Vincent Soubirane / Mbed 2 deprecated Projet_ATTITUDE_IMU

Dependencies:   mbed

Committer:
natvich
Date:
Sat Oct 30 17:17:07 2021 +0000
Revision:
1:57502185804c
Projet ATTITUDE IMU

Who changed what in which revision?

UserRevisionLine numberNew contents of line
natvich 1:57502185804c 1 /******************************************************************************
natvich 1:57502185804c 2 SFE_LSM9DS1.cpp
natvich 1:57502185804c 3 SFE_LSM9DS1 Library Source File
natvich 1:57502185804c 4 Jim Lindblom @ SparkFun Electronics
natvich 1:57502185804c 5 Original Creation Date: February 27, 2015
natvich 1:57502185804c 6 https://github.com/sparkfun/LSM9DS1_Breakout
natvich 1:57502185804c 7
natvich 1:57502185804c 8 This file implements all functions of the LSM9DS1 class. Functions here range
natvich 1:57502185804c 9 from higher level stuff, like reading/writing LSM9DS1 registers to low-level,
natvich 1:57502185804c 10 hardware reads and writes. Both SPI and I2C handler functions can be found
natvich 1:57502185804c 11 towards the bottom of this file.
natvich 1:57502185804c 12
natvich 1:57502185804c 13 Development environment specifics:
natvich 1:57502185804c 14 IDE: Arduino 1.6
natvich 1:57502185804c 15 Hardware Platform: Arduino Uno
natvich 1:57502185804c 16 LSM9DS1 Breakout Version: 1.0
natvich 1:57502185804c 17
natvich 1:57502185804c 18 This code is beerware; if you see me (or any other SparkFun employee) at the
natvich 1:57502185804c 19 local, and you've found our code helpful, please buy us a round!
natvich 1:57502185804c 20
natvich 1:57502185804c 21 Distributed as-is; no warranty is given.
natvich 1:57502185804c 22 ******************************************************************************/
natvich 1:57502185804c 23
natvich 1:57502185804c 24 #include "LSM9DS1.h"
natvich 1:57502185804c 25 #include "LSM9DS1_Registers.h"
natvich 1:57502185804c 26 #include "LSM9DS1_Types.h"
natvich 1:57502185804c 27 //#include <Wire.h> // Wire library is used for I2C
natvich 1:57502185804c 28 //#include <SPI.h> // SPI library is used for...SPI.
natvich 1:57502185804c 29
natvich 1:57502185804c 30 //#if defined(ARDUINO) && ARDUINO >= 100
natvich 1:57502185804c 31 // #include "Arduino.h"
natvich 1:57502185804c 32 //#else
natvich 1:57502185804c 33 // #include "WProgram.h"
natvich 1:57502185804c 34 //#endif
natvich 1:57502185804c 35
natvich 1:57502185804c 36 #define LSM9DS1_COMMUNICATION_TIMEOUT 1000
natvich 1:57502185804c 37
natvich 1:57502185804c 38 float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
natvich 1:57502185804c 39 extern Serial pc;
natvich 1:57502185804c 40
natvich 1:57502185804c 41 LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr)
natvich 1:57502185804c 42 :i2c(sda, scl)
natvich 1:57502185804c 43 {
natvich 1:57502185804c 44 init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B
natvich 1:57502185804c 45 }
natvich 1:57502185804c 46 /*
natvich 1:57502185804c 47 LSM9DS1::LSM9DS1()
natvich 1:57502185804c 48 {
natvich 1:57502185804c 49 init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1));
natvich 1:57502185804c 50 }
natvich 1:57502185804c 51
natvich 1:57502185804c 52 LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
natvich 1:57502185804c 53 {
natvich 1:57502185804c 54 init(interface, xgAddr, mAddr);
natvich 1:57502185804c 55 }
natvich 1:57502185804c 56 */
natvich 1:57502185804c 57
natvich 1:57502185804c 58 void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
natvich 1:57502185804c 59 {
natvich 1:57502185804c 60 settings.device.commInterface = interface;
natvich 1:57502185804c 61 settings.device.agAddress = xgAddr;
natvich 1:57502185804c 62 settings.device.mAddress = mAddr;
natvich 1:57502185804c 63
natvich 1:57502185804c 64 settings.gyro.enabled = true;
natvich 1:57502185804c 65 settings.gyro.enableX = true;
natvich 1:57502185804c 66 settings.gyro.enableY = true;
natvich 1:57502185804c 67 settings.gyro.enableZ = true;
natvich 1:57502185804c 68 // gyro scale can be 245, 500, or 2000
natvich 1:57502185804c 69 settings.gyro.scale = 245;
natvich 1:57502185804c 70 // gyro sample rate: value between 1-6
natvich 1:57502185804c 71 // 1 = 14.9 4 = 238
natvich 1:57502185804c 72 // 2 = 59.5 5 = 476
natvich 1:57502185804c 73 // 3 = 119 6 = 952
natvich 1:57502185804c 74 settings.gyro.sampleRate = 6;
natvich 1:57502185804c 75 // gyro cutoff frequency: value between 0-3
natvich 1:57502185804c 76 // Actual value of cutoff frequency depends
natvich 1:57502185804c 77 // on sample rate.
natvich 1:57502185804c 78 settings.gyro.bandwidth = 0;
natvich 1:57502185804c 79 settings.gyro.lowPowerEnable = false;
natvich 1:57502185804c 80 settings.gyro.HPFEnable = false;
natvich 1:57502185804c 81 // Gyro HPF cutoff frequency: value between 0-9
natvich 1:57502185804c 82 // Actual value depends on sample rate. Only applies
natvich 1:57502185804c 83 // if gyroHPFEnable is true.
natvich 1:57502185804c 84 settings.gyro.HPFCutoff = 0;
natvich 1:57502185804c 85 settings.gyro.flipX = false;
natvich 1:57502185804c 86 settings.gyro.flipY = false;
natvich 1:57502185804c 87 settings.gyro.flipZ = false;
natvich 1:57502185804c 88 settings.gyro.orientation = 0;
natvich 1:57502185804c 89 settings.gyro.latchInterrupt = true;
natvich 1:57502185804c 90
natvich 1:57502185804c 91 settings.accel.enabled = true;
natvich 1:57502185804c 92 settings.accel.enableX = true;
natvich 1:57502185804c 93 settings.accel.enableY = true;
natvich 1:57502185804c 94 settings.accel.enableZ = true;
natvich 1:57502185804c 95 // accel scale can be 2, 4, 8, or 16
natvich 1:57502185804c 96 settings.accel.scale = 2;
natvich 1:57502185804c 97 // accel sample rate can be 1-6
natvich 1:57502185804c 98 // 1 = 10 Hz 4 = 238 Hz
natvich 1:57502185804c 99 // 2 = 50 Hz 5 = 476 Hz
natvich 1:57502185804c 100 // 3 = 119 Hz 6 = 952 Hz
natvich 1:57502185804c 101 settings.accel.sampleRate = 6;
natvich 1:57502185804c 102 // Accel cutoff freqeuncy can be any value between -1 - 3.
natvich 1:57502185804c 103 // -1 = bandwidth determined by sample rate
natvich 1:57502185804c 104 // 0 = 408 Hz 2 = 105 Hz
natvich 1:57502185804c 105 // 1 = 211 Hz 3 = 50 Hz
natvich 1:57502185804c 106 settings.accel.bandwidth = -1;
natvich 1:57502185804c 107 settings.accel.highResEnable = false;
natvich 1:57502185804c 108 // accelHighResBandwidth can be any value between 0-3
natvich 1:57502185804c 109 // LP cutoff is set to a factor of sample rate
natvich 1:57502185804c 110 // 0 = ODR/50 2 = ODR/9
natvich 1:57502185804c 111 // 1 = ODR/100 3 = ODR/400
natvich 1:57502185804c 112 settings.accel.highResBandwidth = 0;
natvich 1:57502185804c 113
natvich 1:57502185804c 114 settings.mag.enabled = true;
natvich 1:57502185804c 115 // mag scale can be 4, 8, 12, or 16
natvich 1:57502185804c 116 settings.mag.scale = 4;
natvich 1:57502185804c 117 // mag data rate can be 0-7
natvich 1:57502185804c 118 // 0 = 0.625 Hz 4 = 10 Hz
natvich 1:57502185804c 119 // 1 = 1.25 Hz 5 = 20 Hz
natvich 1:57502185804c 120 // 2 = 2.5 Hz 6 = 40 Hz
natvich 1:57502185804c 121 // 3 = 5 Hz 7 = 80 Hz
natvich 1:57502185804c 122 settings.mag.sampleRate = 7;
natvich 1:57502185804c 123 settings.mag.tempCompensationEnable = false;
natvich 1:57502185804c 124 // magPerformance can be any value between 0-3
natvich 1:57502185804c 125 // 0 = Low power mode 2 = high performance
natvich 1:57502185804c 126 // 1 = medium performance 3 = ultra-high performance
natvich 1:57502185804c 127 settings.mag.XYPerformance = 3;
natvich 1:57502185804c 128 settings.mag.ZPerformance = 3;
natvich 1:57502185804c 129 settings.mag.lowPowerEnable = false;
natvich 1:57502185804c 130 // magOperatingMode can be 0-2
natvich 1:57502185804c 131 // 0 = continuous conversion
natvich 1:57502185804c 132 // 1 = single-conversion
natvich 1:57502185804c 133 // 2 = power down
natvich 1:57502185804c 134 settings.mag.operatingMode = 0;
natvich 1:57502185804c 135
natvich 1:57502185804c 136 settings.temp.enabled = true;
natvich 1:57502185804c 137 for (int i=0; i<3; i++)
natvich 1:57502185804c 138 {
natvich 1:57502185804c 139 gBias[i] = 0;
natvich 1:57502185804c 140 aBias[i] = 0;
natvich 1:57502185804c 141 mBias[i] = 0;
natvich 1:57502185804c 142 gBiasRaw[i] = 0;
natvich 1:57502185804c 143 aBiasRaw[i] = 0;
natvich 1:57502185804c 144 mBiasRaw[i] = 0;
natvich 1:57502185804c 145 }
natvich 1:57502185804c 146 _autoCalc = false;
natvich 1:57502185804c 147 }
natvich 1:57502185804c 148
natvich 1:57502185804c 149
natvich 1:57502185804c 150 uint16_t LSM9DS1::begin()
natvich 1:57502185804c 151 {
natvich 1:57502185804c 152 //! Todo: don't use _xgAddress or _mAddress, duplicating memory
natvich 1:57502185804c 153 _xgAddress = settings.device.agAddress;
natvich 1:57502185804c 154 _mAddress = settings.device.mAddress;
natvich 1:57502185804c 155
natvich 1:57502185804c 156 constrainScales();
natvich 1:57502185804c 157 // Once we have the scale values, we can calculate the resolution
natvich 1:57502185804c 158 // of each sensor. That's what these functions are for. One for each sensor
natvich 1:57502185804c 159 calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
natvich 1:57502185804c 160 calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
natvich 1:57502185804c 161 calcaRes(); // Calculate g / ADC tick, stored in aRes variable
natvich 1:57502185804c 162
natvich 1:57502185804c 163 // Now, initialize our hardware interface.
