default value: 0x00) + // [0][BDU][0][0][0][0][0][0] + // BDU - Block data update for magnetic data + // 0:continuous, 1:not updated until MSB/LSB are read + tempRegValue = 0; + mWriteByte(CTRL_REG5_M, tempRegValue); +} + +uint8_t LSM9DS1::accelAvailable() +{ + uint8_t status = xgReadByte(STATUS_REG_1); + + return (status & (1<<0)); +} + +uint8_t LSM9DS1::gyroAvailable() +{ + uint8_t status = xgReadByte(STATUS_REG_1); + + return ((status & (1<<1)) >> 1); +} + +uint8_t LSM9DS1::tempAvailable() +{ + uint8_t status = xgReadByte(STATUS_REG_1); + + return ((status & (1<<2)) >> 2); +} + +uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis) +{ + uint8_t status; + status = mReadByte(STATUS_REG_M); + + return ((status & (1<<axis)) >> axis); +} + +void LSM9DS1::readAccel() +{ + uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp + xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL + ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax + ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay + az = (temp[5] << 8) | temp[4]; // Store z-axis values into az + if (_autoCalc) + { + ax -= aBiasRaw[X_AXIS]; + ay -= aBiasRaw[Y_AXIS]; + az -= aBiasRaw[Z_AXIS]; + } +} + +int16_t LSM9DS1::readAccel(lsm9ds1_axis axis) +{ + uint8_t temp[2]; + int16_t value; + xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2); + value = (temp[1] << 8) | temp[0]; + + if (_autoCalc) + value -= aBiasRaw[axis]; + + return value; +} + +void LSM9DS1::readMag() +{ + uint8_t temp[6]; // We'll read six bytes from the mag into temp + mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M + mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx + my = (temp[3] << 8) | temp[2]; // Store y-axis values into my + mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz +} + +int16_t LSM9DS1::readMag(lsm9ds1_axis axis) +{ + uint8_t temp[2]; + mReadBytes(OUT_X_L_M + (2 * axis), temp, 2); + return (temp[1] << 8) | temp[0]; +} + +void LSM9DS1::readTemp() +{ + uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp + xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L + temperature = ((int16_t)temp[1] << 8) | temp[0]; +} + +void LSM9DS1::readGyro() +{ + uint8_t temp[6]; // We'll read six bytes from the gyro into temp + xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G + gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx + gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy + gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz + if (_autoCalc) + { + gx -= gBiasRaw[X_AXIS]; + gy -= gBiasRaw[Y_AXIS]; + gz -= gBiasRaw[Z_AXIS]; + } +} + +int16_t LSM9DS1::readGyro(lsm9ds1_axis axis) +{ + uint8_t temp[2]; + int16_t value; + + xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2); + + value = (temp[1] << 8) | temp[0]; + + if (_autoCalc) + value -= gBiasRaw[axis]; + + return value; +} + +float LSM9DS1::calcGyro(int16_t gyro) +{ + // Return the gyro raw reading times our pre-calculated DPS / (ADC tick): + return gRes * gyro; +} + +float LSM9DS1::calcAccel(int16_t accel) +{ + // Return the accel raw reading times our pre-calculated g's / (ADC tick): + return aRes * accel; +} + +float LSM9DS1::calcMag(int16_t mag) +{ + // Return the mag raw reading times our pre-calculated Gs / (ADC tick): + return mRes * mag; +} + +void LSM9DS1::setGyroScale(uint16_t gScl) +{ + // Read current value of CTRL_REG1_G: + uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G); + // Mask out scale bits (3 & 4): + ctrl1RegValue &= 0xE7; + switch (gScl) + { + case 500: + ctrl1RegValue |= (0x1 << 3); + settings.gyro.scale = 500; + break; + case 2000: + ctrl1RegValue |= (0x3 << 3); + settings.gyro.scale = 2000; + break; + default: // Otherwise we'll set it to 245 dps (0x0 << 4) + settings.gyro.scale = 245; + break; + } + xgWriteByte(CTRL_REG1_G, ctrl1RegValue); + + calcgRes(); +} + +void LSM9DS1::setAccelScale(uint8_t aScl) +{ + // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it: + uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL); + // Mask out accel scale bits: + tempRegValue &= 0xE7; + + switch (aScl) + { + case 4: + tempRegValue |= (0x2 << 3); + settings.accel.scale = 4; + break; + case 8: + tempRegValue |= (0x3 << 3); + settings.accel.scale = 8; + break; + case 16: + tempRegValue |= (0x1 << 3); + settings.accel.scale = 16; + break; + default: // Otherwise it'll be set to 2g (0x0 << 3) + settings.accel.scale = 2; + break; + } + xgWriteByte(CTRL_REG6_XL, tempRegValue); + + // Then calculate a new aRes, which relies on aScale being set correctly: + calcaRes(); +} + +void LSM9DS1::setMagScale(uint8_t mScl) +{ + // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it: + uint8_t temp = mReadByte(CTRL_REG2_M); + // Then mask out the mag scale bits: + temp &= 0xFF^(0x3 << 5); + + switch (mScl) + { + case 8: + temp |= (0x1 << 5); + settings.mag.scale = 8; + break; + case 12: + temp |= (0x2 << 5); + settings.mag.scale = 12; + break; + case 16: + temp |= (0x3 << 5); + settings.mag.scale = 16; + break; + default: // Otherwise we'll default to 4 gauss (00) + settings.mag.scale = 4; + break; + } + + // And write the new register value back into CTRL_REG6_XM: + mWriteByte(CTRL_REG2_M, temp); + + // We've updated the sensor, but we also need to update our class variables + // First update mScale: + //mScale = mScl; + // Then calculate a new mRes, which relies on mScale being set correctly: + calcmRes(); +} + +void LSM9DS1::setGyroODR(uint8_t gRate) +{ + // Only do this if gRate is not 0 (which would disable the gyro) + if ((gRate & 0x07) != 0) + { + // We need to preserve the other bytes in CTRL_REG1_G. So, first read it: + uint8_t temp = xgReadByte(CTRL_REG1_G); + // Then mask out the gyro ODR bits: + temp &= 0xFF^(0x7 << 5); + temp |= (gRate & 0x07) << 5; + // Update our settings struct + settings.gyro.sampleRate = gRate & 0x07; + // And write the new register value back into CTRL_REG1_G: + xgWriteByte(CTRL_REG1_G, temp); + } +} + +void LSM9DS1::setAccelODR(uint8_t aRate) +{ + // Only do this if aRate is not 0 (which would disable the accel) + if ((aRate & 0x07) != 0) + { + // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it: + uint8_t temp = xgReadByte(CTRL_REG6_XL); + // Then mask out the accel ODR bits: + temp &= 0x1F; + // Then shift in our new ODR bits: + temp |= ((aRate & 0x07) << 5); + settings.accel.sampleRate = aRate & 0x07; + // And write the new register value back into CTRL_REG1_XM: + xgWriteByte(CTRL_REG6_XL, temp); + } +} + +void LSM9DS1::setMagODR(uint8_t mRate) +{ + // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it: + uint8_t temp = mReadByte(CTRL_REG1_M); + // Then mask out the mag ODR bits: + temp &= 0xFF^(0x7 << 2); + // Then shift in our new ODR bits: + temp |= ((mRate & 0x07) << 2); + settings.mag.sampleRate = mRate & 0x07; + // And write the new register value back into CTRL_REG5_XM: + mWriteByte(CTRL_REG1_M, temp); +} + +void LSM9DS1::calcgRes() +{ + gRes = ((float) settings.gyro.scale) / 32768.0; +} + +void LSM9DS1::calcaRes() +{ + aRes = ((float) settings.accel.scale) / 32768.0; +} + +void LSM9DS1::calcmRes() +{ + //mRes = ((float) settings.mag.scale) / 32768.0; + switch (settings.mag.scale) + { + case 