Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: Smart_LED_WIZwiki-W7500
Fork of WIZnetInterface by
arch/int/W7500x_toe.cpp
- Committer:
- Soohwan Kim
- Date:
- 2015-06-15
- Revision:
- 0:6f28332c466f
- Child:
- 2:26df0dc6e227
File content as of revision 0:6f28332c466f:
/* Copyright (C) 2012 mbed.org, MIT License
*
* and associated documentation files (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge, publish, distribute,
* sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "mbed.h"
#include "mbed_debug.h"
#include "W7500x_toe.h"
#include "DNSClient.h"
#ifdef USE_W7500
/*
* MDIO via GPIO
* mdio via gpio is supported and related functions as follows.
* - mdio_init(),mdio_read(),mdio_write()
* - input_MDIO(),output_MDIO(),turnaroud_MDIO(),idle_MDIO()
* called by ethernet_link() and ethernet_set_link()
*/
#define MDIO GPIO_Pin_14
#define MDC GPIO_Pin_15
#define GPIO_MDC GPIOB
#define PHY_ADDR_IP101G 0x07
#define PHY_ADDR PHY_ADDR_IP101G
#define SVAL 0x2 //right shift val = 2
#define PHYREG_CONTROL 0x0 //Control Register address (Contorl basic register)
#define PHYREG_STATUS 0x1 //Status Register address (Status basic register)
#define CNTL_DUPLEX (0x01ul<< 7)
#define CNTL_AUTONEGO (0x01ul<<11)
#define CNTL_SPEED (0x01ul<<12)
#define MDC_WAIT (1)
void mdio_init(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin_MDC, uint16_t GPIO_Pin_MDIO);
void mdio_write(GPIO_TypeDef* GPIOx, uint32_t PhyRegAddr, uint32_t val);
uint32_t mdio_read(GPIO_TypeDef* GPIOx, uint32_t PhyRegAddr);
WIZnet_Chip* WIZnet_Chip::inst;
WIZnet_Chip::WIZnet_Chip()
{
inst = this;
mdio_init(GPIO_MDC, MDC, MDIO);
}
// Set the IP
bool WIZnet_Chip::setip()
{
reg_wr<uint32_t>(SIPR, ip);
reg_wr<uint32_t>(GAR, gateway);
reg_wr<uint32_t>(SUBR, netmask);
return true;
}
bool WIZnet_Chip::setProtocol(int socket, Protocol p)
{
if (socket < 0) {
return false;
}
sreg<uint8_t>(socket, Sn_MR, p);
return true;
}
bool WIZnet_Chip::connect(int socket, const char * host, int port, int timeout_ms)
{
if (socket < 0) {
return false;
}
sreg<uint8_t>(socket, Sn_MR, TCP);
scmd(socket, OPEN);
sreg_ip(socket, Sn_DIPR, host);
sreg<uint16_t>(socket, Sn_DPORT, port);
sreg<uint16_t>(socket, Sn_PORT, new_port());
scmd(socket, CONNECT);
Timer t;
t.reset();
t.start();
while(!is_connected(socket)) {
if (t.read_ms() > timeout_ms) {
return false;
}
}
return true;
}
bool WIZnet_Chip::gethostbyname(const char* host, uint32_t* ip)
{
uint32_t addr = str_to_ip(host);
char buf[17];
snprintf(buf, sizeof(buf), "%d.%d.%d.%d",
(uint8_t)((addr>>24)&0xff),
(uint8_t)((addr>>16)&0xff),
(uint8_t)((addr>>8)&0xff),
(uint8_t)(addr&0xff));
if (strcmp(buf, host) == 0) {
*ip = addr;
printf("addr : %x\r\n", *ip);
return true;
}
DNSClient client;
if(client.lookup(host)) {
*ip = client.ip;
return true;
}
return false;
}
bool WIZnet_Chip::is_connected(int socket)
{
/*
if (sreg<uint8_t>(socket, Sn_SR) == SOCK_ESTABLISHED) {
return true;
}
*/
uint8_t tmpSn_SR;
tmpSn_SR = sreg<uint8_t>(socket, Sn_SR);
// packet sending is possible, when state is SOCK_CLOSE_WAIT.