natvich 1:57502185804c 164 if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C
natvich 1:57502185804c 165 initI2C(); // Initialize I2C
natvich 1:57502185804c 166 else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI
natvich 1:57502185804c 167 initSPI(); // Initialize SPI
natvich 1:57502185804c 168
natvich 1:57502185804c 169 // To verify communication, we can read from the WHO_AM_I register of
natvich 1:57502185804c 170 // each device. Store those in a variable so we can return them.
natvich 1:57502185804c 171
natvich 1:57502185804c 172 uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I
natvich 1:57502185804c 173 uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I
natvich 1:57502185804c 174 // pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress);
natvich 1:57502185804c 175 uint16_t whoAmICombined = (xgTest << 8) | mTest;
natvich 1:57502185804c 176
natvich 1:57502185804c 177 if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
natvich 1:57502185804c 178 return 0;
natvich 1:57502185804c 179
natvich 1:57502185804c 180 // Gyro initialization stuff:
natvich 1:57502185804c 181 initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
natvich 1:57502185804c 182
natvich 1:57502185804c 183 // Accelerometer initialization stuff:
natvich 1:57502185804c 184 initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
natvich 1:57502185804c 185
natvich 1:57502185804c 186 // Magnetometer initialization stuff:
natvich 1:57502185804c 187 initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
natvich 1:57502185804c 188
natvich 1:57502185804c 189 // Once everything is initialized, return the WHO_AM_I registers we read:
natvich 1:57502185804c 190 // return whoAmICombined;
natvich 1:57502185804c 191 }
natvich 1:57502185804c 192
natvich 1:57502185804c 193 void LSM9DS1::initGyro()
natvich 1:57502185804c 194 {
natvich 1:57502185804c 195 uint8_t tempRegValue = 0;
natvich 1:57502185804c 196
natvich 1:57502185804c 197 // CTRL_REG1_G (Default value: 0x00)
natvich 1:57502185804c 198 // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
natvich 1:57502185804c 199 // ODR_G[2:0] - Output data rate selection
natvich 1:57502185804c 200 // FS_G[1:0] - Gyroscope full-scale selection
natvich 1:57502185804c 201 // BW_G[1:0] - Gyroscope bandwidth selection
natvich 1:57502185804c 202
natvich 1:57502185804c 203 // To disable gyro, set sample rate bits to 0. We'll only set sample
natvich 1:57502185804c 204 // rate if the gyro is enabled.
natvich 1:57502185804c 205 if (settings.gyro.enabled)
natvich 1:57502185804c 206 {
natvich 1:57502185804c 207 tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
natvich 1:57502185804c 208 }
natvich 1:57502185804c 209 switch (settings.gyro.scale)
natvich 1:57502185804c 210 {
natvich 1:57502185804c 211 case 500:
natvich 1:57502185804c 212 tempRegValue |= (0x1 << 3);
natvich 1:57502185804c 213 break;
natvich 1:57502185804c 214 case 2000:
natvich 1:57502185804c 215 tempRegValue |= (0x3 << 3);
natvich 1:57502185804c 216 break;
natvich 1:57502185804c 217 // Otherwise we'll set it to 245 dps (0x0 << 4)
natvich 1:57502185804c 218 }
natvich 1:57502185804c 219 tempRegValue |= (settings.gyro.bandwidth & 0x3);
natvich 1:57502185804c 220 xgWriteByte(CTRL_REG1_G, tempRegValue);
natvich 1:57502185804c 221
natvich 1:57502185804c 222 // CTRL_REG2_G (Default value: 0x00)
natvich 1:57502185804c 223 // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
natvich 1:57502185804c 224 // INT_SEL[1:0] - INT selection configuration
natvich 1:57502185804c 225 // OUT_SEL[1:0] - Out selection configuration
natvich 1:57502185804c 226 xgWriteByte(CTRL_REG2_G, 0x00);
natvich 1:57502185804c 227
natvich 1:57502185804c 228 // CTRL_REG3_G (Default value: 0x00)
natvich 1:57502185804c 229 // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
natvich 1:57502185804c 230 // LP_mode - Low-power mode enable (0: disabled, 1: enabled)
natvich 1:57502185804c 231 // HP_EN - HPF enable (0:disabled, 1: enabled)
natvich 1:57502185804c 232 // HPCF_G[3:0] - HPF cutoff frequency
natvich 1:57502185804c 233 tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
natvich 1:57502185804c 234 if (settings.gyro.HPFEnable)
natvich 1:57502185804c 235 {
natvich 1:57502185804c 236 tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
natvich 1:57502185804c 237 }
natvich 1:57502185804c 238 xgWriteByte(CTRL_REG3_G, tempRegValue);
natvich 1:57502185804c 239
natvich 1:57502185804c 240 // CTRL_REG4 (Default value: 0x38)
natvich 1:57502185804c 241 // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
natvich 1:57502185804c 242 // Zen_G - Z-axis output enable (0:disable, 1:enable)
natvich 1:57502185804c 243 // Yen_G - Y-axis output enable (0:disable, 1:enable)
natvich 1:57502185804c 244 // Xen_G - X-axis output enable (0:disable, 1:enable)
natvich 1:57502185804c 245 // LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
natvich 1:57502185804c 246 // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
natvich 1:57502185804c 247 tempRegValue = 0;
natvich 1:57502185804c 248 if (settings.gyro.enableZ) tempRegValue |= (1<<5);
natvich 1:57502185804c 249 if (settings.gyro.enableY) tempRegValue |= (1<<4);
natvich 1:57502185804c 250 if (settings.gyro.enableX) tempRegValue |= (1<<3);
natvich 1:57502185804c 251 if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
natvich 1:57502185804c 252 xgWriteByte(CTRL_REG4, tempRegValue);
natvich 1:57502185804c 253
natvich 1:57502185804c 254 // ORIENT_CFG_G (Default value: 0x00)
natvich 1:57502185804c 255 // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
natvich 1:57502185804c 256 // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
natvich 1:57502185804c 257 // Orient [2:0] - Directional user orientation selection
natvich 1:57502185804c 258 tempRegValue = 0;
natvich 1:57502185804c 259 if (settings.gyro.flipX) tempRegValue |= (1<<5);
natvich 1:57502185804c 260 if (settings.gyro.flipY) tempRegValue |= (1<<4);
natvich 1:57502185804c 261 if (settings.gyro.flipZ) tempRegValue |= (1<<3);
natvich 1:57502185804c 262 xgWriteByte(ORIENT_CFG_G, tempRegValue);
natvich 1:57502185804c 263 }
natvich 1:57502185804c 264
natvich 1:57502185804c 265 void LSM9DS1::initAccel()
natvich 1:57502185804c 266 {
natvich 1:57502185804c 267 uint8_t tempRegValue = 0;
natvich 1:57502185804c 268
natvich 1:57502185804c 269 // CTRL_REG5_XL (0x1F) (Default value: 0x38)
natvich 1:57502185804c 270 // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
natvich 1:57502185804c 271 // DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
natvich 1:57502185804c 272 // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
natvich 1:57502185804c 273 // Zen_XL - Z-axis output enabled
natvich 1:57502185804c 274 // Yen_XL - Y-axis output enabled
natvich 1:57502185804c 275 // Xen_XL - X-axis output enabled
natvich 1:57502185804c 276 if (settings.accel.enableZ) tempRegValue |= (1<<5);
natvich 1:57502185804c 277 if (settings.accel.enableY) tempRegValue |= (1<<4);
natvich 1:57502185804c 278 if (settings.accel.enableX) tempRegValue |= (1<<3);
natvich 1:57502185804c 279
natvich 1:57502185804c 280 xgWriteByte(CTRL_REG5_XL, tempRegValue);
natvich 1:57502185804c 281
natvich 1:57502185804c 282 // CTRL_REG6_XL (0x20) (Default value: 0x00)
natvich 1:57502185804c 283 // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
natvich 1:57502185804c 284 // ODR_XL[2:0] - Output data rate & power mode selection
natvich 1:57502185804c 285 // FS_XL[1:0] - Full-scale selection
natvich 1:57502185804c 286 // BW_SCAL_ODR - Bandwidth selection
natvich 1:57502185804c 287 // BW_XL[1:0] - Anti-aliasing filter bandwidth selection
natvich 1:57502185804c 288 tempRegValue = 0;
natvich 1:57502185804c 289 // To disable the accel, set the sampleRate bits to 0.
natvich 1:57502185804c 290 if (settings.accel.enabled)
natvich 1:57502185804c 291 {
natvich 1:57502185804c 292 tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
natvich 1:57502185804c 293 }
natvich 1:57502185804c 294 switch (settings.accel.scale)
natvich 1:57502185804c 295 {
natvich 1:57502185804c 296 case 4:
natvich 1:57502185804c 297 tempRegValue |= (0x2 << 3);
natvich 1:57502185804c 298 break;
natvich 1:57502185804c 299 case 8:
natvich 1:57502185804c 300 tempRegValue |= (0x3 << 3);
natvich 1:57502185804c 301 break;
natvich 1:57502185804c 302 case 16:
natvich 1:57502185804c 303 tempRegValue |= (0x1 << 3);
natvich 1:57502185804c 304 break;
natvich 1:57502185804c 305 // Otherwise it'll be set to 2g (0x0 << 3)
natvich 1:57502185804c 306 }
natvich 1:57502185804c 307 if (settings.accel.bandwidth >= 0)
natvich 1:57502185804c 308 {
natvich 1:57502185804c 309 tempRegValue |= (1<<2); // Set BW_SCAL_ODR
natvich 1:57502185804c 310 tempRegValue |= (settings.accel.bandwidth & 0x03);
natvich 1:57502185804c 311 }
natvich 1:57502185804c 312 xgWriteByte(CTRL_REG6_XL, tempRegValue);
natvich 1:57502185804c 313
natvich 1:57502185804c 314 // CTRL_REG7_XL (0x21) (Default value: 0x00)
natvich 1:57502185804c 315 // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
natvich 1:57502185804c 316 // HR - High resolution mode (0: disable, 1: enable)
natvich 1:57502185804c 317 // DCF[1:0] - Digital filter cutoff frequency
natvich 1:57502185804c 318 // FDS - Filtered data selection
natvich 1:57502185804c 319 // HPIS1 - HPF enabled for interrupt function
natvich 1:57502185804c 320 tempRegValue = 0;
natvich 1:57502185804c 321 if (settings.accel.highResEnable)
natvich 1:57502185804c 322 {
natvich 1:57502185804c 323 tempRegValue |= (1<<7); // Set HR bit
natvich 1:57502185804c 324 tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
natvich 1:57502185804c 325 }
natvich 1:57502185804c 326 xgWriteByte(CTRL_REG7_XL, tempRegValue);
natvich 1:57502185804c 327 }
natvich 1:57502185804c 328
natvich 1:57502185804c 329 // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
natvich 1:57502185804c 330 // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch
natvich 1:57502185804c 331 // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
natvich 1:57502185804c 332 // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
natvich 1:57502185804c 333 // subtract the biases ourselves. This results in a more accurate measurement in general and can
natvich 1:57502185804c 334 // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
natvich 1:57502185804c 335 // is good practice.
natvich 1:57502185804c 336 void LSM9DS1::calibrate(bool autoCalc)
natvich 1:57502185804c 337 {
natvich 1:57502185804c 338 uint8_t data[6] = {0, 0, 0, 0, 0, 0};
natvich 1:57502185804c 339 uint8_t samples = 0;
natvich 1:57502185804c 340 int ii;
natvich 1:57502185804c 341 int32_t aBiasRawTemp[3] = {0, 0, 0};
natvich 1:57502185804c 342 int32_t gBiasRawTemp[3] = {0, 0, 0};
natvich 1:57502185804c 343
natvich 1:57502185804c 344 // Turn on FIFO and set threshold to 32 samples
natvich 1:57502185804c 345 enableFIFO(true);
natvich 1:57502185804c 346 setFIFO(FIFO_THS, 0x1F);
natvich 1:57502185804c 347 while (samples < 0x1F)
natvich 1:57502185804c 348 {
natvich 1:57502185804c 349 samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
natvich 1:57502185804c 350 }
natvich 1:57502185804c 351 for(ii = 0; ii < samples ; ii++)
natvich 1:57502185804c 352 { // Read the gyro data stored in the FIFO
natvich 1:57502185804c 353 readGyro();
natvich 1:57502185804c 354 gBiasRawTemp[0] += gx;
natvich 1:57502185804c 355 gBiasRawTemp[1] += gy;
natvich 1:57502185804c 356 gBiasRawTemp[2] += gz;
natvich 1:57502185804c 357 readAccel();
natvich 1:57502185804c 358 aBiasRawTemp[0] += ax;
natvich 1:57502185804c 359 aBiasRawTemp[1] += ay;
natvich 1:57502185804c 360 aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up!
natvich 1:57502185804c 361 }
natvich 1:57502185804c 362 for (ii = 0; ii < 3; ii++)
natvich 1:57502185804c 363 {
natvich 1:57502185804c 364 gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
natvich 1:57502185804c 365 gBias[ii] = calcGyro(gBiasRaw[ii]);
natvich 1:57502185804c 366 aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
natvich 1:57502185804c 367 aBias[ii] = calcAccel(aBiasRaw[ii]);
natvich 1:57502185804c 368 }
natvich 1:57502185804c 369
natvich 1:57502185804c 370 enableFIFO(false);
natvich 1:57502185804c 371 setFIFO(FIFO_OFF, 0x00);
natvich 1:57502185804c 372
natvich 1:57502185804c 373 if (autoCalc) _autoCalc = true;
natvich 1:57502185804c 374 }
natvich 1:57502185804c 375
natvich 1:57502185804c 376 void LSM9DS1::calibrateMag(bool loadIn)
natvich 1:57502185804c 377 {
natvich 1:57502185804c 378 int i, j;
natvich 1:57502185804c 379 int16_t magMin[3] = {0, 0, 0};
natvich 1:57502185804c 380 int16_t magMax[3] = {0, 0, 0}; // The road warrior
natvich 1:57502185804c 381
natvich 1:57502185804c 382 for (i=0; i<128; i++)
natvich 1:57502185804c 383 {
natvich 1:57502185804c 384 while (!magAvailable())
natvich 1:57502185804c 385 ;
natvich 1:57502185804c 386 readMag();
natvich 1:57502185804c 387 int16_t magTemp[3] = {0, 0, 0};
natvich 1:57502185804c 388 magTemp[0] = mx;
natvich 1:57502185804c 389 magTemp[1] = my;
natvich 1:57502185804c 390 magTemp[2] = mz;
natvich 1:57502185804c 391 for (j = 0; j < 3; j++)
natvich 1:57502185804c 392 {
natvich 1:57502185804c 393 if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
natvich 1:57502185804c 394 if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
natvich 1:57502185804c 395 }
natvich 1:57502185804c 396 }
natvich 1:57502185804c 397 for (j = 0; j < 3; j++)
natvich 1:57502185804c 398 {
natvich 1:57502185804c 399 mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
natvich 1:57502185804c 400 mBias[j] = calcMag(mBiasRaw[j]);
natvich 1:57502185804c 401 if (loadIn)
natvich 1:57502185804c 402 magOffset(j, mBiasRaw[j]);
natvich 1:57502185804c 403 }
natvich 1:57502185804c 404
natvich 1:57502185804c 405 }
natvich 1:57502185804c 406 void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
natvich 1:57502185804c 407 {
natvich 1:57502185804c 408 if (axis > 2)
natvich 1:57502185804c 409 return;
natvich 1:57502185804c 410 uint8_t msb, lsb;
natvich 1:57502185804c 411 msb = (offset & 0xFF00) >> 8;
natvich 1:57502185804c 412 lsb = offset & 0x00FF;
natvich 1:57502185804c 413 mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb);
natvich 1:57502185804c 414 mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb);
natvich 1:57502185804c 415 }
natvich 1:57502185804c 416
natvich 1:57502185804c 417 void LSM9DS1::initMag()
natvich 1:57502185804c 418 {
natvich 1:57502185804c 419 uint8_t tempRegValue = 0;
natvich 1:57502185804c 420
natvich 1:57502185804c 421 // CTRL_REG1_M (Default value: 0x10)
natvich 1:57502185804c 422 // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
natvich 1:57502185804c 423 // TEMP_COMP - Temperature compensation
natvich 1:57502185804c 424 // OM[1:0] - X & Y axes op mode selection
natvich 1:57502185804c 425 // 00:low-power, 01:medium performance
natvich 1:57502185804c 426 // 10: high performance, 11:ultra-high performance
natvich 1:57502185804c 427 // DO[2:0] - Output data rate selection
natvich 1:57502185804c 428 // ST - Self-test enable
natvich 1:57502185804c 429 if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
natvich 1:57502185804c 430 tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
natvich 1:57502185804c 431 tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
natvich 1:57502185804c 432 mWriteByte(CTRL_REG1_M, tempRegValue);
natvich 1:57502185804c 433
natvich 1:57502185804c 434 // CTRL_REG2_M (Default value 0x00)
natvich 1:57502185804c 435 // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
natvich 1:57502185804c 436 // FS[1:0] - Full-scale configuration
natvich 1:57502185804c 437 // REBOOT - Reboot memory content (0:normal, 1:reboot)
natvich 1:57502185804c 438 // SOFT_RST - Reset config and user registers (0:default, 1:reset)
natvich 1:57502185804c 439 tempRegValue = 0;
natvich 1:57502185804c 440 switch (settings.mag.scale)
natvich 1:57502185804c 441 {
natvich 1:57502185804c 442 case 8:
natvich 1:57502185804c 443 tempRegValue |= (0x1 << 5);
natvich 1:57502185804c 444 break;
natvich 1:57502185804c 445 case 12:
natvich 1:57502185804c 446 tempRegValue |= (0x2 << 5);
natvich 1:57502185804c 447 break;
natvich 1:57502185804c 448 case 16:
natvich 1:57502185804c 449 tempRegValue |= (0x3 << 5);
natvich 1:57502185804c 450 break;
natvich 1:57502185804c 451 // Otherwise we'll default to 4 gauss (00)
natvich 1:57502185804c 452 }
natvich 1:57502185804c 453 mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
natvich 1:57502185804c 454
natvich 1:57502185804c 455 // CTRL_REG3_M (Default value: 0x03)
natvich 1:57502185804c 456 // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
natvich 1:57502185804c 457 // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
natvich 1:57502185804c 458 // LP - Low-power mode cofiguration (1:enable)
natvich 1:57502185804c 459 // SIM - SPI mode selection (0:write-only, 1:read/write enable)
natvich 1:57502185804c 460 // MD[1:0] - Operating mode
natvich 1:57502185804c 461 // 00:continuous conversion, 01:single-conversion,
natvich 1:57502185804c 462 // 10,11: Power-down
natvich 1:57502185804c 463 tempRegValue = 0;
natvich 1:57502185804c 464 if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
natvich 1:57502185804c 465 tempRegValue |= (settings.mag.operatingMode & 0x3);
natvich 1:57502185804c 466 mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
natvich 1:57502185804c 467
natvich 1:57502185804c 468 // CTRL_REG4_M (Default value: 0x00)
natvich 1:57502185804c 469 // [0][0][0][0][OMZ1][OMZ0][BLE][0]
natvich 1:57502185804c 470 // OMZ[1:0] - Z-axis operative mode selection
natvich 1:57502185804c 471 // 00:low-power mode, 01:medium performance
natvich 1:57502185804c 472 // 10:high performance, 10:ultra-high performance
natvich 1:57502185804c 473 // BLE - Big/little endian data
natvich 1:57502185804c 474 tempRegValue = 0;
natvich 1:57502185804c 475 tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
natvich 1:57502185804c 476 mWriteByte(CTRL_REG4_M, tempRegValue);
natvich 1:57502185804c 477
natvich 1:57502185804c 478 // CTRL_REG5_M (Default value: 0x00)
natvich 1:57502185804c 479 // [0][BDU][0][0][0][0][0][0]
natvich 1:57502185804c 480 // BDU - Block data update for magnetic data
natvich 1:57502185804c 481 // 0:continuous, 1:not updated until MSB/LSB are read
natvich 1:57502185804c 482 tempRegValue = 0;
natvich 1:57502185804c 483 mWriteByte(CTRL_REG5_M, tempRegValue);
natvich 1:57502185804c 484 }
natvich 1:57502185804c 485
natvich 1:57502185804c 486 uint8_t LSM9DS1::accelAvailable()
natvich 1:57502185804c 487 {
natvich 1:57502185804c 488 uint8_t status = xgReadByte(STATUS_REG_1);
natvich 1:57502185804c 489
natvich 1:57502185804c 490 return (status & (1<<0));
natvich 1:57502185804c 491 }
natvich 1:57502185804c 492
natvich 1:57502185804c 493 uint8_t LSM9DS1::gyroAvailable()
natvich 1:57502185804c 494 {
natvich 1:57502185804c 495 uint8_t status = xgReadByte(STATUS_REG_1);
natvich 1:57502185804c 496
natvich 1:57502185804c 497 return ((status & (1<<1)) >> 1);
natvich 1:57502185804c 498 }
natvich 1:57502185804c 499
natvich 1:57502185804c 500 uint8_t LSM9DS1::tempAvailable()
natvich 1:57502185804c 501 {
natvich 1:57502185804c 502 uint8_t status = xgReadByte(STATUS_REG_1);
natvich 1:57502185804c 503
natvich 1:57502185804c 504 return ((status & (1<<2)) >> 2);
natvich 1:57502185804c 505 }
natvich 1:57502185804c 506
natvich 1:57502185804c 507 uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis)
natvich 1:57502185804c 508 {
natvich 1:57502185804c 509 uint8_t status;
natvich 1:57502185804c 510 status = mReadByte(STATUS_REG_M);
natvich 1:57502185804c 511
natvich 1:57502185804c 512 return ((status & (1<<axis)) >> axis);
natvich 1:57502185804c 513 }
natvich 1:57502185804c 514
natvich 1:57502185804c 515 void LSM9DS1::readAccel()
natvich 1:57502185804c 516 {
natvich 1:57502185804c 517 uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
natvich 1:57502185804c 518 xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
natvich 1:57502185804c 519 ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
natvich 1:57502185804c 520 ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
natvich 1:57502185804c 521 az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
natvich 1:57502185804c 522 if (_autoCalc)
natvich 1:57502185804c 523 {
natvich 1:57502185804c 524 ax -= aBiasRaw[X_AXIS];
natvich 1:57502185804c 525 ay -= aBiasRaw[Y_AXIS];
natvich 1:57502185804c 526 az -= aBiasRaw[Z_AXIS];
natvich 1:57502185804c 527 }
natvich 1:57502185804c 528 }
natvich 1:57502185804c 529
natvich 1:57502185804c 530 int16_t LSM9DS1::readAccel(lsm9ds1_axis axis)
natvich 1:57502185804c 531 {
natvich 1:57502185804c 532 uint8_t temp[2];
natvich 1:57502185804c 533 int16_t value;
natvich 1:57502185804c 534 xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
natvich 1:57502185804c 535 value = (temp[1] << 8) | temp[0];
natvich 1:57502185804c 536
natvich 1:57502185804c 537 if (_autoCalc)
natvich 1:57502185804c 538 value -= aBiasRaw[axis];
natvich 1:57502185804c 539
natvich 1:57502185804c 540 return value;
natvich 1:57502185804c 541 }
natvich 1:57502185804c 542
natvich 1:57502185804c 543 void LSM9DS1::readMag()
natvich 1:57502185804c 544 {
natvich 1:57502185804c 545 uint8_t temp[6]; // We'll read six bytes from the mag into temp
natvich 1:57502185804c 546 mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
natvich 1:57502185804c 547 mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
natvich 1:57502185804c 548 my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
natvich 1:57502185804c 549 mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
natvich 1:57502185804c 550 }
natvich 1:57502185804c 551
natvich 1:57502185804c 552 int16_t LSM9DS1::readMag(lsm9ds1_axis axis)
natvich 1:57502185804c 553 {
natvich 1:57502185804c 554 uint8_t temp[2];
natvich 1:57502185804c 555 mReadBytes(OUT_X_L_M + (2 * axis), temp, 2);
natvich 1:57502185804c 556 return (temp[1] << 8) | temp[0];
natvich 1:57502185804c 557 }
natvich 1:57502185804c 558
natvich 1:57502185804c 559 void LSM9DS1::readTemp()
natvich 1:57502185804c 560 {
natvich 1:57502185804c 561 uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
natvich 1:57502185804c 562 xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
natvich 1:57502185804c 563 temperature = ((int16_t)temp[1] << 8) | temp[0];
natvich 1:57502185804c 564 }
natvich 1:57502185804c 565
natvich 1:57502185804c 566 void LSM9DS1::readGyro()
natvich 1:57502185804c 567 {
natvich 1:57502185804c 568 uint8_t temp[6]; // We'll read six bytes from the gyro into temp
natvich 1:57502185804c 569 xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
natvich 1:57502185804c 570 gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
natvich 1:57502185804c 571 gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
natvich 1:57502185804c 572 gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
natvich 1:57502185804c 573 if (_autoCalc)
natvich 1:57502185804c 574 {
natvich 1:57502185804c 575 gx -= gBiasRaw[X_AXIS];
natvich 1:57502185804c 576 gy -= gBiasRaw[Y_AXIS];
natvich 1:57502185804c 577 gz -= gBiasRaw[Z_AXIS];
natvich 1:57502185804c 578 }
natvich 1:57502185804c 579 }
natvich 1:57502185804c 580
natvich 1:57502185804c 581 int16_t LSM9DS1::readGyro(lsm9ds1_axis axis)
natvich 1:57502185804c 582 {
natvich 1:57502185804c 583 uint8_t temp[2];
natvich 1:57502185804c 584 int16_t value;
natvich 1:57502185804c 585
natvich 1:57502185804c 586 xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
natvich 1:57502185804c 587
natvich 1:57502185804c 588 value = (temp[1] << 8) | temp[0];
natvich 1:57502185804c 589
natvich 1:57502185804c 590 if (_autoCalc)
natvich 1:57502185804c 591 value -= gBiasRaw[axis];
natvich 1:57502185804c 592
natvich 1:57502185804c 593 return value;
natvich 1:57502185804c 594 }
natvich 1:57502185804c 595
natvich 1:57502185804c 596 float LSM9DS1::calcGyro(int16_t gyro)
natvich 1:57502185804c 597 {
natvich 1:57502185804c 598 // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
natvich 1:57502185804c 599 return gRes * gyro;
natvich 1:57502185804c 600 }
natvich 1:57502185804c 601
natvich 1:57502185804c 602 float LSM9DS1::calcAccel(int16_t accel)
natvich 1:57502185804c 603 {
natvich 1:57502185804c 604 // Return the accel raw reading times our pre-calculated g's / (ADC tick):
natvich 1:57502185804c 605 return aRes * accel;
natvich 1:57502185804c 606 }
natvich 1:57502185804c 607
natvich 1:57502185804c 608 float LSM9DS1::calcMag(int16_t mag)
natvich 1:57502185804c 609 {
natvich 1:57502185804c 610 // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
natvich 1:57502185804c 611 return mRes * mag;
natvich 1:57502185804c 612 }
natvich 1:57502185804c 613
natvich 1:57502185804c 614 void LSM9DS1::setGyroScale(uint16_t gScl)
natvich 1:57502185804c 615 {
natvich 1:57502185804c 616 // Read current value of CTRL_REG1_G:
natvich 1:57502185804c 617 uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
natvich 1:57502185804c 618 // Mask out scale bits (3 & 4):
natvich 1:57502185804c 619 ctrl1RegValue &= 0xE7;
natvich 1:57502185804c 620 switch (gScl)
natvich 1:57502185804c 621 {
natvich 1:57502185804c 622 case 500:
natvich 1:57502185804c 623 ctrl1RegValue |= (0x1 << 3);
natvich 1:57502185804c 624 settings.gyro.scale = 500;
natvich 1:57502185804c 625 break;
natvich 1:57502185804c 626 case 2000:
natvich 1:57502185804c 627 ctrl1RegValue |= (0x3 << 3);
natvich 1:57502185804c 628 settings.gyro.scale = 2000;
natvich 1:57502185804c 629 break;
natvich 1:57502185804c 630 default: // Otherwise we'll set it to 245 dps (0x0 << 4)
natvich 1:57502185804c 631 settings.gyro.scale = 245;
natvich 1:57502185804c 632 break;
natvich 1:57502185804c 633 }
natvich 1:57502185804c 634 xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
natvich 1:57502185804c 635
natvich 1:57502185804c 636 calcgRes();
natvich 1:57502185804c 637 }
natvich 1:57502185804c 638
natvich 1:57502185804c 639 void LSM9DS1::setAccelScale(uint8_t aScl)
natvich 1:57502185804c 640 {
natvich 1:57502185804c 641 // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it:
natvich 1:57502185804c 642 uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
natvich 1:57502185804c 643 // Mask out accel scale bits:
natvich 1:57502185804c 644 tempRegValue &= 0xE7;
natvich 1:57502185804c 645
natvich 1:57502185804c 646 switch (aScl)
natvich 1:57502185804c 647 {
natvich 1:57502185804c 648 case 4:
natvich 1:57502185804c 649 tempRegValue |= (0x2 << 3);
natvich 1:57502185804c 650 settings.accel.scale = 4;
natvich 1:57502185804c 651 break;
natvich 1:57502185804c 652 case 8:
natvich 1:57502185804c 653 tempRegValue |= (0x3 << 3);
natvich 1:57502185804c 654 settings.accel.scale = 8;
natvich 1:57502185804c 655 break;
natvich 1:57502185804c 656 case 16:
natvich 1:57502185804c 657 tempRegValue |= (0x1 << 3);
natvich 1:57502185804c 658 settings.accel.scale = 16;
natvich 1:57502185804c 659 break;
natvich 1:57502185804c 660 default: // Otherwise it'll be set to 2g (0x0 << 3)
natvich 1:57502185804c 661 settings.accel.scale = 2;
natvich 1:57502185804c 662 break;
natvich 1:57502185804c 663 }
natvich 1:57502185804c 664 xgWriteByte(CTRL_REG6_XL, tempRegValue);
natvich 1:57502185804c 665
natvich 1:57502185804c 666 // Then calculate a new aRes, which relies on aScale being set correctly:
natvich 1:57502185804c 667 calcaRes();
natvich 1:57502185804c 668 }
natvich 1:57502185804c 669
natvich 1:57502185804c 670 void LSM9DS1::setMagScale(uint8_t mScl)
natvich 1:57502185804c 671 {
natvich 1:57502185804c 672 // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
natvich 1:57502185804c 673 uint8_t temp = mReadByte(CTRL_REG2_M);
natvich 1:57502185804c 674 // Then mask out the mag scale bits:
natvich 1:57502185804c 675 temp &= 0xFF^(0x3 << 5);
natvich 1:57502185804c 676
natvich 1:57502185804c 677 switch (mScl)
natvich 1:57502185804c 678 {
natvich 1:57502185804c 679 case 8:
natvich 1:57502185804c 680 temp |= (0x1 << 5);
natvich 1:57502185804c 681 settings.mag.scale = 8;
natvich 1:57502185804c 682 break;
natvich 1:57502185804c 683 case 12:
natvich 1:57502185804c 684 temp |= (0x2 << 5);
natvich 1:57502185804c 685 settings.mag.scale = 12;
natvich 1:57502185804c 686 break;
natvich 1:57502185804c 687 case 16:
natvich 1:57502185804c 688 temp |= (0x3 << 5);
natvich 1:57502185804c 689 settings.mag.scale = 16;
natvich 1:57502185804c 690 break;
natvich 1:57502185804c 691 default: // Otherwise we'll default to 4 gauss (00)
natvich 1:57502185804c 692 settings.mag.scale = 4;
natvich 1:57502185804c 693 break;
natvich 1:57502185804c 694 }
natvich 1:57502185804c 695
natvich 1:57502185804c 696 // And write the new register value back into CTRL_REG6_XM:
natvich 1:57502185804c 697 mWriteByte(CTRL_REG2_M, temp);
natvich 1:57502185804c 698
natvich 1:57502185804c 699 // We've updated the sensor, but we also need to update our class variables
natvich 1:57502185804c 700 // First update mScale:
natvich 1:57502185804c 701 //mScale = mScl;
natvich 1:57502185804c 702 // Then calculate a new mRes, which relies on mScale being set correctly:
natvich 1:57502185804c 703 calcmRes();
natvich 1:57502185804c 704 }
natvich 1:57502185804c 705
natvich 1:57502185804c 706 void LSM9DS1::setGyroODR(uint8_t gRate)
natvich 1:57502185804c 707 {
natvich 1:57502185804c 708 // Only do this if gRate is not 0 (which would disable the gyro)
natvich 1:57502185804c 709 if ((gRate & 0x07) != 0)
natvich 1:57502185804c 710 {
natvich 1:57502185804c 711 // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
natvich 1:57502185804c 712 uint8_t temp = xgReadByte(CTRL_REG1_G);
natvich 1:57502185804c 713 // Then mask out the gyro ODR bits:
natvich 1:57502185804c 714 temp &= 0xFF^(0x7 << 5);
natvich 1:57502185804c 715 temp |= (gRate & 0x07) << 5;
natvich 1:57502185804c 716 // Update our settings struct
natvich 1:57502185804c 717 settings.gyro.sampleRate = gRate & 0x07;
natvich 1:57502185804c 718 // And write the new register value back into CTRL_REG1_G:
natvich 1:57502185804c 719 xgWriteByte(CTRL_REG1_G, temp);
natvich 1:57502185804c 720 }
natvich 1:57502185804c 721 }
natvich 1:57502185804c 722
natvich 1:57502185804c 723 void LSM9DS1::setAccelODR(uint8_t aRate)
natvich 1:57502185804c 724 {
natvich 1:57502185804c 725 // Only do this if aRate is not 0 (which would disable the accel)
natvich 1:57502185804c 726 if ((aRate & 0x07) != 0)
natvich 1:57502185804c 727 {
natvich 1:57502185804c 728 // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
natvich 1:57502185804c 729 uint8_t temp = xgReadByte(CTRL_REG6_XL);
natvich 1:57502185804c 730 // Then mask out the accel ODR bits:
natvich 1:57502185804c 731 temp &= 0x1F;
natvich 1:57502185804c 732 // Then shift in our new ODR bits:
natvich 1:57502185804c 733 temp |= ((aRate & 0x07) << 5);
natvich 1:57502185804c 734 settings.accel.sampleRate = aRate & 0x07;
natvich 1:57502185804c 735 // And write the new register value back into CTRL_REG1_XM:
natvich 1:57502185804c 736 xgWriteByte(CTRL_REG6_XL, temp);
natvich 1:57502185804c 737 }
natvich 1:57502185804c 738 }
natvich 1:57502185804c 739
natvich 1:57502185804c 740 void LSM9DS1::setMagODR(uint8_t mRate)
natvich 1:57502185804c 741 {
natvich 1:57502185804c 742 // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
natvich 1:57502185804c 743 uint8_t temp = mReadByte(CTRL_REG1_M);
natvich 1:57502185804c 744 // Then mask out the mag ODR bits:
natvich 1:57502185804c 745 temp &= 0xFF^(0x7 << 2);
natvich 1:57502185804c 746 // Then shift in our new ODR bits:
natvich 1:57502185804c 747 temp |= ((mRate & 0x07) << 2);
natvich 1:57502185804c 748 settings.mag.sampleRate = mRate & 0x07;
natvich 1:57502185804c 749 // And write the new register value back into CTRL_REG5_XM:
natvich 1:57502185804c 750 mWriteByte(CTRL_REG1_M, temp);
natvich 1:57502185804c 751 }
natvich 1:57502185804c 752
natvich 1:57502185804c 753 void LSM9DS1::calcgRes()
natvich 1:57502185804c 754 {
natvich 1:57502185804c 755 gRes = ((float) settings.gyro.scale) / 32768.0;
natvich 1:57502185804c 756 }
natvich 1:57502185804c 757
natvich 1:57502185804c 758 void LSM9DS1::calcaRes()
natvich 1:57502185804c 759 {
natvich 1:57502185804c 760 aRes = ((float) settings.accel.scale) / 32768.0;
natvich 1:57502185804c 761 }
natvich 1:57502185804c 762
natvich 1:57502185804c 763 void LSM9DS1::calcmRes()
natvich 1:57502185804c 764 {
natvich 1:57502185804c 765 //mRes = ((float) settings.mag.scale) / 32768.0;
natvich 1:57502185804c 766 switch (settings.mag.scale)
natvich 1:57502185804c 767 {
natvich 1:57502185804c 768 case 4:
natvich 1:57502185804c 769 mRes = magSensitivity[0];
natvich 1:57502185804c 770 break;
natvich 1:57502185804c 771 case 8:
natvich 1:57502185804c 772 mRes = magSensitivity[1];
natvich 1:57502185804c 773 break;
natvich 1:57502185804c 774 case 12:
natvich 1:57502185804c 775 mRes = magSensitivity[2];
natvich 1:57502185804c 776 break;
natvich 1:57502185804c 777 case 16:
natvich 1:57502185804c 778 mRes = magSensitivity[3];
natvich 1:57502185804c 779 break;
natvich 1:57502185804c 780 }
natvich 1:57502185804c 781
natvich 1:57502185804c 782 }
natvich 1:57502185804c 783
natvich 1:57502185804c 784 void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
natvich 1:57502185804c 785 h_lactive activeLow, pp_od pushPull)
natvich 1:57502185804c 786 {
natvich 1:57502185804c 787 // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
natvich 1:57502185804c 788 // those two values.
natvich 1:57502185804c 789 // [generator] should be an OR'd list of values from the interrupt_generators enum
natvich 1:57502185804c 790 xgWriteByte(interrupt, generator);
natvich 1:57502185804c 791
natvich 1:57502185804c 792 // Configure CTRL_REG8
natvich 1:57502185804c 793 uint8_t temp;
natvich 1:57502185804c 794 temp = xgReadByte(CTRL_REG8);
natvich 1:57502185804c 795
natvich 1:57502185804c 796 if (activeLow) temp |= (1<<5);
natvich 1:57502185804c 797 else temp &= ~(1<<5);
natvich 1:57502185804c 798
natvich 1:57502185804c 799 if (pushPull) temp &= ~(1<<4);
natvich 1:57502185804c 800 else temp |= (1<<4);
natvich 1:57502185804c 801
natvich 1:57502185804c 802 xgWriteByte(CTRL_REG8, temp);
natvich 1:57502185804c 803 }
natvich 1:57502185804c 804
natvich 1:57502185804c 805 void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
natvich 1:57502185804c 806 {
natvich 1:57502185804c 807 uint8_t temp = 0;
natvich 1:57502185804c 808
natvich 1:57502185804c 809 temp = threshold & 0x7F;
natvich 1:57502185804c 810 if (sleepOn) temp |= (1<<7);
natvich 1:57502185804c 811 xgWriteByte(ACT_THS, temp);
natvich 1:57502185804c 812
natvich 1:57502185804c 813 xgWriteByte(ACT_DUR, duration);
natvich 1:57502185804c 814 }
natvich 1:57502185804c 815
natvich 1:57502185804c 816 uint8_t LSM9DS1::getInactivity()
natvich 1:57502185804c 817 {
natvich 1:57502185804c 818 uint8_t temp = xgReadByte(STATUS_REG_0);
natvich 1:57502185804c 819 temp &= (0x10);
natvich 1:57502185804c 820 return temp;
natvich 1:57502185804c 821 }
natvich 1:57502185804c 822
natvich 1:57502185804c 823 void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
natvich 1:57502185804c 824 {
natvich 1:57502185804c 825 // Use variables from accel_interrupt_generator, OR'd together to create
natvich 1:57502185804c 826 // the [generator]value.
natvich 1:57502185804c 827 uint8_t temp = generator;
natvich 1:57502185804c 828 if (andInterrupts) temp |= 0x80;
natvich 1:57502185804c 829 xgWriteByte(INT_GEN_CFG_XL, temp);
natvich 1:57502185804c 830 }
natvich 1:57502185804c 831
natvich 1:57502185804c 832 void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
natvich 1:57502185804c 833 {
natvich 1:57502185804c 834 // Write threshold value to INT_GEN_THS_?_XL.
natvich 1:57502185804c 835 // axis will be 0, 1, or 2 (x, y, z respectively)
natvich 1:57502185804c 836 xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
natvich 1:57502185804c 837
natvich 1:57502185804c 838 // Write duration and wait to INT_GEN_DUR_XL
natvich 1:57502185804c 839 uint8_t temp;
natvich 1:57502185804c 840 temp = (duration & 0x7F);
natvich 1:57502185804c 841 if (wait) temp |= 0x80;
natvich 1:57502185804c 842 xgWriteByte(INT_GEN_DUR_XL, temp);
natvich 1:57502185804c 843 }
natvich 1:57502185804c 844
natvich 1:57502185804c 845 uint8_t LSM9DS1::getAccelIntSrc()
natvich 1:57502185804c 846 {
natvich 1:57502185804c 847 uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
natvich 1:57502185804c 848
natvich 1:57502185804c 849 // Check if the IA_XL (interrupt active) bit is set
natvich 1:57502185804c 850 if (intSrc & (1<<6))
natvich 1:57502185804c 851 {
natvich 1:57502185804c 852 return (intSrc & 0x3F);
natvich 1:57502185804c 853 }
natvich 1:57502185804c 854
natvich 1:57502185804c 855 return 0;
natvich 1:57502185804c 856 }
natvich 1:57502185804c 857
natvich 1:57502185804c 858 void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
natvich 1:57502185804c 859 {
natvich 1:57502185804c 860 // Use variables from accel_interrupt_generator, OR'd together to create
natvich 1:57502185804c 861 // the [generator]value.
natvich 1:57502185804c 862 uint8_t temp = generator;
natvich 1:57502185804c 863 if (aoi) temp |= 0x80;
natvich 1:57502185804c 864 if (latch) temp |= 0x40;
natvich 1:57502185804c 865 xgWriteByte(INT_GEN_CFG_G, temp);
natvich 1:57502185804c 866 }
natvich 1:57502185804c 867
natvich 1:57502185804c 868 void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
natvich 1:57502185804c 869 {
natvich 1:57502185804c 870 uint8_t buffer[2];
natvich 1:57502185804c 871 buffer[0] = (threshold & 0x7F00) >> 8;
natvich 1:57502185804c 872 buffer[1] = (threshold & 0x00FF);
natvich 1:57502185804c 873 // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G.
natvich 1:57502185804c 874 // axis will be 0, 1, or 2 (x, y, z respectively)
natvich 1:57502185804c 875 xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
natvich 1:57502185804c 876 xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
natvich 1:57502185804c 877
natvich 1:57502185804c 878 // Write duration and wait to INT_GEN_DUR_XL
natvich 1:57502185804c 879 uint8_t temp;
natvich 1:57502185804c 880 temp = (duration & 0x7F);
natvich 1:57502185804c 881 if (wait) temp |= 0x80;
natvich 1:57502185804c 882 xgWriteByte(INT_GEN_DUR_G, temp);
natvich 1:57502185804c 883 }
natvich 1:57502185804c 884
natvich 1:57502185804c 885 uint8_t LSM9DS1::getGyroIntSrc()
natvich 1:57502185804c 886 {
natvich 1:57502185804c 887 uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
natvich 1:57502185804c 888
natvich 1:57502185804c 889 // Check if the IA_G (interrupt active) bit is set
natvich 1:57502185804c 890 if (intSrc & (1<<6))
natvich 1:57502185804c 891 {
natvich 1:57502185804c 892 return (intSrc & 0x3F);
natvich 1:57502185804c 893 }
natvich 1:57502185804c 894
natvich 1:57502185804c 895 return 0;
natvich 1:57502185804c 896 }
natvich 1:57502185804c 897
natvich 1:57502185804c 898 void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
natvich 1:57502185804c 899 {
natvich 1:57502185804c 900 // Mask out non-generator bits (0-4)
natvich 1:57502185804c 901 uint8_t config = (generator & 0xE0);
natvich 1:57502185804c 902 // IEA bit is 0 for active-low, 1 for active-high.
natvich 1:57502185804c 903 if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
natvich 1:57502185804c 904 // IEL bit is 0 for latched, 1 for not-latched
natvich 1:57502185804c 905 if (!latch) config |= (1<<1);
natvich 1:57502185804c 906 // As long as we have at least 1 generator, enable the interrupt
natvich 1:57502185804c 907 if (generator != 0) config |= (1<<0);
natvich 1:57502185804c 908
natvich 1:57502185804c 909 mWriteByte(INT_CFG_M, config);
natvich 1:57502185804c 910 }
natvich 1:57502185804c 911
natvich 1:57502185804c 912 void LSM9DS1::configMagThs(uint16_t threshold)
natvich 1:57502185804c 913 {
natvich 1:57502185804c 914 // Write high eight bits of [threshold] to INT_THS_H_M
natvich 1:57502185804c 915 mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8));
natvich 1:57502185804c 916 // Write low eight bits of [threshold] to INT_THS_L_M
natvich 1:57502185804c 917 mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF));
natvich 1:57502185804c 918 }
natvich 1:57502185804c 919
natvich 1:57502185804c 920 uint8_t LSM9DS1::getMagIntSrc()
natvich 1:57502185804c 921 {
natvich 1:57502185804c 922 uint8_t intSrc = mReadByte(INT_SRC_M);
natvich 1:57502185804c 923
natvich 1:57502185804c 924 // Check if the INT (interrupt active) bit is set
natvich 1:57502185804c 925 if (intSrc & (1<<0))
natvich 1:57502185804c 926 {
natvich 1:57502185804c 927 return (intSrc & 0xFE);
natvich 1:57502185804c 928 }
natvich 1:57502185804c 929
natvich 1:57502185804c 930 return 0;
natvich 1:57502185804c 931 }
natvich 1:57502185804c 932
natvich 1:57502185804c 933 void LSM9DS1::sleepGyro(bool enable)
natvich 1:57502185804c 934 {
natvich 1:57502185804c 935 uint8_t temp = xgReadByte(CTRL_REG9);
natvich 1:57502185804c 936 if (enable) temp |= (1<<6);
natvich 1:57502185804c 937 else temp &= ~(1<<6);
natvich 1:57502185804c 938 xgWriteByte(CTRL_REG9, temp);
natvich 1:57502185804c 939 }
natvich 1:57502185804c 940
natvich 1:57502185804c 941 void LSM9DS1::enableFIFO(bool enable)
natvich 1:57502185804c 942 {
natvich 1:57502185804c 943 uint8_t temp = xgReadByte(CTRL_REG9);
natvich 1:57502185804c 944 if (enable) temp |= (1<<1);
natvich 1:57502185804c 945 else temp &= ~(1<<1);
natvich 1:57502185804c 946 xgWriteByte(CTRL_REG9, temp);
natvich 1:57502185804c 947 }
natvich 1:57502185804c 948
natvich 1:57502185804c 949 void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs)
natvich 1:57502185804c 950 {
natvich 1:57502185804c 951 // Limit threshold - 0x1F (31) is the maximum. If more than that was asked
natvich 1:57502185804c 952 // limit it to the maximum.
natvich 1:57502185804c 953 uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
natvich 1:57502185804c 954 xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F));
natvich 1:57502185804c 955 }
natvich 1:57502185804c 956
natvich 1:57502185804c 957 uint8_t LSM9DS1::getFIFOSamples()
natvich 1:57502185804c 958 {
natvich 1:57502185804c 959 return (xgReadByte(FIFO_SRC) & 0x3F);
natvich 1:57502185804c 960 }
natvich 1:57502185804c 961
natvich 1:57502185804c 962 void LSM9DS1::constrainScales()
natvich 1:57502185804c 963 {
natvich 1:57502185804c 964 if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
natvich 1:57502185804c 965 (settings.gyro.scale != 2000))
natvich 1:57502185804c 966 {
natvich 1:57502185804c 967 settings.gyro.scale = 245;
natvich 1:57502185804c 968 }
natvich 1:57502185804c 969
natvich 1:57502185804c 970 if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
natvich 1:57502185804c 971 (settings.accel.scale != 8) && (settings.accel.scale != 16))
natvich 1:57502185804c 972 {
natvich 1:57502185804c 973 settings.accel.scale = 2;
natvich 1:57502185804c 974 }
natvich 1:57502185804c 975
natvich 1:57502185804c 976 if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
natvich 1:57502185804c 977 (settings.mag.scale != 12) && (settings.mag.scale != 16))
natvich 1:57502185804c 978 {
natvich 1:57502185804c 979 settings.mag.scale = 4;
natvich 1:57502185804c 980 }
natvich 1:57502185804c 981 }
natvich 1:57502185804c 982
natvich 1:57502185804c 983 void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data)
natvich 1:57502185804c 984 {
natvich 1:57502185804c 985 // Whether we're using I2C or SPI, write a byte using the
natvich 1:57502185804c 986 // gyro-specific I2C address or SPI CS pin.
natvich 1:57502185804c 987 if (settings.device.commInterface == IMU_MODE_I2C) {
natvich 1:57502185804c 988 printf("yo");
natvich 1:57502185804c 989 I2CwriteByte(_xgAddress, subAddress, data);
natvich 1:57502185804c 990 } else if (settings.device.commInterface == IMU_MODE_SPI) {
natvich 1:57502185804c 991 SPIwriteByte(_xgAddress, subAddress, data);
natvich 1:57502185804c 992 }
natvich 1:57502185804c 993 }
natvich 1:57502185804c 994
natvich 1:57502185804c 995 void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data)
natvich 1:57502185804c 996 {
natvich 1:57502185804c 997 // Whether we're using I2C or SPI, write a byte using the
natvich 1:57502185804c 998 // accelerometer-specific I2C address or SPI CS pin.
natvich 1:57502185804c 999 if (settings.device.commInterface == IMU_MODE_I2C)
natvich 1:57502185804c 1000 return I2CwriteByte(_mAddress, subAddress, data);
natvich 1:57502185804c 1001 else if (settings.device.commInterface == IMU_MODE_SPI)
natvich 1:57502185804c 1002 return SPIwriteByte(_mAddress, subAddress, data);
natvich 1:57502185804c 1003 }
natvich 1:57502185804c 1004
natvich 1:57502185804c 1005 uint8_t LSM9DS1::xgReadByte(uint8_t subAddress)
natvich 1:57502185804c 1006 {
natvich 1:57502185804c 1007 // Whether we're using I2C or SPI, read a byte using the
natvich 1:57502185804c 1008 // gyro-specific I2C address or SPI CS pin.
natvich 1:57502185804c 1009 if (settings.device.commInterface == IMU_MODE_I2C)
natvich 1:57502185804c 1010 return I2CreadByte(_xgAddress, subAddress);
natvich 1:57502185804c 1011 else if (settings.device.commInterface == IMU_MODE_SPI)
natvich 1:57502185804c 1012 return SPIreadByte(_xgAddress, subAddress);
natvich 1:57502185804c 1013 }
natvich 1:57502185804c 1014
natvich 1:57502185804c 1015 void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
natvich 1:57502185804c 1016 {
natvich 1:57502185804c 1017 // Whether we're using I2C or SPI, read multiple bytes using the
natvich 1:57502185804c 1018 // gyro-specific I2C address or SPI CS pin.
natvich 1:57502185804c 1019 if (settings.device.commInterface == IMU_MODE_I2C) {
natvich 1:57502185804c 1020 I2CreadBytes(_xgAddress, subAddress, dest, count);
natvich 1:57502185804c 1021 } else if (settings.device.commInterface == IMU_MODE_SPI) {
natvich 1:57502185804c 1022 SPIreadBytes(_xgAddress, subAddress, dest, count);
natvich 1:57502185804c 1023 }
natvich 1:57502185804c 1024 }
natvich 1:57502185804c 1025
natvich 1:57502185804c 1026 uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
natvich 1:57502185804c 1027 {
natvich 1:57502185804c 1028 // Whether we're using I2C or SPI, read a byte using the
natvich 1:57502185804c 1029 // accelerometer-specific I2C address or SPI CS pin.
natvich 1:57502185804c 1030 if (settings.device.commInterface == IMU_MODE_I2C)
natvich 1:57502185804c 1031 return I2CreadByte(_mAddress, subAddress);
natvich 1:57502185804c 1032 else if (settings.device.commInterface == IMU_MODE_SPI)
natvich 1:57502185804c 1033 return SPIreadByte(_mAddress, subAddress);
natvich 1:57502185804c 1034 }
natvich 1:57502185804c 1035
natvich 1:57502185804c 1036 void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
natvich 1:57502185804c 1037 {
natvich 1:57502185804c 1038 // Whether we're using I2C or SPI, read multiple bytes using the
natvich 1:57502185804c 1039 // accelerometer-specific I2C address or SPI CS pin.
natvich 1:57502185804c 1040 if (settings.device.commInterface == IMU_MODE_I2C)
natvich 1:57502185804c 1041 I2CreadBytes(_mAddress, subAddress, dest, count);
natvich 1:57502185804c 1042 else if (settings.device.commInterface == IMU_MODE_SPI)
natvich 1:57502185804c 1043 SPIreadBytes(_mAddress, subAddress, dest, count);
natvich 1:57502185804c 1044 }
natvich 1:57502185804c 1045
natvich 1:57502185804c 1046 void LSM9DS1::initSPI()
natvich 1:57502185804c 1047 {
natvich 1:57502185804c 1048 /*
natvich 1:57502185804c 1049 pinMode(_xgAddress, OUTPUT);
natvich 1:57502185804c 1050 digitalWrite(_xgAddress, HIGH);
natvich 1:57502185804c 1051 pinMode(_mAddress, OUTPUT);
natvich 1:57502185804c 1052 digitalWrite(_mAddress, HIGH);
natvich 1:57502185804c 1053
natvich 1:57502185804c 1054 SPI.begin();
natvich 1:57502185804c 1055 // Maximum SPI frequency is 10MHz, could divide by 2 here:
natvich 1:57502185804c 1056 SPI.setClockDivider(SPI_CLOCK_DIV2);
natvich 1:57502185804c 1057 // Data is read and written MSb first.
natvich 1:57502185804c 1058 SPI.setBitOrder(MSBFIRST);
natvich 1:57502185804c 1059 // Data is captured on rising edge of clock (CPHA = 0)
natvich 1:57502185804c 1060 // Base value of the clock is HIGH (CPOL = 1)
natvich 1:57502185804c 1061 SPI.setDataMode(SPI_MODE0);
natvich 1:57502185804c 1062 */
natvich 1:57502185804c 1063 }
natvich 1:57502185804c 1064
natvich 1:57502185804c 1065 void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data)
natvich 1:57502185804c 1066 {
natvich 1:57502185804c 1067 /*
natvich 1:57502185804c 1068 digitalWrite(csPin, LOW); // Initiate communication
natvich 1:57502185804c 1069
natvich 1:57502185804c 1070 // If write, bit 0 (MSB) should be 0
natvich 1:57502185804c 1071 // If single write, bit 1 should be 0
natvich 1:57502185804c 1072 SPI.transfer(subAddress & 0x3F); // Send Address
natvich 1:57502185804c 1073 SPI.transfer(data); // Send data
natvich 1:57502185804c 1074
natvich 1:57502185804c 1075 digitalWrite(csPin, HIGH); // Close communication
natvich 1:57502185804c 1076 */
natvich 1:57502185804c 1077 }
natvich 1:57502185804c 1078
natvich 1:57502185804c 1079 uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress)
natvich 1:57502185804c 1080 {
natvich 1:57502185804c 1081 uint8_t temp;
natvich 1:57502185804c 1082 // Use the multiple read function to read 1 byte.
natvich 1:57502185804c 1083 // Value is returned to `temp`.
natvich 1:57502185804c 1084 SPIreadBytes(csPin, subAddress, &temp, 1);
natvich 1:57502185804c 1085 return temp;
natvich 1:57502185804c 1086 }
natvich 1:57502185804c 1087
natvich 1:57502185804c 1088 void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress,
natvich 1:57502185804c 1089 uint8_t * dest, uint8_t count)
natvich 1:57502185804c 1090 {
natvich 1:57502185804c 1091 // To indicate a read, set bit 0 (msb) of first byte to 1
natvich 1:57502185804c 1092 uint8_t rAddress = 0x80 | (subAddress & 0x3F);
natvich 1:57502185804c 1093 // Mag SPI port is different. If we're reading multiple bytes,
natvich 1:57502185804c 1094 // set bit 1 to 1. The remaining six bytes are the address to be read
natvich 1:57502185804c 1095 if ((csPin == _mAddress) && count > 1)
natvich 1:57502185804c 1096 rAddress |= 0x40;
natvich 1:57502185804c 1097
natvich 1:57502185804c 1098 /*
natvich 1:57502185804c 1099 digitalWrite(csPin, LOW); // Initiate communication
natvich 1:57502185804c 1100 SPI.transfer(rAddress);
natvich 1:57502185804c 1101 for (int i=0; i<count; i++)
natvich 1:57502185804c 1102 {
natvich 1:57502185804c 1103 dest[i] = SPI.transfer(0x00); // Read into destination array
natvich 1:57502185804c 1104 }
natvich 1:57502185804c 1105 digitalWrite(csPin, HIGH); // Close communication
natvich 1:57502185804c 1106 */
natvich 1:57502185804c 1107 }
natvich 1:57502185804c 1108
natvich 1:57502185804c 1109 void LSM9DS1::initI2C()
natvich 1:57502185804c 1110 {
natvich 1:57502185804c 1111 /*
natvich 1:57502185804c 1112 Wire.begin(); // Initialize I2C library
natvich 1:57502185804c 1113 */
natvich 1:57502185804c 1114
natvich 1:57502185804c 1115 //already initialized in constructor!
natvich 1:57502185804c 1116 }
natvich 1:57502185804c 1117
natvich 1:57502185804c 1118 // Wire.h read and write protocols
natvich 1:57502185804c 1119 void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
natvich 1:57502185804c 1120 {
natvich 1:57502185804c 1121 /*
natvich 1:57502185804c 1122 Wire.beginTransmission(address); // Initialize the Tx buffer
natvich 1:57502185804c 1123 Wire.write(subAddress); // Put slave register address in Tx buffer
natvich 1:57502185804c 1124 Wire.write(data); // Put data in Tx buffer
natvich 1:57502185804c 1125 Wire.endTransmission(); // Send the Tx buffer
natvich 1:57502185804c 1126 */
natvich 1:57502185804c 1127 char temp_data[2] = {subAddress, data};
natvich 1:57502185804c 1128 i2c.write(address, temp_data, 2);
natvich 1:57502185804c 1129 }
natvich 1:57502185804c 1130
natvich 1:57502185804c 1131 uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
natvich 1:57502185804c 1132 {
natvich 1:57502185804c 1133 /*
natvich 1:57502185804c 1134 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
natvich 1:57502185804c 1135 uint8_t data; // `data` will store the register data
natvich 1:57502185804c 1136
natvich 1:57502185804c 1137 Wire.beginTransmission(address); // Initialize the Tx buffer
natvich 1:57502185804c 1138 Wire.write(subAddress); // Put slave register address in Tx buffer
natvich 1:57502185804c 1139 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
natvich 1:57502185804c 1140 Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
natvich 1:57502185804c 1141 while ((Wire.available() < 1) && (timeout-- > 0))
natvich 1:57502185804c 1142 delay(1);
natvich 1:57502185804c 1143
natvich 1:57502185804c 1144 if (timeout <= 0)
natvich 1:57502185804c 1145 return 255; //! Bad! 255 will be misinterpreted as a good value.
natvich 1:57502185804c 1146
natvich 1:57502185804c 1147 data = Wire.read(); // Fill Rx buffer with result
natvich 1:57502185804c 1148 return data; // Return data read from slave register
natvich 1:57502185804c 1149 */
natvich 1:57502185804c 1150 char data;
natvich 1:57502185804c 1151 char temp[1] = {subAddress};
natvich 1:57502185804c 1152
natvich 1:57502185804c 1153 i2c.write(address, temp, 1);
natvich 1:57502185804c 1154 //i2c.write(address & 0xFE);
natvich 1:57502185804c 1155 temp[1] = 0x00;
natvich 1:57502185804c 1156 i2c.write(address, temp, 1);
natvich 1:57502185804c 1157 //i2c.write( address | 0x01);
natvich 1:57502185804c 1158 int a = i2c.read(address, &data, 1);
natvich 1:57502185804c 1159 return data;
natvich 1:57502185804c 1160 }
natvich 1:57502185804c 1161
natvich 1:57502185804c 1162 uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
natvich 1:57502185804c 1163 {
natvich 1:57502185804c 1164 /*
natvich 1:57502185804c 1165 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
natvich 1:57502185804c 1166 Wire.beginTransmission(address); // Initialize the Tx buffer
natvich 1:57502185804c 1167 // Next send the register to be read. OR with 0x80 to indicate multi-read.
natvich 1:57502185804c 1168 Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer
natvich 1:57502185804c 1169
natvich 1:57502185804c 1170 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
natvich 1:57502185804c 1171 uint8_t i = 0;
natvich 1:57502185804c 1172 Wire.requestFrom(address, count); // Read bytes from slave register address
natvich 1:57502185804c 1173 while ((Wire.available() < count) && (timeout-- > 0))
natvich 1:57502185804c 1174 delay(1);
natvich 1:57502185804c 1175 if (timeout <= 0)
natvich 1:57502185804c 1176 return -1;
natvich 1:57502185804c 1177
natvich 1:57502185804c 1178 for (int i=0; i<count;)
natvich 1:57502185804c 1179 {
natvich 1:57502185804c 1180 if (Wire.available())
natvich 1:57502185804c 1181 {
natvich 1:57502185804c 1182 dest[i++] = Wire.read();
natvich 1:57502185804c 1183 }
natvich 1:57502185804c 1184 }
natvich 1:57502185804c 1185 return count;
natvich 1:57502185804c 1186 */
natvich 1:57502185804c 1187 int i;
natvich 1:57502185804c 1188 char temp_dest[count];
natvich 1:57502185804c 1189 char temp[1] = {subAddress};
natvich 1:57502185804c 1190 i2c.write(address, temp, 1);
natvich 1:57502185804c 1191 i2c.read(address, temp_dest, count);
natvich 1:57502185804c 1192
natvich 1:57502185804c 1193 //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion
natvich 1:57502185804c 1194 for (i=0; i < count; i++) {
natvich 1:57502185804c 1195 dest[i] = temp_dest[i];
natvich 1:57502185804c 1196 }
natvich 1:57502185804c 1197 return count;
natvich 1:57502185804c 1198 }