4: + mRes = magSensitivity[0]; + break; + case 8: + mRes = magSensitivity[1]; + break; + case 12: + mRes = magSensitivity[2]; + break; + case 16: + mRes = magSensitivity[3]; + break; + } + +} + +void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator, + h_lactive activeLow, pp_od pushPull) +{ + // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of + // those two values. + // [generator] should be an OR'd list of values from the interrupt_generators enum + xgWriteByte(interrupt, generator); + + // Configure CTRL_REG8 + uint8_t temp; + temp = xgReadByte(CTRL_REG8); + + if (activeLow) temp |= (1<<5); + else temp &= ~(1<<5); + + if (pushPull) temp &= ~(1<<4); + else temp |= (1<<4); + + xgWriteByte(CTRL_REG8, temp); +} + +void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn) +{ + uint8_t temp = 0; + + temp = threshold & 0x7F; + if (sleepOn) temp |= (1<<7); + xgWriteByte(ACT_THS, temp); + + xgWriteByte(ACT_DUR, duration); +} + +uint8_t LSM9DS1::getInactivity() +{ + uint8_t temp = xgReadByte(STATUS_REG_0); + temp &= (0x10); + return temp; +} + +void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts) +{ + // Use variables from accel_interrupt_generator, OR'd together to create + // the [generator]value. + uint8_t temp = generator; + if (andInterrupts) temp |= 0x80; + xgWriteByte(INT_GEN_CFG_XL, temp); +} + +void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait) +{ + // Write threshold value to INT_GEN_THS_?_XL. + // axis will be 0, 1, or 2 (x, y, z respectively) + xgWriteByte(INT_GEN_THS_X_XL + axis, threshold); + + // Write duration and wait to INT_GEN_DUR_XL + uint8_t temp; + temp = (duration & 0x7F); + if (wait) temp |= 0x80; + xgWriteByte(INT_GEN_DUR_XL, temp); +} + +uint8_t LSM9DS1::getAccelIntSrc() +{ + uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL); + + // Check if the IA_XL (interrupt active) bit is set + if (intSrc & (1<<6)) + { + return (intSrc & 0x3F); + } + + return 0; +} + +void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch) +{ + // Use variables from accel_interrupt_generator, OR'd together to create + // the [generator]value. + uint8_t temp = generator; + if (aoi) temp |= 0x80; + if (latch) temp |= 0x40; + xgWriteByte(INT_GEN_CFG_G, temp); +} + +void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait) +{ + uint8_t buffer[2]; + buffer[0] = (threshold & 0x7F00) >> 8; + buffer[1] = (threshold & 0x00FF); + // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G. + // axis will be 0, 1, or 2 (x, y, z respectively) + xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]); + xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]); + + // Write duration and wait to INT_GEN_DUR_XL + uint8_t temp; + temp = (duration & 0x7F); + if (wait) temp |= 0x80; + xgWriteByte(INT_GEN_DUR_G, temp); +} + +uint8_t LSM9DS1::getGyroIntSrc() +{ + uint8_t intSrc = xgReadByte(INT_GEN_SRC_G); + + // Check if the IA_G (interrupt active) bit is set + if (intSrc & (1<<6)) + { + return (intSrc & 0x3F); + } + + return 0; +} + +void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch) +{ + // Mask out non-generator bits (0-4) + uint8_t config = (generator & 0xE0); + // IEA bit is 0 for active-low, 1 for active-high. + if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2); + // IEL bit is 0 for latched, 1 for not-latched + if (!latch) config |= (1<<1); + // As long as we have at least 1 generator, enable the interrupt + if (generator != 0) config |= (1<<0); + + mWriteByte(INT_CFG_M, config); +} + +void LSM9DS1::configMagThs(uint16_t threshold) +{ + // Write high eight bits of [threshold] to INT_THS_H_M + mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8)); + // Write low eight bits of [threshold] to INT_THS_L_M + mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF)); +} + +uint8_t LSM9DS1::getMagIntSrc() +{ + uint8_t intSrc = mReadByte(INT_SRC_M); + + // Check if the INT (interrupt active) bit is set + if (intSrc & (1<<0)) + { + return (intSrc & 0xFE); + } + + return 0; +} + +void LSM9DS1::sleepGyro(bool enable) +{ + uint8_t temp = xgReadByte(CTRL_REG9); + if (enable) temp |= (1<<6); + else temp &= ~(1<<6); + xgWriteByte(CTRL_REG9, temp); +} + +void LSM9DS1::enableFIFO(bool enable) +{ + uint8_t temp = xgReadByte(CTRL_REG9); + if (enable) temp |= (1<<1); + else temp &= ~(1<<1); + xgWriteByte(CTRL_REG9, temp); +} + +void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs) +{ + // Limit threshold - 0x1F (31) is the maximum. If more than that was asked + // limit it to the maximum. + uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F; + xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F)); +} + +uint8_t LSM9DS1::getFIFOSamples() +{ + return (xgReadByte(FIFO_SRC) & 0x3F); +} + +void LSM9DS1::constrainScales() +{ + if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) && + (settings.gyro.scale != 2000)) + { + settings.gyro.scale = 245; + } + + if ((settings.accel.scale != 2) && (settings.accel.scale != 4) && + (settings.accel.scale != 8) && (settings.accel.scale != 16)) + { + settings.accel.scale = 2; + } + + if ((settings.mag.scale != 4) && (settings.mag.scale != 8) && + (settings.mag.scale != 12) && (settings.mag.scale != 16)) + { + settings.mag.scale = 4; + } +} + +void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data) +{ + // Whether we're using I2C or SPI, write a byte using the + // gyro-specific I2C address or SPI CS pin. + if (settings.device.commInterface == IMU_MODE_I2C) { + printf("yo"); + I2CwriteByte(_xgAddress, subAddress, data); + } else if (settings.device.commInterface == IMU_MODE_SPI) { + SPIwriteByte(_xgAddress, subAddress, data); + } +} + +void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data) +{ + // Whether we're using I2C or SPI, write a byte using the + // accelerometer-specific I2C address or SPI CS pin. + if (settings.device.commInterface == IMU_MODE_I2C) + return I2CwriteByte(_mAddress, subAddress, data); + else if (settings.device.commInterface == IMU_MODE_SPI) + return SPIwriteByte(_mAddress, subAddress, data); +} + +uint8_t LSM9DS1::xgReadByte(uint8_t subAddress) +{ + // Whether we're using I2C or SPI, read a byte using the + // gyro-specific I2C address or SPI CS pin. + if (settings.device.commInterface == IMU_MODE_I2C) + return I2CreadByte(_xgAddress, subAddress); + else if (settings.device.commInterface == IMU_MODE_SPI) + return SPIreadByte(_xgAddress, subAddress); +} + +void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count) +{ + // Whether we're using I2C or SPI, read multiple bytes using the + // gyro-specific I2C address or SPI CS pin. + if (settings.device.commInterface == IMU_MODE_I2C) { + I2CreadBytes(_xgAddress, subAddress, dest, count); + } else if (settings.device.commInterface == IMU_MODE_SPI) { + SPIreadBytes(_xgAddress, subAddress, dest, count); + } +} + +uint8_t LSM9DS1::mReadByte(uint8_t subAddress) +{ + // Whether we're using I2C or SPI, read a byte using the + // accelerometer-specific I2C address or SPI CS pin. + if (settings.device.commInterface == IMU_MODE_I2C) + return I2CreadByte(_mAddress, subAddress); + else if (settings.device.commInterface == IMU_MODE_SPI) + return SPIreadByte(_mAddress, subAddress); +} + +void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count) +{ + // Whether we're using I2C or SPI, read multiple bytes using the + // accelerometer-specific I2C address or SPI CS pin. + if (settings.device.commInterface == IMU_MODE_I2C) + I2CreadBytes(_mAddress, subAddress, dest, count); + else if (settings.device.commInterface == IMU_MODE_SPI) + SPIreadBytes(_mAddress, subAddress, dest, count); +} + +void LSM9DS1::initSPI() +{ + /* + pinMode(_xgAddress, OUTPUT); + digitalWrite(_xgAddress, HIGH); + pinMode(_mAddress, OUTPUT); + digitalWrite(_mAddress, HIGH); + + SPI.begin(); + // Maximum SPI frequency is 10MHz, could divide by 2 here: + SPI.setClockDivider(SPI_CLOCK_DIV2); + // Data is read and written MSb first. + SPI.setBitOrder(MSBFIRST); + // Data is captured on rising edge of clock (CPHA = 0) + // Base value of the clock is HIGH (CPOL = 1) + SPI.setDataMode(SPI_MODE0); + */ +} + +void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data) +{ + /* + digitalWrite(csPin, LOW); // Initiate communication + + // If write, bit 0 (MSB) should be 0 + // If single write, bit 1 should be 0 + SPI.transfer(subAddress & 0x3F); // Send Address + SPI.transfer(data); // Send data + + digitalWrite(csPin, HIGH); // Close communication + */ +} + +uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress) +{ + uint8_t temp; + // Use the multiple read function to read 1 byte. + // Value is returned to `temp`. + SPIreadBytes(csPin, subAddress, &temp, 1); + return temp; +} + +void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress, + uint8_t * dest, uint8_t count) +{ + // To indicate a read, set bit 0 (msb) of first byte to 1 + uint8_t rAddress = 0x80 | (subAddress & 0x3F); + // Mag SPI port is different. If we're reading multiple bytes, + // set bit 1 to 1. The remaining six bytes are the address to be read + if ((csPin == _mAddress) && count > 1) + rAddress |= 0x40; + + /* + digitalWrite(csPin, LOW); // Initiate communication + SPI.transfer(rAddress); + for (int i=0; i<count; i++) + { + dest[i] = SPI.transfer(0x00); // Read into destination array + } + digitalWrite(csPin, HIGH); // Close communication + */ +} + +void LSM9DS1::initI2C() +{ + /* + Wire.begin(); // Initialize I2C library + */ + + //already initialized in constructor! +} + +// Wire.h read and write protocols +void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data) +{ + /* + Wire.beginTransmission(address); // Initialize the Tx buffer + Wire.write(subAddress); // Put slave register address in Tx buffer + Wire.write(data); // Put data in Tx buffer + Wire.endTransmission(); // Send the Tx buffer + */ + char temp_data[2] = {subAddress, data}; + i2c.write(address, temp_data, 2); +} + +uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress) +{ + /* + int timeout = LSM9DS1_COMMUNICATION_TIMEOUT; + uint8_t data; // `data` will store the register data + + Wire.beginTransmission(address); // Initialize the Tx buffer + Wire.write(subAddress); // Put slave register address in Tx buffer + Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive + Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address + while ((Wire.available() < 1) && (timeout-- > 0)) + delay(1); + + if (timeout <= 0) + return 255; //! Bad! 255 will be misinterpreted as a good value. + + data = Wire.read(); // Fill Rx buffer with result + return data; // Return data read from slave register + */ + char data; + char temp[1] = {subAddress}; + + i2c.write(address, temp, 1); + //i2c.write(address & 0xFE); + temp[1] = 0x00; + i2c.write(address, temp, 1); + //i2c.write( address | 0x01); + int a = i2c.read(address, &data, 1); + return data; +} + +uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count) +{ + /* + int timeout = LSM9DS1_COMMUNICATION_TIMEOUT; + Wire.beginTransmission(address); // Initialize the Tx buffer + // Next send the register to be read. OR with 0x80 to indicate multi-read. + Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer + + Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive + uint8_t i = 0; + Wire.requestFrom(address, count); // Read bytes from slave register address + while ((Wire.available() < count) && (timeout-- > 0)) + delay(1); + if (timeout <= 0) + return -1; + + for (int i=0; i<count;) + { + if (Wire.available()) + { + dest[i++] = Wire.read(); + } + } + return count; + */ + int i; + char temp_dest[count]; + char temp[1] = {subAddress}; + i2c.write(address, temp, 1); + i2c.read(address, temp_dest, count); + + //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion + for (i=0; i < count; i++) { + dest[i] = temp_dest[i]; + } + return count; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LSM9DS1.h Sat Oct 30 17:17:07 2021 +0000 @@ -0,0 +1,557 @@ +/****************************************************************************** +SFE_LSM9DS1.h +SFE_LSM9DS1 Library Header File +Jim Lindblom @ SparkFun Electronics +Original Creation Date: February 27, 2015 +https://github.com/sparkfun/LSM9DS1_Breakout + +This file prototypes the LSM9DS1 class, implemented in SFE_LSM9DS1.cpp. In +addition, it defines every register in the LSM9DS1 (both the Gyro and Accel/ +Magnetometer registers). + +Development environment specifics: + IDE: Arduino 1.6.0 + Hardware Platform: Arduino Uno + LSM9DS1 Breakout Version: 1.0 + +This code is beerware; if you see me (or any other SparkFun employee) at the +local, and you've found our code helpful, please buy us a round! + +Distributed as-is; no warranty is given. +******************************************************************************/ +#ifndef __SparkFunLSM9DS1_H__ +#define __SparkFunLSM9DS1_H__ + +//#if defined(ARDUINO) && ARDUINO >= 100 +// #include "Arduino.h" +//#else +// #include "WProgram.h" +// #include "pins_arduino.h" +//#endif + +#include "mbed.h" +#include <stdint.h> +#include "LSM9DS1_Registers.h" +#include "LSM9DS1_Types.h" + +#define LSM9DS1_AG_ADDR(sa0) ((sa0) == 0 ? 0x6A : 0x6B) +#define LSM9DS1_M_ADDR(sa1) ((sa1) == 0 ? 0x1C : 0x1E) + +enum lsm9ds1_axis { + X_AXIS, + Y_AXIS, + Z_AXIS, + ALL_AXIS +}; + +class LSM9DS1 +{ +public: + IMUSettings settings; + + // We'll store the gyro, accel, and magnetometer readings in a series of + // public class variables. Each sensor gets three variables -- one for each + // axis. Call readGyro(), readAccel(), and readMag() first, before using + // these variables! + // These values are the RAW signed 16-bit readings from the sensors. + int16_t gx, gy, gz; // x, y, and z axis readings of the gyroscope + int16_t ax, ay, az; // x, y, and z axis readings of the accelerometer + int16_t mx, my, mz; // x, y, and z axis readings of the magnetometer + int16_t temperature; // Chip temperature + float gBias[3], aBias[3], mBias[3]; + int16_t gBiasRaw[3], aBiasRaw[3], mBiasRaw[3]; + + // LSM9DS1 -- LSM9DS1 class constructor + // The constructor will set up a handful of private variables, and set the + // communication mode as well. + /**Input: + * - interface = Either IMU_MODE_SPI or IMU_MODE_I2C, whichever you're using + * to talk to the IC. + * - xgAddr = If IMU_MODE_I2C, this is the I2C address of