if ((tmpSn_SR == SOCK_ESTABLISHED) || (tmpSn_SR == SOCK_CLOSE_WAIT)) {
return true;
}
return false;
}
// Reset the chip & set the buffer
void WIZnet_Chip::reset()
{
/* S/W Reset PHY */
mdio_write(GPIO_MDC, PHYREG_CONTROL, 0x8000);
wait_ms(10);//for S/W reset
wait_ms(10);//for MDC I/F RDY
/* S/W Reset WZTOE */
reg_wr<uint8_t>(MR, MR_RST);
// set PAD strengh and pull-up for TXD[3:0] and TXE
#ifdef __DEF_USED_IC101AG__ //For using IC+101AG
*(volatile uint32_t *)(0x41003068) = 0x64; //TXD0
*(volatile uint32_t *)(0x4100306C) = 0x64; //TXD1
*(volatile uint32_t *)(0x41003070) = 0x64; //TXD2
*(volatile uint32_t *)(0x41003074) = 0x64; //TXD3
*(volatile uint32_t *)(0x41003050) = 0x64; //TXE
#endif
// set ticker counter
reg_wr<uint32_t>(TIC100US, (SystemCoreClock/10000));
// write MAC address inside the WZTOE MAC address register
reg_wr_mac(SHAR, mac);
/*
* set RX and TX buffer size
* for (int socket = 0; socket < MAX_SOCK_NUM; socket++) {
* sreg<uint8_t>(socket, Sn_RXBUF_SIZE, 2);
* sreg<uint8_t>(socket, Sn_TXBUF_SIZE, 2);
* }
*/
}
bool WIZnet_Chip::close(int socket)
{
if (socket < 0) {
return false;
}
// if SOCK_CLOSED, return
if (sreg<uint8_t>(socket, Sn_SR) == SOCK_CLOSED) {
return true;
}
// if SOCK_ESTABLISHED, send FIN-Packet to peer
if (sreg<uint8_t>(socket, Sn_MR) == TCP) {
scmd(socket, DISCON);
}
// close socket
scmd(socket, CLOSE);
// clear Socket Interrupt Register
sreg<uint8_t>(socket, Sn_ICR, 0xff);
return true;
}
int WIZnet_Chip::wait_readable(int socket, int wait_time_ms, int req_size)
{
if (socket < 0) {
return -1;
}
Timer t;
t.reset();
t.start();
while(1) {
int size = sreg<uint16_t>(socket, Sn_RX_RSR);
if (size > req_size) {
return size;
}
if (wait_time_ms != (-1) && t.read_ms() > wait_time_ms) {
break;
}
}
return -1;
}
int WIZnet_Chip::wait_writeable(int socket, int wait_time_ms, int req_size)
{
if (socket < 0) {
return -1;
}
Timer t;
t.reset();
t.start();
while(1) {
int size = sreg<uint16_t>(socket, Sn_TX_FSR);
if (size > req_size) {
return size;
}
if (wait_time_ms != (-1) && t.read_ms() > wait_time_ms) {
break;
}
}
return -1;
}
int WIZnet_Chip::send(int socket, const char * str, int len)
{
if (socket < 0) {
return -1;
}
uint16_t ptr = sreg<uint16_t>(socket, Sn_TX_WR);
uint32_t sn_tx_base = W7500x_TXMEM_BASE + (uint32_t)(socket<<18);
for(int i=0; i<len; i++)
*(volatile uint8_t *)(sn_tx_base + ((ptr+i)&0xFFFF)) = str[i];
sreg<uint16_t>(socket, Sn_TX_WR, ptr + len);
scmd(socket, SEND);
uint8_t tmp_Sn_IR;
while (( (tmp_Sn_IR = sreg<uint8_t>(socket, Sn_IR)) & INT_SEND_OK) != INT_SEND_OK) {
// @Jul.10, 2014 fix contant name, and udp sendto function.
switch (sreg<uint8_t>(socket, Sn_SR)) {
case SOCK_CLOSED :
close(socket);
return 0;
//break;
case SOCK_UDP :
// ARP timeout is possible.
if ((tmp_Sn_IR & INT_TIMEOUT) == INT_TIMEOUT) {
sreg<uint8_t>(socket, Sn_ICR, INT_TIMEOUT);
return 0;
}
break;
default :
break;
}
}
sreg<uint8_t>(socket, Sn_ICR, INT_SEND_OK);
return len;
}
int WIZnet_Chip::recv(int socket, char* buf, int len)
{
if (socket < 0) {
return -1;
}
uint16_t ptr = sreg<uint16_t>(socket, Sn_RX_RD);
uint32_t sn_rx_base = W7500x_RXMEM_BASE + (uint32_t)(socket<<18);
for(int i=0; i<len; i++)
buf[i] = *(volatile uint8_t *)(sn_rx_base + ((ptr+i)&0xFFFF));
sreg<uint16_t>(socket, Sn_RX_RD, ptr + len);
scmd(socket, RECV);
return len;
}
int WIZnet_Chip::new_socket()
{
for(int s = 0; s < MAX_SOCK_NUM; s++) {
if (sreg<uint8_t>(s, Sn_SR) == SOCK_CLOSED) {
return s;
}
}
return -1;
}
uint16_t WIZnet_Chip::new_port()
{
uint16_t port = rand();
port |= 49152;
return port;
}
bool WIZnet_Chip::link(int wait_time_ms)
{
Timer t;
t.reset();
t.start();
while(1) {
int is_link = ethernet_link();
printf("is_link:%d\r\n", is_link);
if (is_link) {
return true;
}
if (wait_time_ms != (-1) && t.read_ms() > wait_time_ms) {
break;
}
}
return 0;
}
void WIZnet_Chip::set_link(PHYMode phymode)
{
int speed = -1;
int duplex = 0;
switch(phymode) {
case AutoNegotiate : speed = -1; duplex = 0; break;
case HalfDuplex10 : speed = 0; duplex = 0; break;
case FullDuplex10 : speed = 0; duplex = 1; break;
case HalfDuplex100 : speed = 1; duplex = 0; break;
case FullDuplex100 : speed = 1; duplex = 1; break;
}
ethernet_set_link(speed, duplex);
}
uint32_t str_to_ip(const char* str)
{
uint32_t ip = 0;
char* p = (char*)str;
for(int i = 0; i < 4; i++) {
ip |= atoi(p);
p = strchr(p, '.');
if (p == NULL) {
break;
}
ip <<= 8;
p++;
}
return ip;
}
void printfBytes(char* str, uint8_t* buf, int len)
{
printf("%s %d:", str, len);
for(int i = 0; i < len; i++) {
printf(" %02x", buf[i]);
}
printf("\n");
}
void printHex(uint8_t* buf, int len)
{
for(int i = 0; i < len; i++) {
if ((i%16) == 0) {
printf("%p", buf+i);
}
printf(" %02x", buf[i]);
if ((i%16) == 15) {
printf("\n");
}
}
printf("\n");
}
void debug_hex(uint8_t* buf, int len)
{
for(int i = 0; i < len; i++) {
if ((i%16) == 0) {
debug("%p", buf+i);
}
debug(" %02x", buf[i]);
if ((i%16) == 15) {
debug("\n");
}
}
debug("\n");
}
void WIZnet_Chip::scmd(int socket, Command cmd)
{
sreg<uint8_t>(socket, Sn_CR, cmd);
while(sreg<uint8_t>(socket, Sn_CR));
}
void mdio_init(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin_MDC, uint16_t GPIO_Pin_MDIO)
{
/* Set GPIOs for MDIO and MDC */
GPIO_InitTypeDef MDIO_InitDef;
HAL_PAD_AFConfig(PAD_PB, GPIO_Pin_MDIO, PAD_AF1);
HAL_PAD_AFConfig(PAD_PB, GPIO_Pin_MDC, PAD_AF1);
MDIO_InitDef.GPIO_Pin = GPIO_Pin_MDC | GPIO_Pin_MDIO;
MDIO_InitDef.GPIO_Mode = GPIO_Mode_OUT;
HAL_GPIO_Init(GPIOx, &MDIO_InitDef);
}
void output_MDIO(GPIO_TypeDef* GPIOx, uint32_t val, uint32_t n)
{
for(val <<= (32-n); n; val<<=1, n--)
{
if(val & 0x80000000)
HAL_GPIO_SetBits(GPIOx, MDIO);
else
HAL_GPIO_ResetBits(GPIOx, MDIO);
wait_ms(MDC_WAIT);
HAL_GPIO_SetBits(GPIOx, MDC);
wait_ms(MDC_WAIT);
HAL_GPIO_ResetBits(GPIOx, MDC);
}
}
uint32_t input_MDIO( GPIO_TypeDef* GPIOx )
{
uint32_t i, val=0;
for(i=0; i<16; i++)
{
val <<=1;
HAL_GPIO_SetBits(GPIOx, MDC);
wait_ms(MDC_WAIT);
HAL_GPIO_ResetBits(GPIOx, MDC);
wait_ms(MDC_WAIT);
val |= HAL_GPIO_ReadInputDataBit(GPIOx, MDIO);
}
return (val);
}
void turnaround_MDIO( GPIO_TypeDef* GPIOx)
{
GPIOx->OUTENCLR = MDIO ;
HAL_GPIO_SetBits(GPIOx, MDC);
wait_ms(MDC_WAIT);
HAL_GPIO_ResetBits(GPIOx, MDC);
wait_ms(MDC_WAIT);
}
void idle_MDIO( GPIO_TypeDef* GPIOx )
{
GPIOx->OUTENSET = MDIO ;
HAL_GPIO_SetBits(GPIOx,MDC);
wait_ms(MDC_WAIT);
HAL_GPIO_ResetBits(GPIOx, MDC);
wait_ms(MDC_WAIT);
}
uint32_t mdio_read(GPIO_TypeDef* GPIOx, uint32_t PhyRegAddr)
{
output_MDIO(GPIOx, 0xFFFFFFFF, 32);
output_MDIO(GPIOx, 0x06, 4);
output_MDIO(GPIOx, PHY_ADDR, 5);
output_MDIO(GPIOx, PhyRegAddr, 5);
turnaround_MDIO(GPIOx);
uint32_t val = input_MDIO(GPIOx );
idle_MDIO(GPIOx);
return val;
}
void mdio_write(GPIO_TypeDef* GPIOx, uint32_t PhyRegAddr, uint32_t val)
{
output_MDIO(GPIOx, 0xFFFFFFFF, 32);
output_MDIO(GPIOx, 0x05, 4);
output_MDIO(GPIOx, PHY_ADDR, 5);
output_MDIO(GPIOx, PhyRegAddr, 5);
output_MDIO(GPIOx, 0x02, 2);
output_MDIO(GPIOx, val, 16);
idle_MDIO(GPIOx);
}
int ethernet_link(void) {
return ((mdio_read(GPIO_MDC, PHYREG_STATUS)>>SVAL)&0x01);
}
void ethernet_set_link(int speed, int duplex) {
uint32_t val=0;
if((speed < 0) || (speed > 1)) {
val = CNTL_AUTONEGO;
} else {
val = ((CNTL_SPEED&(speed<<11))|(CNTL_DUPLEX&(duplex<<7)));
}
mdio_write(GPIO_MDC, PHYREG_CONTROL, val);
}
#endif
