
Eurobot2012_Primary
Dependencies: mbed Eurobot_2012_Primary
tvmet/MatrixEval.h
- Committer:
- narshu
- Date:
- 2012-10-17
- Revision:
- 25:143b19c1fb05
File content as of revision 25:143b19c1fb05:
/* * Tiny Vector Matrix Library * Dense Vector Matrix Libary of Tiny size using Expression Templates * * Copyright (C) 2001 - 2007 Olaf Petzold <opetzold@users.sourceforge.net> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * lesser General Public License for more details. * * You should have received a copy of the GNU lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id: MatrixEval.h,v 1.18 2007-06-23 15:58:58 opetzold Exp $ */ #ifndef TVMET_MATRIX_EVAL_H #define TVMET_MATRIX_EVAL_H namespace tvmet { /** * \fn bool all_elements(const XprMatrix<E, Rows, Cols>& e) * \brief check on statements for all elements * \ingroup _unary_function * This is for use with boolean operators like * \par Example: * \code * all_elements(matrix > 0) { * // true branch * } else { * // false branch * } * \endcode * \sa \ref compare */ template<class E, std::size_t Rows, std::size_t Cols> inline bool all_elements(const XprMatrix<E, Rows, Cols>& e) { return meta::Matrix<Rows, Cols, 0, 0>::all_elements(e); } /** * \fn bool any_elements(const XprMatrix<E, Rows, Cols>& e) * \brief check on statements for any elements * \ingroup _unary_function * This is for use with boolean operators like * \par Example: * \code * any_elements(matrix > 0) { * // true branch * } else { * // false branch * } * \endcode * \sa \ref compare */ template<class E, std::size_t Rows, std::size_t Cols> inline bool any_elements(const XprMatrix<E, Rows, Cols>& e) { return meta::Matrix<Rows, Cols, 0, 0>::any_elements(e); } /* * trinary evaluation functions with matrizes and xpr of * * XprMatrix<E1, Rows, Cols> ? Matrix<T2, Rows, Cols> : Matrix<T3, Rows, Cols> * XprMatrix<E1, Rows, Cols> ? Matrix<T2, Rows, Cols> : XprMatrix<E3, Rows, Cols> * XprMatrix<E1, Rows, Cols> ? XprMatrix<E2, Rows, Cols> : Matrix<T3, Rows, Cols> * XprMatrix<E1, Rows, Cols> ? XprMatrix<E2, Rows, Cols> : XprMatrix<E3, Rows, Cols> */ /** * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const Matrix<T2, Rows, Cols>& m2, const Matrix<T3, Rows, Cols>& m3) * \brief Evals the matrix expressions. * \ingroup _trinary_function * This eval is for the a?b:c syntax, since it's not allowed to overload * these operators. */ template<class E1, class T2, class T3, std::size_t Rows, std::size_t Cols> inline XprMatrix< XprEval< XprMatrix<E1, Rows, Cols>, MatrixConstReference<T2, Rows, Cols>, MatrixConstReference<T3, Rows, Cols> >, Rows, Cols > eval(const XprMatrix<E1, Rows, Cols>& e1, const Matrix<T2, Rows, Cols>& m2, const Matrix<T3, Rows, Cols>& m3) { typedef XprEval< XprMatrix<E1, Rows, Cols>, MatrixConstReference<T2, Rows, Cols>, MatrixConstReference<T3, Rows, Cols> > expr_type; return XprMatrix<expr_type, Rows, Cols>( expr_type(e1, m2.const_ref(), m3.const_ref())); } /** * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const Matrix<T2, Rows, Cols>& m2, const XprMatrix<E3, Rows, Cols>& e3) * \brief Evals the matrix expressions. * \ingroup _trinary_function * This eval is for the a?b:c syntax, since it's not allowed to overload * these operators. */ template<class E1, class T2, class E3, std::size_t Rows, std::size_t Cols> inline