the accel/gyroscope. + * If IMU_MODE_SPI, this is the chip select pin of the gyro (CS_AG) + * - mAddr = If IMU_MODE_I2C, this is the I2C address of the magnetometer. + * If IMU_MODE_SPI, this is the cs pin of the magnetometer (CS_M) + + */ + LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr); + //LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr); + //LSM9DS1(); + + + /** begin() -- Initialize the gyro, accelerometer, and magnetometer. + *This will set up the scale and output rate of each sensor. The values set + * in the IMUSettings struct will take effect after calling this function. + */ + uint16_t begin(); + + void calibrate(bool autoCalc = true); + void calibrateMag(bool loadIn = true); + void magOffset(uint8_t axis, int16_t offset); + + /** accelAvailable() -- Polls the accelerometer status register to check + * if new data is available. + * Output: 1 - New data available + * 0 - No new data available + */ + uint8_t accelAvailable(); + + /** gyroAvailable() -- Polls the gyroscope status register to check + * if new data is available. + * Output: 1 - New data available + * 0 - No new data available + */ + uint8_t gyroAvailable(); + + /** gyroAvailable() -- Polls the temperature status register to check + * if new data is available. + * Output: 1 - New data available + * 0 - No new data available + */ + uint8_t tempAvailable(); + + /** magAvailable() -- Polls the accelerometer status register to check + * if new data is available. + * Input: + * - axis can be either X_AXIS, Y_AXIS, Z_AXIS, to check for new data + * on one specific axis. Or ALL_AXIS (default) to check for new data + * on all axes. + * Output: 1 - New data available + * 0 - No new data available + */ + uint8_t magAvailable(lsm9ds1_axis axis = ALL_AXIS); + + /** readGyro() -- Read the gyroscope output registers. + * This function will read all six gyroscope output registers. + * The readings are stored in the class' gx, gy, and gz variables. Read + * those _after_ calling readGyro(). + */ + void readGyro(); + + /** int16_t readGyro(axis) -- Read a specific axis of the gyroscope. + * [axis] can be any of X_AXIS, Y_AXIS, or Z_AXIS. + * Input: + * - axis: can be either X_AXIS, Y_AXIS, or Z_AXIS. + * Output: + * A 16-bit signed integer with sensor data on requested axis. + */ + int16_t readGyro(lsm9ds1_axis axis); + + /** readAccel() -- Read the accelerometer output registers. + * This function will read all six accelerometer output registers. + * The readings are stored in the class' ax, ay, and az variables. Read + * those _after_ calling readAccel(). + */ + void readAccel(); + + /** int16_t readAccel(axis) -- Read a specific axis of the accelerometer. + * [axis] can be any of X_AXIS, Y_AXIS, or Z_AXIS. + * Input: + * - axis: can be either X_AXIS, Y_AXIS, or Z_AXIS. + * Output: + * A 16-bit signed integer with sensor data on requested axis. + */ + int16_t readAccel(lsm9ds1_axis axis); + + /** readMag() -- Read the magnetometer output registers. + * This function will read all six magnetometer output registers. + * The readings are stored in the class' mx, my, and mz variables. Read + * those _after_ calling readMag(). + */ + void readMag(); + + /** int16_t readMag(axis) -- Read a specific axis of the magnetometer. + * [axis] can be any of X_AXIS, Y_AXIS, or Z_AXIS. + * Input: + * - axis: can be either X_AXIS, Y_AXIS, or Z_AXIS. + * Output: + * A 16-bit signed integer with sensor data on requested axis. + */ + int16_t readMag(lsm9ds1_axis axis); + + /** readTemp() -- Read the temperature output register. + * This function will read two temperature output registers. + * The combined readings are stored in the class' temperature variables. Read + * those _after_ calling readTemp(). + */ + void readTemp(); + + /** calcGyro() -- Convert from RAW signed 16-bit value to degrees per second + * This function reads in a signed 16-bit value and returns the scaled + * DPS. This function relies on gScale and gRes being correct. + * Input: + * - gyro = A signed 16-bit raw reading from the gyroscope. + */ + float calcGyro(int16_t gyro); + + /** calcAccel() -- Convert from RAW signed 16-bit value to gravity (g's). + * This function reads in a signed 16-bit value and returns the scaled + * g's. This function relies on aScale and aRes being correct. + * Input: + * - accel = A signed 16-bit raw reading from the accelerometer. + */ + float calcAccel(int16_t accel); + + /** calcMag() -- Convert from RAW signed 16-bit value to Gauss (Gs) + * This function reads in a signed 16-bit value and returns the scaled + * Gs. This function relies on mScale and mRes being correct. + * Input: + * - mag = A signed 16-bit raw reading from the magnetometer. + */ + float calcMag(int16_t mag); + + /** setGyroScale() -- Set the full-scale range of the gyroscope. + * This function can be called to set the scale of the gyroscope to + * 245, 500, or 200 degrees per second. + * Input: + * - gScl = The desired gyroscope scale. Must be one of three possible + * values from the gyro_scale. + */ + void setGyroScale(uint16_t gScl); + + /** setAccelScale() -- Set the full-scale range of the accelerometer. + * This function can be called to set the scale of the accelerometer to + * 2, 4, 6, 8, or 16 g's. + * Input: + * - aScl = The desired accelerometer scale. Must be one of five possible + * values from the accel_scale. + */ + void setAccelScale(uint8_t aScl); + + /** setMagScale() -- Set the full-scale range of the magnetometer. + * This function can be called to set the scale of the magnetometer to + * 2, 4, 8, or 12 Gs. + * Input: + * - mScl = The desired magnetometer scale. Must be one of four possible + * values from the mag_scale. + */ + void setMagScale(uint8_t mScl); + + /** setGyroODR() -- Set the output data rate and bandwidth of the gyroscope + * Input: + * - gRate = The desired output rate and cutoff frequency of the gyro. + */ + void setGyroODR(uint8_t gRate); + + // setAccelODR() -- Set the output data rate of the accelerometer + // Input: + // - aRate = The desired output rate of the accel. + void setAccelODR(uint8_t aRate); + + // setMagODR() -- Set the output data rate of the magnetometer + // Input: + // - mRate = The desired output rate of the mag. + void setMagODR(uint8_t mRate); + + // configInactivity() -- Configure inactivity interrupt parameters + // Input: + // - duration = Inactivity duration - actual value depends on gyro ODR + // - threshold = Activity Threshold + // - sleepOn = Gyroscope operating mode during inactivity. + // true: gyroscope in sleep mode + // false: gyroscope in power-down + void configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn); + + // configAccelInt() -- Configure Accelerometer Interrupt Generator + // Input: + // - generator = Interrupt axis/high-low events + // Any OR'd combination of ZHIE_XL, ZLIE_XL, YHIE_XL, YLIE_XL, XHIE_XL, XLIE_XL + // - andInterrupts = AND/OR combination of interrupt events + // true: AND combination + // false: OR combination + void configAccelInt(uint8_t generator, bool andInterrupts = false); + + // configAccelThs() -- Configure the threshold of an accelereomter axis + // Input: + // - threshold = Interrupt threshold. Possible values: 0-255. + // Multiply by 128 to get the actual raw accel value. + // - axis = Axis to be configured. Either X_AXIS, Y_AXIS, or Z_AXIS + // - duration = Duration value must be above or below threshold to trigger interrupt + // - wait = Wait function on duration counter + // true: Wait for duration samples before exiting interrupt + // false: Wait function off + void configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration = 0, bool wait = 0); + + // configGyroInt() -- Configure Gyroscope Interrupt Generator + // Input: + // - generator = Interrupt axis/high-low events + // Any OR'd combination of ZHIE_G, ZLIE_G, YHIE_G, YLIE_G, XHIE_G, XLIE_G + // - aoi = AND/OR combination of interrupt events + // true: AND combination + // false: OR combination + // - latch: latch gyroscope interrupt request. + void configGyroInt(uint8_t generator, bool aoi, bool latch); + + // configGyroThs() -- Configure the threshold of a gyroscope axis + // Input: + // - threshold = Interrupt threshold. Possible values: 0-0x7FF. + // Value is equivalent to raw gyroscope value. + // - axis = Axis to be configured. Either X_AXIS, Y_AXIS, or Z_AXIS + // - duration = Duration value must be above or below threshold to trigger interrupt + // - wait = Wait function on duration counter + // true: Wait for duration samples before exiting interrupt + // false: Wait function off + void configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait); + + // configInt() -- Configure INT1 or INT2 (Gyro and Accel Interrupts only) + // Input: + // - interrupt = Select INT1 or INT2 + // Possible values: XG_INT1 or XG_INT2 + // - generator = Or'd combination of interrupt generators. + // Possible values: INT_DRDY_XL, INT_DRDY_G, INT1_BOOT (INT1 only), INT2_DRDY_TEMP (INT2 only) + // INT_FTH, INT_OVR, INT_FSS5, INT_IG_XL (INT1 only), INT1_IG_G (INT1 only), INT2_INACT (INT2 only) + // - activeLow = Interrupt active configuration + // Can be either INT_ACTIVE_HIGH or INT_ACTIVE_LOW + // - pushPull = Push-pull or open drain interrupt configuration + // Can be either INT_PUSH_PULL or INT_OPEN_DRAIN + void configInt(interrupt_select interupt, uint8_t generator, + h_lactive activeLow = INT_ACTIVE_LOW, pp_od pushPull = INT_PUSH_PULL); + + /** configMagInt() -- Configure Magnetometer Interrupt Generator + * Input: + * - generator = Interrupt axis/high-low events + * Any OR'd combination of ZIEN, YIEN, XIEN + * - activeLow = Interrupt active configuration + * Can be either INT_ACTIVE_HIGH or INT_ACTIVE_LOW + * - latch: latch gyroscope interrupt request. + */ + void configMagInt(uint8_t generator, h_lactive activeLow, bool latch = true); + + /** configMagThs() -- Configure the threshold of a gyroscope axis + * Input: + * - threshold = Interrupt threshold. Possible values: 0-0x7FF. + * Value is equivalent to raw magnetometer value. + */ + void configMagThs(uint16_t threshold); + + //! getGyroIntSrc() -- Get contents of Gyroscope interrupt source register + uint8_t getGyroIntSrc(); + + //! getGyroIntSrc() -- Get contents of accelerometer interrupt source register + uint8_t getAccelIntSrc(); + + //! getGyroIntSrc() -- Get contents of magnetometer interrupt source register + uint8_t getMagIntSrc(); + + //! getGyroIntSrc() -- Get status of inactivity interrupt + uint8_t getInactivity(); + + /** sleepGyro() -- Sleep or wake the gyroscope + * Input: + * - enable: True = sleep gyro. False = wake gyro. + */ + void sleepGyro(bool enable = true); + + /** enableFIFO() - Enable or disable the FIFO + * Input: + * - enable: true = enable, false = disable. + */ + void enableFIFO(bool enable = true); + + /** setFIFO() - Configure FIFO mode and Threshold + * Input: + * - fifoMode: Set FIFO mode to off, FIFO (stop when full), continuous, bypass + * Possible inputs: FIFO_OFF, FIFO_THS, FIFO_CONT_TRIGGER, FIFO_OFF_TRIGGER, FIFO_CONT + * - fifoThs: FIFO threshold level setting + * Any value from 0-0x1F is acceptable. + */ + void setFIFO(fifoMode_type fifoMode, uint8_t fifoThs); + + //! getFIFOSamples() - Get number of FIFO samples + uint8_t getFIFOSamples(); + + +protected: + // x_mAddress and gAddress store the I2C address or SPI chip select pin + // for each sensor. + uint8_t _mAddress, _xgAddress; + + // gRes, aRes, and mRes store the current resolution for each sensor. + // Units of these values would be DPS (or g's or Gs's) per ADC tick. + // This value is calculated as (sensor scale) / (2^15). + float gRes, aRes, mRes; + + // _autoCalc keeps track of whether we're automatically subtracting off + // accelerometer and gyroscope bias calculated in calibrate(). + bool _autoCalc; + + // init() -- Sets up gyro, accel, and mag settings to default. + // - interface - Sets the interface mode (IMU_MODE_I2C or IMU_MODE_SPI) + // - xgAddr - Sets either the I2C address of the accel/gyro or SPI chip + // select pin connected to the CS_XG pin. + // - mAddr - Sets either the I2C address of the magnetometer or SPI chip + // select pin connected to the CS_M pin. + void init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr); + + // initGyro() -- Sets up the gyroscope to begin reading. + // This function steps through all five gyroscope control registers. + // Upon exit, the following parameters will be set: + // - CTRL_REG1_G = 0x0F: Normal operation mode, all axes enabled. + // 95 Hz ODR, 12.5 Hz cutoff frequency. + // - CTRL_REG2_G = 0x00: HPF set to normal mode, cutoff frequency + // set to 7.2 Hz (depends on ODR). + // - CTRL_REG3_G = 0x88: Interrupt enabled on INT_G (set to push-pull and + // active high). Data-ready output enabled on DRDY_G. + // - CTRL_REG4_G = 0x00: Continuous update mode. Data LSB stored in lower + // address. Scale set to 245 DPS. SPI mode set to 4-wire. + // - CTRL_REG5_G = 0x00: FIFO disabled. HPF disabled. + void initGyro(); + + // initAccel() -- Sets up the accelerometer to begin reading. + // This function steps through all accelerometer related control registers. + // Upon exit these registers will be set as: + // - CTRL_REG0_XM = 0x00: FIFO disabled. HPF bypassed. Normal mode. + // - CTRL_REG1_XM = 0x57: 100 Hz data rate. Continuous update. + // all axes enabled. + // - CTRL_REG2_XM = 0x00: 2g scale. 773 Hz anti-alias filter BW. + // - CTRL_REG3_XM = 0x04: Accel data ready signal on INT1_XM pin. + void initAccel(); + + // initMag() -- Sets up the magnetometer to begin reading. + // This function steps through all magnetometer-related control registers. + // Upon exit these registers will be set as: + // - CTRL_REG4_XM = 0x04: Mag data ready signal on INT2_XM pin. + // - CTRL_REG5_XM = 0x14: 100 Hz update rate. Low resolution. Interrupt + // requests don't latch. Temperature sensor disabled. + // - CTRL_REG6_XM = 0x00: 2 Gs scale. + // - CTRL_REG7_XM = 0x00: Continuous conversion mode. Normal HPF mode. + // - INT_CTRL_REG_M = 0x09: Interrupt active-high. Enable interrupts. + void initMag(); + + // gReadByte() -- Reads a byte from a specified gyroscope register. + // Input: + // - subAddress = Register to be read from. + // Output: + // - An 8-bit value read from the requested address. + uint8_t mReadByte(uint8_t subAddress); + + // gReadBytes() -- Reads a number of bytes -- beginning at an address + // and incrementing from there -- from the gyroscope. + // Input: + // - subAddress = Register to be read from. + // - * dest = A pointer to an array of uint8_t's. Values read will be + // stored in here on return. + // - count = The number of bytes to be read. + // Output: No value is returned, but the `dest` array will store + // the data read upon exit. + void mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count); + + // gWriteByte() -- Write a byte to a register in the gyroscope. + // Input: + // - subAddress = Register to be written to. + // - data = data to be written to the register. + void mWriteByte(uint8_t subAddress, uint8_t data); + + // xmReadByte() -- Read a byte from a register in the accel/mag sensor + // Input: + // - subAddress = Register to be read from. + // Output: + // - An 8-bit value read from the requested register. + uint8_t xgReadByte(uint8_t subAddress); + + // xmReadBytes() -- Reads a number of bytes -- beginning at an address + // and incrementing from there -- from the accelerometer/magnetometer. + // Input: + // - subAddress = Register to be read from. + // - * dest = A pointer to an array of uint8_t's. Values read will be + // stored in here on return. + // - count = The number of bytes to be read. + // Output: No value is returned, but the `dest` array will store + // the data read upon exit. + void xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count); + + // xmWriteByte() -- Write a byte to a register in the accel/mag sensor. + // Input: + // - subAddress = Register to be written to. + // - data = data to be written to the register. + void xgWriteByte(uint8_t subAddress, uint8_t data); + + // calcgRes() -- Calculate the resolution of the gyroscope. + // This function will set the value of the gRes variable. gScale must + // be set prior to calling this function. + void calcgRes(); + + // calcmRes() -- Calculate the resolution of the magnetometer. + // This function will set the value of the mRes variable. mScale must + // be set prior to calling this function. + void calcmRes(); + + // calcaRes() -- Calculate the resolution of the accelerometer. + // This function will set the value of the aRes variable. aScale must + // be set prior to calling this function. + void calcaRes(); + + ////////////////////// + // Helper Functions // + ////////////////////// + void constrainScales(); + + /////////////////// + // SPI Functions // + /////////////////// + // initSPI() -- Initialize the SPI hardware. + // This function will setup all SPI pins and related hardware. + void initSPI(); + + // SPIwriteByte() -- Write a byte out of SPI to a register in the device + // Input: + // - csPin = The chip select pin of the slave device. + // - subAddress = The register to be written to. + // - data = Byte to be written to the register. + void SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data); + + // SPIreadByte() -- Read a single byte from a register over SPI. + // Input: + // - csPin = The chip select pin of the slave device. + // - subAddress = The register to be read from. + // Output: + // - The byte read from the requested address. + uint8_t SPIreadByte(uint8_t csPin, uint8_t subAddress); + + // SPIreadBytes() -- Read a series of bytes, starting at a register via SPI + // Input: + // - csPin = The chip select pin of a slave device. + // - subAddress = The register to begin reading. + // - * dest = Pointer to an array where we'll store the readings. + // - count = Number of registers to be read. + // Output: No value is returned by the function, but the registers read are + // all stored in the *dest array given. + void SPIreadBytes(uint8_t csPin, uint8_t subAddress, + uint8_t * dest, uint8_t count); + + /////////////////// + // I2C Functions // + /////////////////// + // initI2C() -- Initialize the I2C hardware. + // This function will setup all I2C pins and related hardware. + void initI2C(); + + // I2CwriteByte() -- Write a byte out of I2C to a register in the device + // Input: + // - address = The 7-bit I2C address of the slave device. + // - subAddress = The register to be written to. + // - data = Byte to be written to the register. + void I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data); + + // I2CreadByte() -- Read a single byte from a register over I2C. + // Input: + // - address = The 7-bit I2C address of the slave device. + // - subAddress = The register to be read from. + // Output: + // - The byte read from the requested address. + uint8_t I2CreadByte(uint8_t address, uint8_t subAddress); + + // I2CreadBytes() -- Read a series of bytes, starting at a register via SPI + // Input: + // - address = The 7-bit I2C address of the slave device. + // - subAddress = The register to begin reading. + // - * dest = Pointer to an array where we'll store the readings. + // - count = Number of registers to be read. + // Output: No value is returned by the function, but the registers read are + // all stored in the *dest array given. + uint8_t I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count); + +private: + I2C i2c; +}; + +#endif // SFE_LSM9DS1_H //
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LSM9DS1_Registers.h Sat Oct 30 17:17:07 2021 +0000 @@ -0,0 +1,112 @@ +/****************************************************************************** +LSM9DS1_Registers.h +SFE_LSM9DS1 Library - LSM9DS1 Register Map +Jim Lindblom @ SparkFun Electronics +Original Creation Date: April 21, 2015 +https://github.com/sparkfun/LSM9DS1_Breakout + +This file defines all registers internal to the gyro/accel and magnetometer +devices in the LSM9DS1. + +Development environment specifics: + IDE: Arduino 1.6.0 + Hardware Platform: Arduino Uno + LSM9DS1 Breakout Version: 1.0 + +This code is beerware; if you see me (or any other SparkFun employee) at the +local, and you've found our code helpful, please buy us a round! + +Distributed as-is; no warranty is given. +******************************************************************************/ + +#ifndef __LSM9DS1_Registers_H__ +#define __LSM9DS1_Registers_H__ + +///////////////////////////////////////// +// LSM9DS1 Accel/Gyro (XL/G) Registers // +///////////////////////////////////////// +#define ACT_THS 0x04 +#define ACT_DUR 0x05 +#define INT_GEN_CFG_XL 0x06 +#define INT_GEN_THS_X_XL 0x07 +#define INT_GEN_THS_Y_XL 0x08 +#define INT_GEN_THS_Z_XL 0x09 +#define INT_GEN_DUR_XL 0x0A +#define REFERENCE_G 0x0B +#define INT1_CTRL 0x0C +#define INT2_CTRL 0x0D +#define WHO_AM_I_XG 0x0F +#define CTRL_REG1_G 0x10 +#define CTRL_REG2_G 0x11 +#define CTRL_REG3_G 0x12 +#define ORIENT_CFG_G 0x13 +#define INT_GEN_SRC_G 0x14 +#define OUT_TEMP_L 0x15 +#define OUT_TEMP_H 0x16 +#define STATUS_REG_0 0x17 +#define OUT_X_L_G 0x18 +#define OUT_X_H_G 0x19 +#define OUT_Y_L_G 0x1A +#define OUT_Y_H_G 0x1B +#define OUT_Z_L_G 0x1C +#define OUT_Z_H_G 0x1D +#define CTRL_REG4 0x1E +#define CTRL_REG5_XL 0x1F +#define CTRL_REG6_XL 0x20 +#define CTRL_REG7_XL 0x21 +#define CTRL_REG8 0x22 +#define CTRL_REG9 0x23 +#define CTRL_REG10 0x24 +#define INT_GEN_SRC_XL 0x26 +#define STATUS_REG_1 0x27 +#define OUT_X_L_XL 0x28 +#define OUT_X_H_XL 0x29 +#define OUT_Y_L_XL 0x2A +#define OUT_Y_H_XL 0x2B +#define OUT_Z_L_XL 0x2C +#define OUT_Z_H_XL 0x2D +#define FIFO_CTRL 0x2E +#define FIFO_SRC 0x2F +#define INT_GEN_CFG_G 0x30 +#define INT_GEN_THS_XH_G 0x31 +#define INT_GEN_THS_XL_G 0x32 +#define INT_GEN_THS_YH_G 0x33 +#define INT_GEN_THS_YL_G 0x34 +#define INT_GEN_THS_ZH_G 0x35 +#define INT_GEN_THS_ZL_G 0x36 +#define INT_GEN_DUR_G 0x37 + +/////////////////////////////// +// LSM9DS1 Magneto Registers // +/////////////////////////////// +#define OFFSET_X_REG_L_M 0x05 +#define OFFSET_X_REG_H_M 0x06 +#define OFFSET_Y_REG_L_M 0x07 +#define OFFSET_Y_REG_H_M 0x08 +#define OFFSET_Z_REG_L_M 0x09 +#define OFFSET_Z_REG_H_M 0x0A +#define WHO_AM_I_M 0x0F +#define CTRL_REG1_M 0x20 +#define CTRL_REG2_M 0x21 +#define CTRL_REG3_M 0x22 +#define CTRL_REG4_M 0x23 +#define CTRL_REG5_M 0x24 +#define STATUS_REG_M 0x27 +#define OUT_X_L_M 0x28 +#define OUT_X_H_M 0x29 +#define OUT_Y_L_M 0x2A +#define OUT_Y_H_M 0x2B +#define OUT_Z_L_M 0x2C +#define OUT_Z_H_M 0x2D +#define INT_CFG_M 0x30 +#define INT_SRC_M 0x30 +#define INT_THS_L_M 0x32 +#define INT_THS_H_M 0x33 + +//////////////////////////////// +// LSM9DS1 WHO_AM_I Responses // +//////////////////////////////// +#define WHO_AM_I_AG_RSP 0x68 +#define WHO_AM_I_M_RSP 0x3D + +#endif \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LSM9DS1_Types.h Sat Oct 30 17:17:07 2021 +0000 @@ -0,0 +1,251 @@ +/****************************************************************************** +LSM9DS1_Types.h +SFE_LSM9DS1 Library - LSM9DS1 Types and Enumerations +Jim Lindblom @ SparkFun Electronics +Original Creation Date: April 21, 2015 +https://github.com/sparkfun/LSM9DS1_Breakout + +This file defines all types and enumerations used by the LSM9DS1 class. + +Development environment specifics: + IDE: Arduino 1.6.0 + Hardware Platform: Arduino Uno + LSM9DS1 Breakout Version: 1.0 + +This code is beerware; if you see me (or any other SparkFun employee) at the +local, and you've found our code helpful, please buy us a round! + +Distributed as-is; no warranty is given. +******************************************************************************/ + +#ifndef __LSM9DS1_Types_H__ +#define __LSM9DS1_Types_H__ + +#include "LSM9DS1_Registers.h" + +// The LSM9DS1 functions over both I2C or SPI. This library supports both. +// But the interface mode used must be sent to the LSM9DS1 constructor. Use +// one of these two as the first parameter of the constructor. +enum interface_mode +{ + IMU_MODE_SPI, + IMU_MODE_I2C, +}; + +// accel_scale defines all possible FSR's of the accelerometer: +enum accel_scale +{ + A_SCALE_2G, // 00: 2g + A_SCALE_16G,// 01: 16g + A_SCALE_4G, // 10: 4g + A_SCALE_8G // 11: 8g +}; + +// gyro_scale defines the possible full-scale ranges of the gyroscope: +enum gyro_scale +{ + G_SCALE_245DPS, // 00: 245 degrees per second + G_SCALE_500DPS, // 01: 500 dps + G_SCALE_2000DPS, // 11: 2000 dps +}; + +// mag_scale defines all possible FSR's of the magnetometer: +enum mag_scale +{ + M_SCALE_4GS, // 00: 4Gs + M_SCALE_8GS, // 01: 8Gs + M_SCALE_12GS, // 10: 12Gs + M_SCALE_16GS, // 11: 16Gs +}; + +// gyro_odr defines all possible data rate/bandwidth combos of the gyro: +enum gyro_odr +{ + //! TODO + G_ODR_PD, // Power down (0) + G_ODR_149, // 14.9 Hz (1) + G_ODR_595, // 59.5 Hz (2) + G_ODR_119, // 119 Hz (3) + G_ODR_238, // 238 Hz (4) + G_ODR_476, // 476 Hz (5) + G_ODR_952 // 952 Hz (6) +}; +// accel_oder defines all possible output data rates of the accelerometer: +enum accel_odr +{ + XL_POWER_DOWN, // Power-down mode (0x0) + XL_ODR_10, // 10 Hz (0x1) + XL_ODR_50, // 50 Hz (0x02) + XL_ODR_119, // 119 Hz (0x3) + XL_ODR_238, // 238 Hz (0x4) + XL_ODR_476, // 476 Hz (0x5) + XL_ODR_952 // 952 Hz (0x6) +}; + +// accel_abw defines all possible anti-aliasing filter rates of the accelerometer: +enum accel_abw +{ + A_ABW_408, // 408 Hz (0x0) + A_ABW_211, // 211 Hz (0x1) + A_ABW_105, // 105 Hz (0x2) + A_ABW_50, // 50 Hz (0x3) +}; + + +// mag_odr defines all possible output data rates of the magnetometer: +enum mag_odr +{ + M_ODR_0625, // 0.625 Hz (0) + M_ODR_125, // 1.25 Hz (1) + M_ODR_250, // 2.5 Hz (2) + M_ODR_5, // 5 Hz (3) + M_ODR_10, // 10 Hz (4) + M_ODR_20, // 20 Hz (5) + M_ODR_40, // 40 Hz (6) + M_ODR_80 // 80 Hz (7) +}; + +enum interrupt_select +{ + XG_INT1 = INT1_CTRL, + XG_INT2 = INT2_CTRL +}; + +enum interrupt_generators +{ + INT_DRDY_XL = (1<<0), // Accelerometer data ready (INT1 & INT2) + INT_DRDY_G = (1<<1), // Gyroscope data ready (INT1 & INT2) + INT1_BOOT = (1<<2), // Boot status (INT1) + INT2_DRDY_TEMP = (1<<2),// Temp data ready (INT2) + INT_FTH = (1<<3), // FIFO threshold interrupt (INT1 & INT2) + INT_OVR = (1<<4), // Overrun interrupt (INT1 & INT2) + INT_FSS5 = (1<<5), // FSS5 interrupt (INT1 & INT2) + INT_IG_XL = (1<<6), // Accel interrupt generator (INT1) + INT1_IG_G = (1<<7), // Gyro interrupt enable (INT1) + INT2_INACT = (1<<7), // Inactivity interrupt output (INT2) +}; + +enum accel_interrupt_generator +{ + XLIE_XL = (1<<0), + XHIE_XL = (1<<1), + YLIE_XL = (1<<2), + YHIE_XL = (1<<3), + ZLIE_XL = (1<<4), + ZHIE_XL = (1<<5), + GEN_6D = (1<<6) +}; + +enum gyro_interrupt_generator +{ + XLIE_G = (1<<0), + XHIE_G = (1<<1), + YLIE_G = (1<<2), + YHIE_G = (1<<3), + ZLIE_G = (1<<4), + ZHIE_G = (1<<5) +}; + +enum mag_interrupt_generator +{ + ZIEN = (1<<5), + YIEN = (1<<6), + XIEN = (1<<7) +}; + +enum h_lactive +{ + INT_ACTIVE_HIGH, + INT_ACTIVE_LOW +}; + +enum pp_od +{ + INT_PUSH_PULL, + INT_OPEN_DRAIN +}; + +enum fifoMode_type +{ + FIFO_OFF = 0, + FIFO_THS = 1, + FIFO_CONT_TRIGGER = 3, + FIFO_OFF_TRIGGER = 4, + FIFO_CONT = 5 +}; + +struct gyroSettings +{ + // Gyroscope settings: + uint8_t enabled; + uint16_t scale; // Changed this to 16-bit + uint8_t sampleRate; + // New gyro stuff: + uint8_t bandwidth; + uint8_t lowPowerEnable; + uint8_t HPFEnable; + uint8_t HPFCutoff; + uint8_t flipX; + uint8_t flipY; + uint8_t flipZ; + uint8_t orientation; + uint8_t enableX; + uint8_t enableY; + uint8_t enableZ; + uint8_t latchInterrupt; +}; + +struct deviceSettings +{ + uint8_t commInterface; // Can be I2C, SPI 4-wire or SPI 3-wire + uint8_t agAddress; // I2C address or SPI CS pin + uint8_t mAddress; // I2C address or SPI CS pin +}; + +struct accelSettings +{ + // Accelerometer settings: + uint8_t enabled; + uint8_t scale; + uint8_t sampleRate; + // New accel stuff: + uint8_t enableX; + uint8_t enableY; + uint8_t enableZ; + int8_t bandwidth; + uint8_t highResEnable; + uint8_t highResBandwidth; +}; + +struct magSettings +{ + // Magnetometer settings: + uint8_t enabled; + uint8_t scale; + uint8_t sampleRate; + // New mag stuff: + uint8_t tempCompensationEnable; + uint8_t XYPerformance; + uint8_t ZPerformance; + uint8_t lowPowerEnable; + uint8_t operatingMode; +}; + +struct temperatureSettings +{ + // Temperature settings + uint8_t enabled; +}; + +struct IMUSettings +{ + deviceSettings device; + + gyroSettings gyro; + accelSettings accel; + magSettings mag; + + temperatureSettings temp; +}; + +#endif \ No newline at end of file
--- a/ihm_L476_full.lib Sat May 16 12:36:53 2020 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1 +0,0 @@ -https://os.mbed.com/teams/IUT-CACHAN-GE1/code/ihm_L476_full/#e9777c284d79
--- a/main.cpp Sat May 16 12:36:53 2020 +0000 +++ b/main.cpp Sat Oct 30 17:17:07 2021 +0000 @@ -1,38 +1,247 @@ -//#include "mbed.h" // car defini dans l'include suivant -#include "ihm_L476.h" +// Réalisation du projet ATTITUDE IMU +// Dernière Modification le 30.10.2021 +// Thanks to Jason Mar for his library and Sebastian Madgwick for his filter algorithm + + + +#include "LSM9DS1.h" +#include "mbed.h" +#include <math.h> #define PI 3.14f -Serial pc(SERIAL_TX, SERIAL_RX); + +#include "Fusion.h" +#include <stdio.h> + + + +Serial pc(SERIAL_TX, SERIAL_RX); // sans la carte bluetooth +//Serial pc(PC_10,PC_11); //avec la carte bluetooth + CircularBuffer <unsigned char,1024> buf; -IHM_L476 ihm; Timer temps; DigitalOut led1(LED1); DigitalOut led2(LED2); +LSM9DS1 lol(PB_9,PB_8, 0xD4, 0x38); +double angle; + +Ticker calcul; +float testmove; +int flag = 0; +int flug = 0; +int u = 0; +float my_ini,mx_ini,mz_ini; +float correction = 0; +float correct_yaw; +float affi_correct_yaw; + + +FusionBias fusionBias; +FusionAhrs fusionAhrs; + +void mesure (void){ + flag = 1; + } + +float samplePeriod = 0.01f; + +FusionVector3 gyroscopeSensitivity = { + .axis.x = 1.0f, + .axis.y = 1.0f, + .axis.z = 1.0f, +}; + +FusionVector3 accelerometerSensitivity = { + .axis.x = 1.0f, + .axis.y = 1.0f, + .axis.z = 1.0f, +}; + +FusionVector3 hardIronBias = { + .axis.x = 0.0f, + .axis.y = 0.0f, + .axis.z = 0.0f, +}; + +/////////////////////////////////////////////////////////////////////////// void serial_receive() { unsigned char c=pc.getc(); // attention à protéger les appels pc buf.push(c); + } -// + +void setup () +{ + + lol.begin(); + lol.calibrate(); + +} +void yaw_correct_val_ini ()/////////////////////////////////////////////création des variables initiales du magnéto +{ + + + lol.readMag(); + my_ini=lol.calcMag(lol.my)*10; + mx_ini=lol.calcMag(lol.mx)*10; + mz_ini=lol.calcMag(lol.mz)*10; + flug = 1; + } + + +//////////////////////////////////////////////////////////////////////// int main() { - char l1,l2; - pc.baud(9600); - //pc.printf("Hello World !\n"); + + setup(); + + char l1,l2,l3,l4; + + + + pc.attach(&serial_receive); // isr sur reception char - temps.reset(); - temps.start(); + + + int i = 0; - float f=10; + float f=10; int j=0; char str[20]; + + + // Initialise gyroscope bias correction algorithm + FusionBiasInitialise(&fusionBias, 20.0f, samplePeriod); + + // Initialise AHRS algorithm + FusionAhrsInitialise(&fusionAhrs, 0.5f); + + // Set optional magnetic field limits + FusionAhrsSetMagneticField(&fusionAhrs, 20.0f, 70.0f); // valid magnetic field range = 20 uT to 70 uT + // The contents of this do while loop should be called for each time new sensor measurements are available + pc.baud(115200); //vit de comunication + + calcul.attach(&mesure,0.01); + //////////////////////// //////////// ///////////////////Partie Transmission while(1) { + + + + + // envoi de données + int x=temps.read_ms(); - if((x>100)) { - pc.printf("%f %f %d\r\n", sin(2*PI*i/f),cos(2*PI*i/f),x); - i++; - temps.reset(); - } + if (flug == 0){ + yaw_correct_val_ini (); + } + + if(flag == 1) { + + lol.readGyro(); + lol.readAccel(); + lol.readMag(); + + + + ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + // Calibrate gyroscope + FusionVector3 uncalibratedGyroscope = { + .axis.x = -lol.calcGyro(lol.gx), + .axis.y = -lol.calcGyro(lol.gy), + .axis.z = lol.calcGyro(lol.gz), + }; + + FusionVector3 calibratedGyroscope = FusionCalibrationInertial(uncalibratedGyroscope, FUSION_ROTATION_MATRIX_IDENTITY, gyroscopeSensitivity, FUSION_VECTOR3_ZERO); + + // Calibrate accelerometer + FusionVector3 uncalibratedAccelerometer = { + .axis.x = lol.calcAccel(lol.ax), + .axis.y = lol.calcAccel(lol.ay), + .axis.z = lol.calcAccel(lol.az), + }; + FusionVector3 calibratedAccelerometer = FusionCalibrationInertial(uncalibratedAccelerometer, FUSION_ROTATION_MATRIX_IDENTITY, accelerometerSensitivity, FUSION_VECTOR3_ZERO); + + // Calibrate magnetometer + FusionVector3 uncalibratedMagnetometer = { + .axis.x = lol.calcMag(lol.mx), + .axis.y = lol.calcMag(lol.my), + .axis.z = lol.calcMag(lol.mz), + }; + FusionVector3 calibratedMagnetometer = FusionCalibrationMagnetic(uncalibratedMagnetometer, FUSION_ROTATION_MATRIX_IDENTITY, hardIronBias); + + + // Update gyroscope bias correction algorithm + calibratedGyroscope = FusionBiasUpdate(&fusionBias, calibratedGyroscope); + + // Update AHRS algorithm + FusionAhrsUpdate(&fusionAhrs, calibratedGyroscope, calibratedAccelerometer, calibratedMagnetometer, samplePeriod); + + // Print Euler angles + FusionEulerAngles eulerAngles = FusionQuaternionToEulerAngles(FusionAhrsGetQuaternion(&fusionAhrs)); + u = u+1; + testmove = testmove + eulerAngles.angle.yaw; + + +///////////////////////////////////////////////////////////////////////////////////////////////////////repérage de pas de mouvement et application de la correction + + if (u == 10 ) + { + if ((testmove/10) > eulerAngles.angle.yaw -0.02 && (testmove/10) < eulerAngles.angle.yaw +0.02) + { + if ((lol.calcMag(lol.my)*10) > my_ini-0.1 && ((lol.calcMag(lol.my)*10 < my_ini+0.1))) + { + if (((lol.calcMag(lol.mx)*10) > mx_ini-0.25 && ((lol.calcMag(lol.mx)*10) < mx_ini+0.25))) + { + if (((lol.calcMag(lol.mz)*10) > mz_ini-0.25 && ((lol.calcMag(lol.mz)*10) < mz_ini+0.25))) + { +///////////////////////////////////////////////////////////////////////////////////////////////////////// correction progressive + if(correct_yaw < 10) + { + correction = correction + 5; + correct_yaw = eulerAngles.angle.yaw + (correction); + } + if(correct_yaw < 2) + { + correction = correction + 1; + correct_yaw = eulerAngles.angle.yaw + (correction); + + } + if(correct_yaw > -10) + { + correction = correction - 5; + correct_yaw = eulerAngles.angle.yaw + (correction); + + } + if(correct_yaw > -2) + { + correction = correction - 1; + correct_yaw = eulerAngles.angle.yaw + (correction); + + + } + } + + } + } + } + +/////////////////////////////////////////////////////////////////////////////////////////////////////// + affi_correct_yaw = eulerAngles.angle.yaw +(correction); + + + + // pc.printf("%6.1f %6.1f %6.1f\n",eulerAngles.angle.roll, eulerAngles.angle.pitch, affi_correct_yaw); //affichage LabVIEW + pc.printf("Roulis : %6.1f Tangage : %6.1f Lacet : %6.1f\n\r",eulerAngles.angle.roll, eulerAngles.angle.pitch, affi_correct_yaw); //affichage TeraTerm + u = 0; + testmove =0; + } + i++; + flag = 0; + } +} + + //////////////////////// //////////// /////////////////////////Partie Réception //reception de données while(!buf.empty()) { unsigned char c; @@ -42,10 +251,9 @@ str[j]=NULL; // fin de chaine j=0; // debut traitement chaine recue - sscanf(str,"%d %d %f",&l1,&l2,&f); - led1=l1; + sscanf(str,"%d %d %d %d %f",&l1,&l2,&l3,&l4,&f); + led2=l2; - ihm.LCD_printf("%6.2f",f); // fin traitement chaine recue break; case '\n': // on ignore @@ -53,7 +261,7 @@ default : // on stocke str[j]=c; j++; - } - } - } -} \ No newline at end of file + } + } +} +