XprMatrix< XprEval< XprMatrix<E1, Rows, Cols>, MatrixConstReference<T2, Rows, Cols>, XprMatrix<E3, Rows, Cols> >, Rows, Cols > eval(const XprMatrix<E1, Rows, Cols>& e1, const Matrix<T2, Rows, Cols>& m2, const XprMatrix<E3, Rows, Cols>& e3) { typedef XprEval< XprMatrix<E1, Rows, Cols>, MatrixConstReference<T2, Rows, Cols>, XprMatrix<E3, Rows, Cols> > expr_type; return XprMatrix<expr_type, Rows, Cols>( expr_type(e1, m2.const_ref(), e3)); } /** * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const Matrix<T3, Rows, Cols>& m3) * \brief Evals the matrix expressions. * \ingroup _trinary_function * This eval is for the a?b:c syntax, since it's not allowed to overload * these operators. */ template<class E1, class E2, class T3, std::size_t Rows, std::size_t Cols> inline XprMatrix< XprEval< XprMatrix<E1, Rows, Cols>, XprMatrix<E2, Rows, Cols>, MatrixConstReference<T3, Rows, Cols> >, Rows, Cols > eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const Matrix<T3, Rows, Cols>& m3) { typedef XprEval< XprMatrix<E1, Rows, Cols>, XprMatrix<E2, Rows, Cols>, MatrixConstReference<T3, Rows, Cols> > expr_type; return XprMatrix<expr_type, Rows, Cols>( expr_type(e1, e2, m3.const_ref())); } /** * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const XprMatrix<E3, Rows, Cols>& e3) * \brief Evals the matrix expressions. * \ingroup _trinary_function * This eval is for the a?b:c syntax, since it's not allowed to overload * these operators. */ template<class E1, class E2, class E3, std::size_t Rows, std::size_t Cols> inline XprMatrix< XprEval< XprMatrix<E1, Rows, Cols>, XprMatrix<E2, Rows, Cols>, XprMatrix<E3, Rows, Cols> >, Rows, Cols > eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const XprMatrix<E3, Rows, Cols>& e3) { typedef XprEval< XprMatrix<E1, Rows, Cols>, XprMatrix<E2, Rows, Cols>, XprMatrix<E3, Rows, Cols> > expr_type; return XprMatrix<expr_type, Rows, Cols>(expr_type(e1, e2, e3)); } /* * trinary evaluation functions with matrizes, xpr of and POD * * XprMatrix<E, Rows, Cols> ? POD1 : POD2 * XprMatrix<E1, Rows, Cols> ? POD : XprMatrix<E3, Rows, Cols> * XprMatrix<E1, Rows, Cols> ? XprMatrix<E2, Rows, Cols> : POD */ #define TVMET_IMPLEMENT_MACRO(POD) \ template<class E, std::size_t Rows, std::size_t Cols> \ inline \ XprMatrix< \ XprEval< \ XprMatrix<E, Rows, Cols>, \ XprLiteral< POD >, \ XprLiteral< POD > \ >, \ Rows, Cols \ > \ eval(const XprMatrix<E, Rows, Cols>& e, POD x2, POD x3) { \ typedef XprEval< \ XprMatrix<E, Rows, Cols>, \ XprLiteral< POD >, \ XprLiteral< POD > \ > expr_type; \ return XprMatrix<expr_type, Rows, Cols>( \ expr_type(e, XprLiteral< POD >(x2), XprLiteral< POD >(x3))); \ } \ \ template<class E1, class E3, std::size_t Rows, std::size_t Cols> \ inline \ XprMatrix< \ XprEval< \ XprMatrix<E1, Rows, Cols>, \ XprLiteral< POD >, \ XprMatrix<E3, Rows, Cols> \ >, \ Rows, Cols \ > \ eval(const XprMatrix<E1, Rows, Cols>& e1, POD x2, const XprMatrix<E3, Rows, Cols>& e3) { \ typedef XprEval< \ XprMatrix<E1, Rows, Cols>, \ XprLiteral< POD >, \ XprMatrix<E3, Rows, Cols> \ > expr_type; \ return XprMatrix<expr_type, Rows, Cols>( \ expr_type(e1, XprLiteral< POD >(x2), e3)); \ } \ \ template<class E1, class E2, std::size_t Rows, std::size_t Cols> \ inline \ XprMatrix< \ XprEval< \ XprMatrix<E1, Rows, Cols>, \ XprMatrix<E2, Rows, Cols>, \ XprLiteral< POD > \ >, \ Rows, Cols \ > \ eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, POD x3) { \ typedef XprEval< \ XprMatrix<E1, Rows, Cols>, \ XprMatrix<E2, Rows, Cols>, \ XprLiteral< POD > \ > expr_type; \ return XprMatrix<expr_type, Rows, Cols>( \ expr_type(e1, e2, XprLiteral< POD >(x3))); \ } TVMET_IMPLEMENT_MACRO(int) #if defined(TVMET_HAVE_LONG_LONG) TVMET_IMPLEMENT_MACRO(long long int) #endif TVMET_IMPLEMENT_MACRO(float) TVMET_IMPLEMENT_MACRO(double) #if defined(TVMET_HAVE_LONG_DOUBLE) TVMET_IMPLEMENT_MACRO(long double) #endif #undef TVMET_IMPLEMENT_MACRO /* * trinary evaluation functions with matrizes, xpr of and complex<> types * * XprMatrix<E, Rows, Cols> e, std::complex<T> z2, std::complex<T> z3 * XprMatrix<E1, Rows, Cols> e1, std::complex<T> z2, XprMatrix<E3, Rows, Cols> e3 * XprMatrix<E1, Rows, Cols> e1, XprMatrix<E2, Rows, Cols> e2, std::complex<T> z3 */ #if defined(TVMET_HAVE_COMPLEX) /** * \fn eval(const XprMatrix<E, Rows, Cols>& e, const std::complex<T>& x2, const std::complex<T>& x3) * \brief Evals the matrix expressions. * \ingroup _trinary_function * This eval is for the a?b:c syntax, since it's not allowed to overload * these operators. */ template<class E, std::size_t Rows, std::size_t Cols, class T> inline XprMatrix< XprEval< XprMatrix<E, Rows, Cols>, XprLiteral< std::complex<T> >, XprLiteral< std::complex<T> > >, Rows, Cols > eval(const XprMatrix<E, Rows, Cols>& e, const std::complex<T>& x2, const std::complex<T>& x3) { typedef XprEval< XprMatrix<E, Rows, Cols>, XprLiteral< std::complex<T> >, XprLiteral< std::complex<T> > > expr_type; return XprMatrix<expr_type, Rows, Cols>( expr_type(e, XprLiteral< std::complex<T> >(x2), XprLiteral< std::complex<T> >(x3))); } /** * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const std::complex<T>& x2, const XprMatrix<E3, Rows, Cols>& e3) * \brief Evals the matrix expressions. * \ingroup _trinary_function * This eval is for the a?b:c syntax, since it's not allowed to overload * these operators. */ template<class E1, class E3, std::size_t Rows, std::size_t Cols, class T> inline XprMatrix< XprEval< XprMatrix<E1, Rows, Cols>, XprLiteral< std::complex<T> >, XprMatrix<E3, Rows, Cols> >, Rows, Cols > eval(const XprMatrix<E1, Rows, Cols>& e1, const std::complex<T>& x2, const XprMatrix<E3, Rows, Cols>& e3) { typedef XprEval< XprMatrix<E1, Rows, Cols>, XprLiteral< std::complex<T> >, XprMatrix<E3, Rows, Cols> > expr_type; return XprMatrix<expr_type, Rows, Cols>( expr_type(e1, XprLiteral< std::complex<T> >(x2), e3)); } /** * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const std::complex<T>& x3) * \brief Evals the matrix expressions. * \ingroup _trinary_function * This eval is for the a?b:c syntax, since it's not allowed to overload * these operators. */ template<class E1, class E2, std::size_t Rows, std::size_t Cols, class T> inline XprMatrix< XprEval< XprMatrix<E1, Rows, Cols>, XprMatrix<E2, Rows, Cols>, XprLiteral< std::complex<T> > >, Rows, Cols > eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const std::complex<T>& x3) { typedef XprEval< XprMatrix<E1, Rows, Cols>, XprMatrix<E2, Rows, Cols>, XprLiteral< std::complex<T> > > expr_type; return XprMatrix<expr_type, Rows, Cols>( expr_type(e1, e2, XprLiteral< std::complex<T> >(x3))); } #endif // defined(TVMET_HAVE_COMPLEX) } // namespace tvmet #endif // TVMET_MATRIX_EVAL_H // Local Variables: // mode:C++ // tab-width:8 // End: