work in progress

Dependencies:   FastAnalogIn FastIO USBDevice mbed FastPWM SimpleDMA

Fork of Pinscape_Controller by Mike R

Committer:
mjr
Date:
Sat Aug 23 01:24:36 2014 +0000
Revision:
10:976666ffa4ef
Parent:
9:fd65b0a94720
Child:
11:bd9da7088e6e
Add raw pixel dump support for use by the Windows config tool

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 5:a70c0bce770d 1 /* Copyright 2014 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 5:a70c0bce770d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 5:a70c0bce770d 20 // Pinscape Controller
mjr 5:a70c0bce770d 21 //
mjr 5:a70c0bce770d 22 // "Pinscape" is the name of my custom-built virtual pinball cabinet. I wrote this
mjr 5:a70c0bce770d 23 // software to perform a number of tasks that I needed for my cabinet. It runs on a
mjr 5:a70c0bce770d 24 // Freescale KL25Z microcontroller, which is a small and inexpensive device that
mjr 5:a70c0bce770d 25 // attaches to the host PC via USB and can interface with numerous types of external
mjr 5:a70c0bce770d 26 // hardware.
mjr 5:a70c0bce770d 27 //
mjr 5:a70c0bce770d 28 // I designed the software and hardware in this project especially for Pinscape, but
mjr 5:a70c0bce770d 29 // it uses standard interfaces in Windows and Visual Pinball, so it should be
mjr 5:a70c0bce770d 30 // readily usable in anyone else's VP-based cabinet. I've tried to document the
mjr 5:a70c0bce770d 31 // hardware in enough detail for anyone else to duplicate the entire project, and
mjr 5:a70c0bce770d 32 // the full software is open source.
mjr 5:a70c0bce770d 33 //
mjr 6:cc35eb643e8f 34 // The device appears to the host computer as a USB joystick. This works with the
mjr 6:cc35eb643e8f 35 // standard Windows joystick device drivers, so there's no need to install any
mjr 6:cc35eb643e8f 36 // software on the PC - Windows should recognize it as a joystick when you plug
mjr 6:cc35eb643e8f 37 // it in and shouldn't ask you to install anything. If you bring up the control
mjr 6:cc35eb643e8f 38 // panel for USB Game Controllers, this device will appear as "Pinscape Controller".
mjr 6:cc35eb643e8f 39 // *Don't* do any calibration with the Windows control panel or third-part
mjr 6:cc35eb643e8f 40 // calibration tools. The device calibrates itself automatically for the
mjr 6:cc35eb643e8f 41 // accelerometer data, and has its own special calibration procedure for the
mjr 6:cc35eb643e8f 42 // plunger (see below).
mjr 6:cc35eb643e8f 43 //
mjr 5:a70c0bce770d 44 // The controller provides the following functions. It should be possible to use
mjr 5:a70c0bce770d 45 // any subet of the features without using all of them. External hardware for any
mjr 5:a70c0bce770d 46 // particular function can simply be omitted if that feature isn't needed.
mjr 5:a70c0bce770d 47 //
mjr 5:a70c0bce770d 48 // - Nudge sensing via the KL25Z's on-board accelerometer. Nudge accelerations are
mjr 5:a70c0bce770d 49 // processed into a physics model of a rolling ball, and changes to the ball's
mjr 5:a70c0bce770d 50 // motion are sent to the host computer via the joystick interface. This is designed
mjr 5:a70c0bce770d 51 // especially to work with Visuall Pinball's nudge handling to produce realistic
mjr 5:a70c0bce770d 52 // on-screen results in VP. By doing some physics modeling right on the device,
mjr 5:a70c0bce770d 53 // rather than sending raw accelerometer data to VP, we can produce better results
mjr 5:a70c0bce770d 54 // using our awareness of the real physical parameters of a pinball cabinet.
mjr 5:a70c0bce770d 55 // VP's nudge handling has to be more generic, so it can't make the same sorts
mjr 5:a70c0bce770d 56 // of assumptions that we can about the dynamics of a real cabinet.
mjr 5:a70c0bce770d 57 //
mjr 5:a70c0bce770d 58 // The nudge data reports are compatible with the built-in Windows USB joystick
mjr 5:a70c0bce770d 59 // drivers and with VP's own joystick input scheme, so the nudge sensing is almost
mjr 5:a70c0bce770d 60 // plug-and-play. There are no Windiows drivers to install, and the only VP work
mjr 5:a70c0bce770d 61 // needed is to customize a few global preference settings.
mjr 5:a70c0bce770d 62 //
mjr 5:a70c0bce770d 63 // - Plunger position sensing via an attached TAOS TSL 1410R CCD linear array sensor.
mjr 5:a70c0bce770d 64 // The sensor must be wired to a particular set of I/O ports on the KL25Z, and must
mjr 5:a70c0bce770d 65 // be positioned adjacent to the plunger with proper lighting. The physical and
mjr 5:a70c0bce770d 66 // electronic installation details are desribed in the project documentation. We read
mjr 5:a70c0bce770d 67 // the CCD to determine how far back the plunger is pulled, and report this to Visual
mjr 5:a70c0bce770d 68 // Pinball via the joystick interface. As with the nudge data, this is all nearly
mjr 5:a70c0bce770d 69 // plug-and-play, in that it works with the default Windows USB drivers and works
mjr 5:a70c0bce770d 70 // with the existing VP handling for analog plunger input. A few VP settings are
mjr 5:a70c0bce770d 71 // needed to tell VP to allow the plunger.
mjr 5:a70c0bce770d 72 //
mjr 6:cc35eb643e8f 73 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 74 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 75 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 76 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 6:cc35eb643e8f 77 // sensor or the mechanical plunger, since their alignment might change slightly
mjr 6:cc35eb643e8f 78 // when you put everything back together.) To calibrate, you have to attach a
mjr 6:cc35eb643e8f 79 // momentary switch (e.g., a push-button switch) between one of the KL25Z ground
mjr 6:cc35eb643e8f 80 // pins (e.g., jumper J9 pin 12) and PTE29 (J10 pin 9). Press and hold the
mjr 6:cc35eb643e8f 81 // button for about two seconds - the LED on the KL25Z wlil flash blue while
mjr 6:cc35eb643e8f 82 // you hold the button, and will turn solid blue when you've held it down long
mjr 6:cc35eb643e8f 83 // enough to enter calibration mode. This mode will last about 15 seconds.
mjr 6:cc35eb643e8f 84 // Simply pull the plunger all the way back, hold it for a few moments, and
mjr 6:cc35eb643e8f 85 // gradually return it to the starting position. *Don't* release it - we want
mjr 6:cc35eb643e8f 86 // to measure the maximum retracted position and the rest position, but NOT
mjr 6:cc35eb643e8f 87 // the maximum forward position when the outer barrel spring is compressed.
mjr 6:cc35eb643e8f 88 // After about 15 seconds, the device will save the new calibration settings
mjr 6:cc35eb643e8f 89 // to its flash memory, and the LED will return to the regular "heartbeat"
mjr 6:cc35eb643e8f 90 // flashes. If this is the first time you calibrated, you should observe the
mjr 6:cc35eb643e8f 91 // color of the flashes change from yellow/green to blue/green to indicate
mjr 6:cc35eb643e8f 92 // that the plunger has been calibrated.
mjr 6:cc35eb643e8f 93 //
mjr 6:cc35eb643e8f 94 // Note that while Visual Pinball itself has good native support for analog
mjr 6:cc35eb643e8f 95 // plungers, most of the VP tables in circulation don't implement the necessary
mjr 6:cc35eb643e8f 96 // scripting features to make this work properly. Therefore, you'll have to do
mjr 6:cc35eb643e8f 97 // a little scripting work for each table you download to add the required code
mjr 6:cc35eb643e8f 98 // to that individual table. The work has to be customized for each table, so
mjr 6:cc35eb643e8f 99 // I haven't been able to automate this process, but I have tried to reduce it
mjr 6:cc35eb643e8f 100 // to a relatively simple recipe that I've documented separately.
mjr 5:a70c0bce770d 101 //
mjr 5:a70c0bce770d 102 // - In addition to the CCD sensor, a button should be attached (also described in
mjr 5:a70c0bce770d 103 // the project documentation) to activate calibration mode for the plunger. When
mjr 5:a70c0bce770d 104 // calibration mode is activated, the software reads the plunger position for about
mjr 5:a70c0bce770d 105 // 10 seconds when to note the limits of travel, and uses these limits to ensure
mjr 5:a70c0bce770d 106 // accurate reports to VP that properly report the actual position of the physical
mjr 5:a70c0bce770d 107 // plunger. The calibration is stored in non-volatile memory on the KL25Z, so it's
mjr 5:a70c0bce770d 108 // only necessary to calibrate once - the calibration will survive power cycling
mjr 5:a70c0bce770d 109 // and reboots of the PC. It's only necessary to recalibrate if the CCD sensor or
mjr 5:a70c0bce770d 110 // the plunger are removed and reinstalled, since the relative alignment of the
mjr 5:a70c0bce770d 111 // parts could cahnge slightly when reinstalling.
mjr 5:a70c0bce770d 112 //
mjr 5:a70c0bce770d 113 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 114 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 115 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 5:a70c0bce770d 116 // of ports. (The KL25Z can only provide 6 PWM ports. Intensity level settings on
mjr 5:a70c0bce770d 117 // other ports is ignored, so non-PWM ports can only be used for simple on/off
mjr 5:a70c0bce770d 118 // devices such as contactors and solenoids.) The KL25Z can only supply 4mA on its
mjr 5:a70c0bce770d 119 // output ports, so external hardware is required to take advantage of the LedWiz
mjr 5:a70c0bce770d 120 // emulation. Many different hardware designs are possible, but there's a simple
mjr 5:a70c0bce770d 121 // reference design in the documentation that uses a Darlington array IC to
mjr 5:a70c0bce770d 122 // increase the output from each port to 500mA (the same level as the LedWiz),
mjr 5:a70c0bce770d 123 // plus an extended design that adds an optocoupler and MOSFET to provide very
mjr 5:a70c0bce770d 124 // high power handling, up to about 45A or 150W, with voltages up to 100V.
mjr 5:a70c0bce770d 125 // That will handle just about any DC device directly (wtihout relays or other
mjr 5:a70c0bce770d 126 // amplifiers), and switches fast enough to support PWM devices.
mjr 5:a70c0bce770d 127 //
mjr 5:a70c0bce770d 128 // The device can report any desired LedWiz unit number to the host, which makes
mjr 5:a70c0bce770d 129 // it possible to use the LedWiz emulation on a machine that also has one or more
mjr 5:a70c0bce770d 130 // actual LedWiz devices intalled. The LedWiz design allows for up to 16 units
mjr 5:a70c0bce770d 131 // to be installed in one machine - each one is invidually addressable by its
mjr 5:a70c0bce770d 132 // distinct unit number.
mjr 5:a70c0bce770d 133 //
mjr 5:a70c0bce770d 134 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 135 // build any of the external port hardware (or attach anything to the output
mjr 5:a70c0bce770d 136 // ports at all) if the LedWiz features aren't needed. Most people won't have
mjr 5:a70c0bce770d 137 // any use for the LedWiz features. I built them mostly as a learning exercise,
mjr 5:a70c0bce770d 138 // but with a slight practical need for a handful of extra ports (I'm using the
mjr 5:a70c0bce770d 139 // cutting-edge 10-contactor setup, so my real LedWiz is full!).
mjr 6:cc35eb643e8f 140 //
mjr 6:cc35eb643e8f 141 // The on-board LED on the KL25Z flashes to indicate the current device status:
mjr 6:cc35eb643e8f 142 //
mjr 6:cc35eb643e8f 143 // two short red flashes = the device is powered but hasn't successfully
mjr 6:cc35eb643e8f 144 // connected to the host via USB (either it's not physically connected
mjr 6:cc35eb643e8f 145 // to the USB port, or there was a problem with the software handshake
mjr 6:cc35eb643e8f 146 // with the USB device driver on the computer)
mjr 6:cc35eb643e8f 147 //
mjr 6:cc35eb643e8f 148 // short red flash = the host computer is in sleep/suspend mode
mjr 6:cc35eb643e8f 149 //
mjr 6:cc35eb643e8f 150 // long red/green = the LedWiz unti number has been changed, so a reset
mjr 6:cc35eb643e8f 151 // is needed. You can simply unplug the device and plug it back in,
mjr 6:cc35eb643e8f 152 // or presss and hold the reset button on the device for a few seconds.
mjr 6:cc35eb643e8f 153 //
mjr 6:cc35eb643e8f 154 // long yellow/green = everything's working, but the plunger hasn't
mjr 6:cc35eb643e8f 155 // been calibrated; follow the calibration procedure described above.
mjr 6:cc35eb643e8f 156 // This flash mode won't appear if the CCD has been disabled. Note
mjr 6:cc35eb643e8f 157 // that the device can't tell whether a CCD is physically attached,
mjr 6:cc35eb643e8f 158 // so you should use the config command to disable the CCD software
mjr 6:cc35eb643e8f 159 // features if you won't be attaching a CCD.
mjr 6:cc35eb643e8f 160 //
mjr 6:cc35eb643e8f 161 // alternating blue/green = everything's working
mjr 6:cc35eb643e8f 162 //
mjr 6:cc35eb643e8f 163 // Software configuration: you can change option settings by sending special
mjr 6:cc35eb643e8f 164 // USB commands from the PC. I've provided a Windows program for this purpose;
mjr 6:cc35eb643e8f 165 // refer to the documentation for details. For reference, here's the format
mjr 6:cc35eb643e8f 166 // of the USB command for option changes:
mjr 6:cc35eb643e8f 167 //
mjr 6:cc35eb643e8f 168 // length of report = 8 bytes
mjr 6:cc35eb643e8f 169 // byte 0 = 65 (0x41)
mjr 6:cc35eb643e8f 170 // byte 1 = 1 (0x01)
mjr 6:cc35eb643e8f 171 // byte 2 = new LedWiz unit number, 0x01 to 0x0f
mjr 6:cc35eb643e8f 172 // byte 3 = feature enable bit mask:
mjr 6:cc35eb643e8f 173 // 0x01 = enable CCD (default = on)
mjr 9:fd65b0a94720 174 //
mjr 9:fd65b0a94720 175 // Plunger calibration mode: the host can activate plunger calibration mode
mjr 9:fd65b0a94720 176 // by sending this packet. This has the same effect as pressing and holding
mjr 9:fd65b0a94720 177 // the plunger calibration button for two seconds, to allow activating this
mjr 9:fd65b0a94720 178 // mode without attaching a physical button.
mjr 9:fd65b0a94720 179 //
mjr 9:fd65b0a94720 180 // length = 8 bytes
mjr 9:fd65b0a94720 181 // byte 0 = 65 (0x41)
mjr 9:fd65b0a94720 182 // byte 1 = 2 (0x02)
mjr 9:fd65b0a94720 183 //
mjr 10:976666ffa4ef 184 // Exposure reports: the host can request a report of the full set of pixel
mjr 10:976666ffa4ef 185 // values for the next frame by sending this special packet:
mjr 10:976666ffa4ef 186 //
mjr 10:976666ffa4ef 187 // length = 8 bytes
mjr 10:976666ffa4ef 188 // byte 0 = 65 (0x41)
mjr 10:976666ffa4ef 189 // byte 1 = 3 (0x03)
mjr 10:976666ffa4ef 190 //
mjr 10:976666ffa4ef 191 // We'll respond with a series of special reports giving the exposure status.
mjr 10:976666ffa4ef 192 // Each report has the following structure:
mjr 10:976666ffa4ef 193 //
mjr 10:976666ffa4ef 194 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 10:976666ffa4ef 195 // example, 0x04 0x80 indicates index 4. This is the
mjr 10:976666ffa4ef 196 // starting pixel number in the report. The first report
mjr 10:976666ffa4ef 197 // will be 0x00 0x80 to indicate pixel #0.
mjr 10:976666ffa4ef 198 // bytes 2:3 = 16-bit unsigned int brightness level of pixel at index
mjr 10:976666ffa4ef 199 // bytes 4:5 = brightness of pixel at index+1
mjr 10:976666ffa4ef 200 // etc for the rest of the packet
mjr 10:976666ffa4ef 201 //
mjr 10:976666ffa4ef 202 // This still has the form of a joystick packet at the USB level, but
mjr 10:976666ffa4ef 203 // can be differentiated by the host via the status bits. It would have
mjr 10:976666ffa4ef 204 // been cleaner to use a different Report ID at the USB level, but this
mjr 10:976666ffa4ef 205 // would have necessitated a different container structure in the report
mjr 10:976666ffa4ef 206 // descriptor, which would have broken LedWiz compatibility. Given that
mjr 10:976666ffa4ef 207 // constraint, we have to re-use the joystick report type, making for
mjr 10:976666ffa4ef 208 // this somewhat kludgey approach.
mjr 6:cc35eb643e8f 209
mjr 0:5acbbe3f4cf4 210 #include "mbed.h"
mjr 6:cc35eb643e8f 211 #include "math.h"
mjr 0:5acbbe3f4cf4 212 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 213 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 214 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 215 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 216 #include "crc32.h"
mjr 2:c174f9ee414a 217
mjr 5:a70c0bce770d 218
mjr 5:a70c0bce770d 219 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 220 //
mjr 5:a70c0bce770d 221 // Configuration details
mjr 5:a70c0bce770d 222 //
mjr 2:c174f9ee414a 223
mjr 5:a70c0bce770d 224 // Our USB device vendor ID, product ID, and version.
mjr 5:a70c0bce770d 225 // We use the vendor ID for the LedWiz, so that the PC-side software can
mjr 5:a70c0bce770d 226 // identify us as capable of performing LedWiz commands. The LedWiz uses
mjr 5:a70c0bce770d 227 // a product ID value from 0xF0 to 0xFF; the last four bits identify the
mjr 5:a70c0bce770d 228 // unit number (e.g., product ID 0xF7 means unit #7). This allows multiple
mjr 5:a70c0bce770d 229 // LedWiz units to be installed in a single PC; the software on the PC side
mjr 5:a70c0bce770d 230 // uses the unit number to route commands to the devices attached to each
mjr 5:a70c0bce770d 231 // unit. On the real LedWiz, the unit number must be set in the firmware
mjr 5:a70c0bce770d 232 // at the factory; it's not configurable by the end user. Most LedWiz's
mjr 5:a70c0bce770d 233 // ship with the unit number set to 0, but the vendor will set different
mjr 5:a70c0bce770d 234 // unit numbers if requested at the time of purchase. So if you have a
mjr 5:a70c0bce770d 235 // single LedWiz already installed in your cabinet, and you didn't ask for
mjr 5:a70c0bce770d 236 // a non-default unit number, your existing LedWiz will be unit 0.
mjr 5:a70c0bce770d 237 //
mjr 5:a70c0bce770d 238 // We use unit #7 by default. There doesn't seem to be a requirement that
mjr 5:a70c0bce770d 239 // unit numbers be contiguous (DirectOutput Framework and other software
mjr 5:a70c0bce770d 240 // seem happy to have units 0 and 7 installed, without 1-6 existing).
mjr 5:a70c0bce770d 241 // Marking this unit as #7 should work for almost everybody out of the box;
mjr 5:a70c0bce770d 242 // the most common case seems to be to have a single LedWiz installed, and
mjr 5:a70c0bce770d 243 // it's probably extremely rare to more than two.
mjr 6:cc35eb643e8f 244 //
mjr 6:cc35eb643e8f 245 // Note that the USB_PRODUCT_ID value set here omits the unit number. We
mjr 6:cc35eb643e8f 246 // take the unit number from the saved configuration. We provide a
mjr 6:cc35eb643e8f 247 // configuration command that can be sent via the USB connection to change
mjr 6:cc35eb643e8f 248 // the unit number, so that users can select the unit number without having
mjr 6:cc35eb643e8f 249 // to install a different version of the software. We'll combine the base
mjr 6:cc35eb643e8f 250 // product ID here with the unit number to get the actual product ID that
mjr 6:cc35eb643e8f 251 // we send to the USB controller.
mjr 5:a70c0bce770d 252 const uint16_t USB_VENDOR_ID = 0xFAFA;
mjr 6:cc35eb643e8f 253 const uint16_t USB_PRODUCT_ID = 0x00F0;
mjr 6:cc35eb643e8f 254 const uint16_t USB_VERSION_NO = 0x0006;
mjr 6:cc35eb643e8f 255 const uint8_t DEFAULT_LEDWIZ_UNIT_NUMBER = 0x07;
mjr 0:5acbbe3f4cf4 256
mjr 9:fd65b0a94720 257 // Number of pixels we read from the sensor on each frame. This can be
mjr 9:fd65b0a94720 258 // less than the physical pixel count if desired; we'll read every nth
mjr 9:fd65b0a94720 259 // piexl if so. E.g., with a 1280-pixel physical sensor, if npix is 320,
mjr 9:fd65b0a94720 260 // we'll read every 4th pixel. It takes time to read each pixel, so the
mjr 9:fd65b0a94720 261 // fewer pixels we read, the higher the refresh rate we can achieve.
mjr 9:fd65b0a94720 262 // It's therefore better not to read more pixels than we have to.
mjr 9:fd65b0a94720 263 //
mjr 9:fd65b0a94720 264 // VP seems to have an internal resolution in the 8-bit range, so there's
mjr 9:fd65b0a94720 265 // no apparent benefit to reading more than 128-256 pixels when using VP.
mjr 9:fd65b0a94720 266 // Empirically, 160 pixels seems about right. The overall travel of a
mjr 9:fd65b0a94720 267 // standard pinball plunger is about 3", so 160 pixels gives us resolution
mjr 9:fd65b0a94720 268 // of about 1/50". This seems to take full advantage of VP's modeling
mjr 9:fd65b0a94720 269 // ability, and is probably also more precise than a human player's
mjr 9:fd65b0a94720 270 // perception of the plunger position.
mjr 9:fd65b0a94720 271 const int npix = 160;
mjr 9:fd65b0a94720 272
mjr 4:02c7cd7b2183 273 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 4:02c7cd7b2183 274 DigitalOut ledR(LED1), ledG(LED2), ledB(LED3);
mjr 0:5acbbe3f4cf4 275
mjr 1:d913e0afb2ac 276 // calibration button - switch input and LED output
mjr 1:d913e0afb2ac 277 DigitalIn calBtn(PTE29);
mjr 1:d913e0afb2ac 278 DigitalOut calBtnLed(PTE23);
mjr 0:5acbbe3f4cf4 279
mjr 6:cc35eb643e8f 280 // LED-Wiz emulation output pin assignments. The LED-Wiz protocol
mjr 6:cc35eb643e8f 281 // can support up to 32 outputs. The KL25Z can physically provide
mjr 6:cc35eb643e8f 282 // about 48 (in addition to the ports we're already using for the
mjr 6:cc35eb643e8f 283 // CCD sensor and the calibration button), but to stay compatible
mjr 6:cc35eb643e8f 284 // with the LED-Wiz protocol we'll stop at 32.
mjr 6:cc35eb643e8f 285 //
mjr 6:cc35eb643e8f 286 // The LED-Wiz protocol allows setting individual intensity levels
mjr 6:cc35eb643e8f 287 // on all outputs, with 48 levels of intensity. This can be used
mjr 6:cc35eb643e8f 288 // to control lamp brightness and motor speeds, among other things.
mjr 6:cc35eb643e8f 289 // Unfortunately, the KL25Z only has 10 PWM channels, so while we
mjr 6:cc35eb643e8f 290 // can support the full complement of 32 outputs, we can only provide
mjr 6:cc35eb643e8f 291 // PWM dimming/speed control on 10 of them. The remaining outputs
mjr 6:cc35eb643e8f 292 // can only be switched fully on and fully off - we can't support
mjr 6:cc35eb643e8f 293 // dimming on these, so they'll ignore any intensity level setting
mjr 6:cc35eb643e8f 294 // requested by the host. Use these for devices that don't have any
mjr 6:cc35eb643e8f 295 // use for intensity settings anyway, such as contactors and knockers.
mjr 6:cc35eb643e8f 296 //
mjr 6:cc35eb643e8f 297 // The mapping between physical output pins on the KL25Z and the
mjr 6:cc35eb643e8f 298 // assigned LED-Wiz port numbers is essentially arbitrary - you can
mjr 6:cc35eb643e8f 299 // customize this by changing the entries in the array below if you
mjr 6:cc35eb643e8f 300 // wish to rearrange the pins for any reason. Be aware that some
mjr 6:cc35eb643e8f 301 // of the physical outputs are already used for other purposes
mjr 6:cc35eb643e8f 302 // (e.g., some of the GPIO pins on header J10 are used for the
mjr 6:cc35eb643e8f 303 // CCD sensor - but you can of course reassign those as well by
mjr 6:cc35eb643e8f 304 // changing the corresponding declarations elsewhere in this module).
mjr 6:cc35eb643e8f 305 // The assignments we make here have two main objectives: first,
mjr 6:cc35eb643e8f 306 // to group the outputs on headers J1 and J2 (to facilitate neater
mjr 6:cc35eb643e8f 307 // wiring by keeping the output pins together physically), and
mjr 6:cc35eb643e8f 308 // second, to make the physical pin layout match the LED-Wiz port
mjr 6:cc35eb643e8f 309 // numbering order to the extent possible. There's one big wrench
mjr 6:cc35eb643e8f 310 // in the works, though, which is the limited number and discontiguous
mjr 6:cc35eb643e8f 311 // placement of the KL25Z PWM-capable output pins. This prevents
mjr 6:cc35eb643e8f 312 // us from doing the most obvious sequential ordering of the pins,
mjr 6:cc35eb643e8f 313 // so we end up with the outputs arranged into several blocks.
mjr 6:cc35eb643e8f 314 // Hopefully this isn't too confusing; for more detailed rationale,
mjr 6:cc35eb643e8f 315 // read on...
mjr 6:cc35eb643e8f 316 //
mjr 6:cc35eb643e8f 317 // With the LED-Wiz, the host software configuration usually
mjr 6:cc35eb643e8f 318 // assumes that each RGB LED is hooked up to three consecutive ports
mjr 6:cc35eb643e8f 319 // (for the red, green, and blue components, which need to be
mjr 6:cc35eb643e8f 320 // physically wired to separate outputs to allow each color to be
mjr 6:cc35eb643e8f 321 // controlled independently). To facilitate this, we arrange the
mjr 6:cc35eb643e8f 322 // PWM-enabled outputs so that they're grouped together in the
mjr 6:cc35eb643e8f 323 // port numbering scheme. Unfortunately, these outputs aren't
mjr 6:cc35eb643e8f 324 // together in a single group in the physical pin layout, so to
mjr 6:cc35eb643e8f 325 // group them logically in the LED-Wiz port numbering scheme, we
mjr 6:cc35eb643e8f 326 // have to break up the overall numbering scheme into several blocks.
mjr 6:cc35eb643e8f 327 // So our port numbering goes sequentially down each column of
mjr 6:cc35eb643e8f 328 // header pins, but there are several break points where we have
mjr 6:cc35eb643e8f 329 // to interrupt the obvious sequence to keep the PWM pins grouped
mjr 6:cc35eb643e8f 330 // logically.
mjr 6:cc35eb643e8f 331 //
mjr 6:cc35eb643e8f 332 // In the list below, "pin J1-2" refers to pin 2 on header J1 on
mjr 6:cc35eb643e8f 333 // the KL25Z, using the standard pin numbering in the KL25Z
mjr 6:cc35eb643e8f 334 // documentation - this is the physical pin that the port controls.
mjr 6:cc35eb643e8f 335 // "LW port 1" means LED-Wiz port 1 - this is the LED-Wiz port
mjr 6:cc35eb643e8f 336 // number that you use on the PC side (in the DirectOutput config
mjr 6:cc35eb643e8f 337 // file, for example) to address the port. PWM-capable ports are
mjr 6:cc35eb643e8f 338 // marked as such - we group the PWM-capable ports into the first
mjr 6:cc35eb643e8f 339 // 10 LED-Wiz port numbers.
mjr 6:cc35eb643e8f 340 //
mjr 6:cc35eb643e8f 341 struct {
mjr 6:cc35eb643e8f 342 PinName pin;
mjr 6:cc35eb643e8f 343 bool isPWM;
mjr 6:cc35eb643e8f 344 } ledWizPortMap[32] = {
mjr 6:cc35eb643e8f 345 { PTA1, true }, // pin J1-2, LW port 1 (PWM capable - TPM 2.0 = channel 9)
mjr 6:cc35eb643e8f 346 { PTA2, true }, // pin J1-4, LW port 2 (PWM capable - TPM 2.1 = channel 10)
mjr 6:cc35eb643e8f 347 { PTD4, true }, // pin J1-6, LW port 3 (PWM capable - TPM 0.4 = channel 5)
mjr 6:cc35eb643e8f 348 { PTA12, true }, // pin J1-8, LW port 4 (PWM capable - TPM 1.0 = channel 7)
mjr 6:cc35eb643e8f 349 { PTA4, true }, // pin J1-10, LW port 5 (PWM capable - TPM 0.1 = channel 2)
mjr 6:cc35eb643e8f 350 { PTA5, true }, // pin J1-12, LW port 6 (PWM capable - TPM 0.2 = channel 3)
mjr 6:cc35eb643e8f 351 { PTA13, true }, // pin J2-2, LW port 7 (PWM capable - TPM 1.1 = channel 13)
mjr 6:cc35eb643e8f 352 { PTD5, true }, // pin J2-4, LW port 8 (PWM capable - TPM 0.5 = channel 6)
mjr 6:cc35eb643e8f 353 { PTD0, true }, // pin J2-6, LW port 9 (PWM capable - TPM 0.0 = channel 1)
mjr 6:cc35eb643e8f 354 { PTD3, true }, // pin J2-10, LW port 10 (PWM capable - TPM 0.3 = channel 4)
mjr 9:fd65b0a94720 355 { PTD2, false }, // pin J2-8, LW port 11
mjr 9:fd65b0a94720 356 { PTC8, false }, // pin J1-14, LW port 12
mjr 9:fd65b0a94720 357 { PTC9, false }, // pin J1-16, LW port 13
mjr 9:fd65b0a94720 358 { PTC7, false }, // pin J1-1, LW port 14
mjr 9:fd65b0a94720 359 { PTC0, false }, // pin J1-3, LW port 15
mjr 9:fd65b0a94720 360 { PTC3, false }, // pin J1-5, LW port 16
mjr 9:fd65b0a94720 361 { PTC4, false }, // pin J1-7, LW port 17
mjr 9:fd65b0a94720 362 { PTC5, false }, // pin J1-9, LW port 18
mjr 9:fd65b0a94720 363 { PTC6, false }, // pin J1-11, LW port 19
mjr 9:fd65b0a94720 364 { PTC10, false }, // pin J1-13, LW port 20
mjr 9:fd65b0a94720 365 { PTC11, false }, // pin J1-15, LW port 21
mjr 9:fd65b0a94720 366 { PTC12, false }, // pin J2-1, LW port 22
mjr 9:fd65b0a94720 367 { PTC13, false }, // pin J2-3, LW port 23
mjr 9:fd65b0a94720 368 { PTC16, false }, // pin J2-5, LW port 24
mjr 9:fd65b0a94720 369 { PTC17, false }, // pin J2-7, LW port 25
mjr 9:fd65b0a94720 370 { PTA16, false }, // pin J2-9, LW port 26
mjr 9:fd65b0a94720 371 { PTA17, false }, // pin J2-11, LW port 27
mjr 9:fd65b0a94720 372 { PTE31, false }, // pin J2-13, LW port 28
mjr 6:cc35eb643e8f 373 { PTD6, false }, // pin J2-17, LW port 29
mjr 6:cc35eb643e8f 374 { PTD7, false }, // pin J2-19, LW port 30
mjr 6:cc35eb643e8f 375 { PTE0, false }, // pin J2-18, LW port 31
mjr 6:cc35eb643e8f 376 { PTE1, false } // pin J2-20, LW port 32
mjr 6:cc35eb643e8f 377 };
mjr 6:cc35eb643e8f 378
mjr 6:cc35eb643e8f 379
mjr 5:a70c0bce770d 380 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 5:a70c0bce770d 381 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 5:a70c0bce770d 382
mjr 5:a70c0bce770d 383 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 5:a70c0bce770d 384 #define MMA8451_SCL_PIN PTE25
mjr 5:a70c0bce770d 385 #define MMA8451_SDA_PIN PTE24
mjr 5:a70c0bce770d 386
mjr 5:a70c0bce770d 387 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 5:a70c0bce770d 388 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 5:a70c0bce770d 389 // wired on this board to the MMA8451 interrupt controller.
mjr 5:a70c0bce770d 390 #define MMA8451_INT_PIN PTA15
mjr 5:a70c0bce770d 391
mjr 6:cc35eb643e8f 392 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 6:cc35eb643e8f 393 #define JOYMAX 4096
mjr 6:cc35eb643e8f 394
mjr 5:a70c0bce770d 395
mjr 5:a70c0bce770d 396 // ---------------------------------------------------------------------------
mjr 9:fd65b0a94720 397 // utilities
mjr 9:fd65b0a94720 398
mjr 9:fd65b0a94720 399 // number of elements in an array
mjr 9:fd65b0a94720 400 #define countof(x) (sizeof(x)/sizeof((x)[0]))
mjr 9:fd65b0a94720 401
mjr 9:fd65b0a94720 402 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 403 //
mjr 5:a70c0bce770d 404 // LedWiz emulation
mjr 5:a70c0bce770d 405 //
mjr 5:a70c0bce770d 406
mjr 0:5acbbe3f4cf4 407 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 408
mjr 6:cc35eb643e8f 409 // LedWiz output pin interface. We create a cover class to virtualize
mjr 6:cc35eb643e8f 410 // digital vs PWM outputs and give them a common interface. The KL25Z
mjr 6:cc35eb643e8f 411 // unfortunately doesn't have enough hardware PWM channels to support
mjr 6:cc35eb643e8f 412 // PWM on all 32 LedWiz outputs, so we provide as many PWM channels as
mjr 6:cc35eb643e8f 413 // we can (10), and fill out the rest of the outputs with plain digital
mjr 6:cc35eb643e8f 414 // outs.
mjr 6:cc35eb643e8f 415 class LwOut
mjr 6:cc35eb643e8f 416 {
mjr 6:cc35eb643e8f 417 public:
mjr 6:cc35eb643e8f 418 virtual void set(float val) = 0;
mjr 6:cc35eb643e8f 419 };
mjr 6:cc35eb643e8f 420 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 421 {
mjr 6:cc35eb643e8f 422 public:
mjr 6:cc35eb643e8f 423 LwPwmOut(PinName pin) : p(pin) { }
mjr 6:cc35eb643e8f 424 virtual void set(float val) { p = val; }
mjr 6:cc35eb643e8f 425 PwmOut p;
mjr 6:cc35eb643e8f 426 };
mjr 6:cc35eb643e8f 427 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 428 {
mjr 6:cc35eb643e8f 429 public:
mjr 6:cc35eb643e8f 430 LwDigOut(PinName pin) : p(pin) { }
mjr 6:cc35eb643e8f 431 virtual void set(float val) { p = val; }
mjr 6:cc35eb643e8f 432 DigitalOut p;
mjr 6:cc35eb643e8f 433 };
mjr 6:cc35eb643e8f 434
mjr 6:cc35eb643e8f 435 // output pin array
mjr 6:cc35eb643e8f 436 static LwOut *lwPin[32];
mjr 6:cc35eb643e8f 437
mjr 6:cc35eb643e8f 438 // initialize the output pin array
mjr 6:cc35eb643e8f 439 void initLwOut()
mjr 6:cc35eb643e8f 440 {
mjr 9:fd65b0a94720 441 for (int i = 0 ; i < countof(lwPin) ; ++i)
mjr 6:cc35eb643e8f 442 {
mjr 6:cc35eb643e8f 443 PinName p = ledWizPortMap[i].pin;
mjr 6:cc35eb643e8f 444 lwPin[i] = (ledWizPortMap[i].isPWM
mjr 6:cc35eb643e8f 445 ? (LwOut *)new LwPwmOut(p)
mjr 6:cc35eb643e8f 446 : (LwOut *)new LwDigOut(p));
mjr 6:cc35eb643e8f 447 }
mjr 6:cc35eb643e8f 448 }
mjr 6:cc35eb643e8f 449
mjr 0:5acbbe3f4cf4 450 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 451 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 452
mjr 0:5acbbe3f4cf4 453 // profile (brightness/blink) state for each LedWiz output
mjr 1:d913e0afb2ac 454 static uint8_t wizVal[32] = {
mjr 0:5acbbe3f4cf4 455 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 456 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 457 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 458 0, 0, 0, 0, 0, 0, 0, 0
mjr 0:5acbbe3f4cf4 459 };
mjr 0:5acbbe3f4cf4 460
mjr 1:d913e0afb2ac 461 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 462 {
mjr 1:d913e0afb2ac 463 if (wizOn[idx]) {
mjr 0:5acbbe3f4cf4 464 // on - map profile brightness state to PWM level
mjr 1:d913e0afb2ac 465 uint8_t val = wizVal[idx];
mjr 0:5acbbe3f4cf4 466 if (val >= 1 && val <= 48)
mjr 0:5acbbe3f4cf4 467 return 1.0 - val/48.0;
mjr 0:5acbbe3f4cf4 468 else if (val >= 129 && val <= 132)
mjr 0:5acbbe3f4cf4 469 return 0.0;
mjr 0:5acbbe3f4cf4 470 else
mjr 0:5acbbe3f4cf4 471 return 1.0;
mjr 0:5acbbe3f4cf4 472 }
mjr 0:5acbbe3f4cf4 473 else {
mjr 0:5acbbe3f4cf4 474 // off
mjr 0:5acbbe3f4cf4 475 return 1.0;
mjr 0:5acbbe3f4cf4 476 }
mjr 0:5acbbe3f4cf4 477 }
mjr 0:5acbbe3f4cf4 478
mjr 1:d913e0afb2ac 479 static void updateWizOuts()
mjr 1:d913e0afb2ac 480 {
mjr 6:cc35eb643e8f 481 for (int i = 0 ; i < 32 ; ++i)
mjr 6:cc35eb643e8f 482 lwPin[i]->set(wizState(i));
mjr 1:d913e0afb2ac 483 }
mjr 1:d913e0afb2ac 484
mjr 5:a70c0bce770d 485 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 486 //
mjr 5:a70c0bce770d 487 // Non-volatile memory (NVM)
mjr 5:a70c0bce770d 488 //
mjr 0:5acbbe3f4cf4 489
mjr 5:a70c0bce770d 490 // Structure defining our NVM storage layout. We store a small
mjr 2:c174f9ee414a 491 // amount of persistent data in flash memory to retain calibration
mjr 5:a70c0bce770d 492 // data when powered off.
mjr 2:c174f9ee414a 493 struct NVM
mjr 2:c174f9ee414a 494 {
mjr 2:c174f9ee414a 495 // checksum - we use this to determine if the flash record
mjr 6:cc35eb643e8f 496 // has been properly initialized
mjr 2:c174f9ee414a 497 uint32_t checksum;
mjr 2:c174f9ee414a 498
mjr 2:c174f9ee414a 499 // signature value
mjr 2:c174f9ee414a 500 static const uint32_t SIGNATURE = 0x4D4A522A;
mjr 6:cc35eb643e8f 501 static const uint16_t VERSION = 0x0003;
mjr 6:cc35eb643e8f 502
mjr 6:cc35eb643e8f 503 // Is the data structure valid? We test the signature and
mjr 6:cc35eb643e8f 504 // checksum to determine if we've been properly stored.
mjr 6:cc35eb643e8f 505 int valid() const
mjr 6:cc35eb643e8f 506 {
mjr 6:cc35eb643e8f 507 return (d.sig == SIGNATURE
mjr 6:cc35eb643e8f 508 && d.vsn == VERSION
mjr 6:cc35eb643e8f 509 && d.sz == sizeof(NVM)
mjr 6:cc35eb643e8f 510 && checksum == CRC32(&d, sizeof(d)));
mjr 6:cc35eb643e8f 511 }
mjr 6:cc35eb643e8f 512
mjr 6:cc35eb643e8f 513 // save to non-volatile memory
mjr 6:cc35eb643e8f 514 void save(FreescaleIAP &iap, int addr)
mjr 6:cc35eb643e8f 515 {
mjr 6:cc35eb643e8f 516 // update the checksum and structure size
mjr 6:cc35eb643e8f 517 checksum = CRC32(&d, sizeof(d));
mjr 6:cc35eb643e8f 518 d.sz = sizeof(NVM);
mjr 6:cc35eb643e8f 519
mjr 6:cc35eb643e8f 520 // erase the sector
mjr 6:cc35eb643e8f 521 iap.erase_sector(addr);
mjr 6:cc35eb643e8f 522
mjr 6:cc35eb643e8f 523 // save the data
mjr 6:cc35eb643e8f 524 iap.program_flash(addr, this, sizeof(*this));
mjr 6:cc35eb643e8f 525 }
mjr 2:c174f9ee414a 526
mjr 9:fd65b0a94720 527 // reset calibration data for calibration mode
mjr 9:fd65b0a94720 528 void resetPlunger()
mjr 9:fd65b0a94720 529 {
mjr 9:fd65b0a94720 530 // set extremes for the calibration data
mjr 9:fd65b0a94720 531 d.plungerMax = 0;
mjr 9:fd65b0a94720 532 d.plungerZero = npix;
mjr 9:fd65b0a94720 533 d.plungerMin = npix;
mjr 9:fd65b0a94720 534 }
mjr 9:fd65b0a94720 535
mjr 2:c174f9ee414a 536 // stored data (excluding the checksum)
mjr 2:c174f9ee414a 537 struct
mjr 2:c174f9ee414a 538 {
mjr 6:cc35eb643e8f 539 // Signature, structure version, and structure size - further verification
mjr 6:cc35eb643e8f 540 // that we have valid initialized data. The size is a simple proxy for a
mjr 6:cc35eb643e8f 541 // structure version, as the most common type of change to the structure as
mjr 6:cc35eb643e8f 542 // the software evolves will be the addition of new elements. We also
mjr 6:cc35eb643e8f 543 // provide an explicit version number that we can update manually if we
mjr 6:cc35eb643e8f 544 // make any changes that don't affect the structure size but would affect
mjr 6:cc35eb643e8f 545 // compatibility with a saved record (e.g., swapping two existing elements).
mjr 2:c174f9ee414a 546 uint32_t sig;
mjr 2:c174f9ee414a 547 uint16_t vsn;
mjr 6:cc35eb643e8f 548 int sz;
mjr 2:c174f9ee414a 549
mjr 6:cc35eb643e8f 550 // has the plunger been manually calibrated?
mjr 6:cc35eb643e8f 551 int plungerCal;
mjr 6:cc35eb643e8f 552
mjr 2:c174f9ee414a 553 // plunger calibration min and max
mjr 2:c174f9ee414a 554 int plungerMin;
mjr 6:cc35eb643e8f 555 int plungerZero;
mjr 2:c174f9ee414a 556 int plungerMax;
mjr 6:cc35eb643e8f 557
mjr 6:cc35eb643e8f 558 // is the CCD enabled?
mjr 6:cc35eb643e8f 559 int ccdEnabled;
mjr 6:cc35eb643e8f 560
mjr 6:cc35eb643e8f 561 // LedWiz unit number
mjr 6:cc35eb643e8f 562 uint8_t ledWizUnitNo;
mjr 2:c174f9ee414a 563 } d;
mjr 2:c174f9ee414a 564 };
mjr 2:c174f9ee414a 565
mjr 5:a70c0bce770d 566
mjr 5:a70c0bce770d 567 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 568 //
mjr 5:a70c0bce770d 569 // Customization joystick subbclass
mjr 5:a70c0bce770d 570 //
mjr 5:a70c0bce770d 571
mjr 5:a70c0bce770d 572 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 573 {
mjr 5:a70c0bce770d 574 public:
mjr 5:a70c0bce770d 575 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release)
mjr 5:a70c0bce770d 576 : USBJoystick(vendor_id, product_id, product_release, true)
mjr 5:a70c0bce770d 577 {
mjr 5:a70c0bce770d 578 suspended_ = false;
mjr 5:a70c0bce770d 579 }
mjr 5:a70c0bce770d 580
mjr 5:a70c0bce770d 581 // are we connected?
mjr 5:a70c0bce770d 582 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 583
mjr 5:a70c0bce770d 584 // Are we in suspend mode?
mjr 5:a70c0bce770d 585 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 586
mjr 5:a70c0bce770d 587 protected:
mjr 5:a70c0bce770d 588 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 589 { suspended_ = suspended; }
mjr 5:a70c0bce770d 590
mjr 5:a70c0bce770d 591 // are we suspended?
mjr 5:a70c0bce770d 592 int suspended_;
mjr 5:a70c0bce770d 593 };
mjr 5:a70c0bce770d 594
mjr 5:a70c0bce770d 595 // ---------------------------------------------------------------------------
mjr 6:cc35eb643e8f 596 //
mjr 6:cc35eb643e8f 597 // Some simple math service routines
mjr 6:cc35eb643e8f 598 //
mjr 6:cc35eb643e8f 599
mjr 6:cc35eb643e8f 600 inline float square(float x) { return x*x; }
mjr 6:cc35eb643e8f 601 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 6:cc35eb643e8f 602
mjr 6:cc35eb643e8f 603 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 604 //
mjr 5:a70c0bce770d 605 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 606 //
mjr 5:a70c0bce770d 607
mjr 5:a70c0bce770d 608 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 609 //
mjr 5:a70c0bce770d 610 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 611 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 612 // automatic calibration.
mjr 5:a70c0bce770d 613 //
mjr 5:a70c0bce770d 614 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 615 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 616 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 617 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 618 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 619 // every sample.
mjr 5:a70c0bce770d 620 //
mjr 6:cc35eb643e8f 621 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 622 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 623 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 624 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 625 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 626 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 627 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 628 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 629 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 630 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 631 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 632 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 633 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 634 // of nudging, say).
mjr 5:a70c0bce770d 635 //
mjr 5:a70c0bce770d 636
mjr 6:cc35eb643e8f 637 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 638 struct AccHist
mjr 5:a70c0bce770d 639 {
mjr 6:cc35eb643e8f 640 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 641 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 642 {
mjr 6:cc35eb643e8f 643 // save the raw position
mjr 6:cc35eb643e8f 644 this->x = x;
mjr 6:cc35eb643e8f 645 this->y = y;
mjr 6:cc35eb643e8f 646 this->d = distance(prv);
mjr 6:cc35eb643e8f 647 }
mjr 6:cc35eb643e8f 648
mjr 6:cc35eb643e8f 649 // reading for this entry
mjr 5:a70c0bce770d 650 float x, y;
mjr 5:a70c0bce770d 651
mjr 6:cc35eb643e8f 652 // distance from previous entry
mjr 6:cc35eb643e8f 653 float d;
mjr 5:a70c0bce770d 654
mjr 6:cc35eb643e8f 655 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 656 float xtot, ytot;
mjr 6:cc35eb643e8f 657 int cnt;
mjr 6:cc35eb643e8f 658
mjr 6:cc35eb643e8f 659 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 660 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 661 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 662 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 663
mjr 6:cc35eb643e8f 664 float distance(AccHist *p)
mjr 6:cc35eb643e8f 665 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 666 };
mjr 5:a70c0bce770d 667
mjr 5:a70c0bce770d 668 // accelerometer wrapper class
mjr 3:3514575d4f86 669 class Accel
mjr 3:3514575d4f86 670 {
mjr 3:3514575d4f86 671 public:
mjr 3:3514575d4f86 672 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 673 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 674 {
mjr 5:a70c0bce770d 675 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 676 irqPin_ = irqPin;
mjr 5:a70c0bce770d 677
mjr 5:a70c0bce770d 678 // reset and initialize
mjr 5:a70c0bce770d 679 reset();
mjr 5:a70c0bce770d 680 }
mjr 5:a70c0bce770d 681
mjr 5:a70c0bce770d 682 void reset()
mjr 5:a70c0bce770d 683 {
mjr 6:cc35eb643e8f 684 // clear the center point
mjr 6:cc35eb643e8f 685 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 686
mjr 6:cc35eb643e8f 687 // start the calibration timer
mjr 5:a70c0bce770d 688 tCenter_.start();
mjr 5:a70c0bce770d 689 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 690
mjr 5:a70c0bce770d 691 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 692 mma_.init();
mjr 6:cc35eb643e8f 693
mjr 6:cc35eb643e8f 694 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 695 vx_ = vy_ = 0;
mjr 3:3514575d4f86 696
mjr 6:cc35eb643e8f 697 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 698 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 699 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 700
mjr 3:3514575d4f86 701 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 702 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 703
mjr 3:3514575d4f86 704 // start our timers
mjr 3:3514575d4f86 705 tGet_.start();
mjr 3:3514575d4f86 706 tInt_.start();
mjr 3:3514575d4f86 707 }
mjr 3:3514575d4f86 708
mjr 9:fd65b0a94720 709 void get(int &x, int &y)
mjr 3:3514575d4f86 710 {
mjr 3:3514575d4f86 711 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 712 __disable_irq();
mjr 3:3514575d4f86 713
mjr 3:3514575d4f86 714 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 715 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 716 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 717
mjr 6:cc35eb643e8f 718 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 719 vx_ = vy_ = 0;
mjr 3:3514575d4f86 720
mjr 3:3514575d4f86 721 // get the time since the last get() sample
mjr 3:3514575d4f86 722 float dt = tGet_.read_us()/1.0e6;
mjr 3:3514575d4f86 723 tGet_.reset();
mjr 3:3514575d4f86 724
mjr 3:3514575d4f86 725 // done manipulating the shared data
mjr 3:3514575d4f86 726 __enable_irq();
mjr 3:3514575d4f86 727
mjr 6:cc35eb643e8f 728 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 729 vx /= dt;
mjr 6:cc35eb643e8f 730 vy /= dt;
mjr 6:cc35eb643e8f 731
mjr 6:cc35eb643e8f 732 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 733 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 734 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 735
mjr 5:a70c0bce770d 736 // check for auto-centering every so often
mjr 5:a70c0bce770d 737 if (tCenter_.read_ms() > 1000)
mjr 5:a70c0bce770d 738 {
mjr 5:a70c0bce770d 739 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 740 AccHist *prv = p;
mjr 5:a70c0bce770d 741 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 742 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 743 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 744
mjr 5:a70c0bce770d 745 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 746 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 747 {
mjr 5:a70c0bce770d 748 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 749 static const float accTol = .01;
mjr 6:cc35eb643e8f 750 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 751 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 752 && p0[1].d < accTol
mjr 6:cc35eb643e8f 753 && p0[2].d < accTol
mjr 6:cc35eb643e8f 754 && p0[3].d < accTol
mjr 6:cc35eb643e8f 755 && p0[4].d < accTol)
mjr 5:a70c0bce770d 756 {
mjr 6:cc35eb643e8f 757 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 758 // the samples over the rest period
mjr 6:cc35eb643e8f 759 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 760 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 761 }
mjr 5:a70c0bce770d 762 }
mjr 5:a70c0bce770d 763 else
mjr 5:a70c0bce770d 764 {
mjr 5:a70c0bce770d 765 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 766 ++nAccPrv_;
mjr 5:a70c0bce770d 767 }
mjr 6:cc35eb643e8f 768
mjr 6:cc35eb643e8f 769 // clear the new item's running totals
mjr 6:cc35eb643e8f 770 p->clearAvg();
mjr 5:a70c0bce770d 771
mjr 5:a70c0bce770d 772 // reset the timer
mjr 5:a70c0bce770d 773 tCenter_.reset();
mjr 5:a70c0bce770d 774 }
mjr 5:a70c0bce770d 775
mjr 6:cc35eb643e8f 776 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 777 x = rawToReport(vx);
mjr 6:cc35eb643e8f 778 y = rawToReport(vy);
mjr 5:a70c0bce770d 779
mjr 6:cc35eb643e8f 780 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 781 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 782 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 783 #endif
mjr 3:3514575d4f86 784 }
mjr 3:3514575d4f86 785
mjr 3:3514575d4f86 786 private:
mjr 6:cc35eb643e8f 787 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 788 int rawToReport(float v)
mjr 5:a70c0bce770d 789 {
mjr 6:cc35eb643e8f 790 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 791 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 792
mjr 6:cc35eb643e8f 793 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 794 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 795 static const int filter[] = {
mjr 6:cc35eb643e8f 796 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 797 0,
mjr 6:cc35eb643e8f 798 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 799 };
mjr 6:cc35eb643e8f 800 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 801 }
mjr 5:a70c0bce770d 802
mjr 3:3514575d4f86 803 // interrupt handler
mjr 3:3514575d4f86 804 void isr()
mjr 3:3514575d4f86 805 {
mjr 3:3514575d4f86 806 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 807 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 808 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 809 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 810 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 811 float x, y, z;
mjr 5:a70c0bce770d 812 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 813
mjr 3:3514575d4f86 814 // calculate the time since the last interrupt
mjr 3:3514575d4f86 815 float dt = tInt_.read_us()/1.0e6;
mjr 3:3514575d4f86 816 tInt_.reset();
mjr 6:cc35eb643e8f 817
mjr 6:cc35eb643e8f 818 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 819 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 820 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 821
mjr 6:cc35eb643e8f 822 // store the updates
mjr 6:cc35eb643e8f 823 ax_ = x;
mjr 6:cc35eb643e8f 824 ay_ = y;
mjr 6:cc35eb643e8f 825 az_ = z;
mjr 3:3514575d4f86 826 }
mjr 3:3514575d4f86 827
mjr 3:3514575d4f86 828 // underlying accelerometer object
mjr 3:3514575d4f86 829 MMA8451Q mma_;
mjr 3:3514575d4f86 830
mjr 5:a70c0bce770d 831 // last raw acceleration readings
mjr 6:cc35eb643e8f 832 float ax_, ay_, az_;
mjr 5:a70c0bce770d 833
mjr 6:cc35eb643e8f 834 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 835 float vx_, vy_;
mjr 6:cc35eb643e8f 836
mjr 3:3514575d4f86 837 // timer for measuring time between get() samples
mjr 3:3514575d4f86 838 Timer tGet_;
mjr 3:3514575d4f86 839
mjr 3:3514575d4f86 840 // timer for measuring time between interrupts
mjr 3:3514575d4f86 841 Timer tInt_;
mjr 5:a70c0bce770d 842
mjr 6:cc35eb643e8f 843 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 844 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 845 // at rest.
mjr 6:cc35eb643e8f 846 float cx_, cy_;
mjr 5:a70c0bce770d 847
mjr 5:a70c0bce770d 848 // timer for atuo-centering
mjr 5:a70c0bce770d 849 Timer tCenter_;
mjr 6:cc35eb643e8f 850
mjr 6:cc35eb643e8f 851 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 852 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 853 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 854 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 855 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 856 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 857 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 858 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 859 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 860 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 861 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 862 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 863 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 864 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 865 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 866
mjr 5:a70c0bce770d 867 // interurupt pin name
mjr 5:a70c0bce770d 868 PinName irqPin_;
mjr 5:a70c0bce770d 869
mjr 5:a70c0bce770d 870 // interrupt router
mjr 5:a70c0bce770d 871 InterruptIn intIn_;
mjr 3:3514575d4f86 872 };
mjr 3:3514575d4f86 873
mjr 5:a70c0bce770d 874
mjr 5:a70c0bce770d 875 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 876 //
mjr 5:a70c0bce770d 877 // Clear the I2C bus for the MMA8451!. This seems necessary some of the time
mjr 5:a70c0bce770d 878 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 879 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 880 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 5:a70c0bce770d 881 // the SCL line is supposed to clear this conidtion.
mjr 5:a70c0bce770d 882 //
mjr 5:a70c0bce770d 883 void clear_i2c()
mjr 5:a70c0bce770d 884 {
mjr 5:a70c0bce770d 885 // assume a general-purpose output pin to the I2C clock
mjr 5:a70c0bce770d 886 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 887 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 888
mjr 5:a70c0bce770d 889 // clock the SCL 9 times
mjr 5:a70c0bce770d 890 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 891 {
mjr 5:a70c0bce770d 892 scl = 1;
mjr 5:a70c0bce770d 893 wait_us(20);
mjr 5:a70c0bce770d 894 scl = 0;
mjr 5:a70c0bce770d 895 wait_us(20);
mjr 5:a70c0bce770d 896 }
mjr 5:a70c0bce770d 897 }
mjr 5:a70c0bce770d 898
mjr 5:a70c0bce770d 899 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 900 //
mjr 5:a70c0bce770d 901 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 902 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 903 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 904 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 905 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 906 // port outputs.
mjr 5:a70c0bce770d 907 //
mjr 0:5acbbe3f4cf4 908 int main(void)
mjr 0:5acbbe3f4cf4 909 {
mjr 1:d913e0afb2ac 910 // turn off our on-board indicator LED
mjr 4:02c7cd7b2183 911 ledR = 1;
mjr 4:02c7cd7b2183 912 ledG = 1;
mjr 4:02c7cd7b2183 913 ledB = 1;
mjr 1:d913e0afb2ac 914
mjr 6:cc35eb643e8f 915 // initialize the LedWiz ports
mjr 6:cc35eb643e8f 916 initLwOut();
mjr 6:cc35eb643e8f 917
mjr 6:cc35eb643e8f 918 // we don't need a reset yet
mjr 6:cc35eb643e8f 919 bool needReset = false;
mjr 6:cc35eb643e8f 920
mjr 5:a70c0bce770d 921 // clear the I2C bus for the accelerometer
mjr 5:a70c0bce770d 922 clear_i2c();
mjr 5:a70c0bce770d 923
mjr 2:c174f9ee414a 924 // set up a flash memory controller
mjr 2:c174f9ee414a 925 FreescaleIAP iap;
mjr 2:c174f9ee414a 926
mjr 2:c174f9ee414a 927 // use the last sector of flash for our non-volatile memory structure
mjr 2:c174f9ee414a 928 int flash_addr = (iap.flash_size() - SECTOR_SIZE);
mjr 2:c174f9ee414a 929 NVM *flash = (NVM *)flash_addr;
mjr 2:c174f9ee414a 930 NVM cfg;
mjr 2:c174f9ee414a 931
mjr 2:c174f9ee414a 932 // check for valid flash
mjr 6:cc35eb643e8f 933 bool flash_valid = flash->valid();
mjr 2:c174f9ee414a 934
mjr 2:c174f9ee414a 935 // if the flash is valid, load it; otherwise initialize to defaults
mjr 2:c174f9ee414a 936 if (flash_valid) {
mjr 2:c174f9ee414a 937 memcpy(&cfg, flash, sizeof(cfg));
mjr 6:cc35eb643e8f 938 printf("Flash restored: plunger cal=%d, min=%d, zero=%d, max=%d\r\n",
mjr 6:cc35eb643e8f 939 cfg.d.plungerCal, cfg.d.plungerMin, cfg.d.plungerZero, cfg.d.plungerMax);
mjr 2:c174f9ee414a 940 }
mjr 2:c174f9ee414a 941 else {
mjr 2:c174f9ee414a 942 printf("Factory reset\r\n");
mjr 2:c174f9ee414a 943 cfg.d.sig = cfg.SIGNATURE;
mjr 2:c174f9ee414a 944 cfg.d.vsn = cfg.VERSION;
mjr 6:cc35eb643e8f 945 cfg.d.plungerCal = 0;
mjr 6:cc35eb643e8f 946 cfg.d.plungerZero = 0;
mjr 2:c174f9ee414a 947 cfg.d.plungerMin = 0;
mjr 2:c174f9ee414a 948 cfg.d.plungerMax = npix;
mjr 6:cc35eb643e8f 949 cfg.d.ledWizUnitNo = DEFAULT_LEDWIZ_UNIT_NUMBER;
mjr 6:cc35eb643e8f 950 cfg.d.ccdEnabled = true;
mjr 2:c174f9ee414a 951 }
mjr 1:d913e0afb2ac 952
mjr 6:cc35eb643e8f 953 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 954 // number from the saved configuration.
mjr 6:cc35eb643e8f 955 MyUSBJoystick js(
mjr 6:cc35eb643e8f 956 USB_VENDOR_ID,
mjr 6:cc35eb643e8f 957 USB_PRODUCT_ID | cfg.d.ledWizUnitNo,
mjr 6:cc35eb643e8f 958 USB_VERSION_NO);
mjr 6:cc35eb643e8f 959
mjr 1:d913e0afb2ac 960 // plunger calibration button debounce timer
mjr 1:d913e0afb2ac 961 Timer calBtnTimer;
mjr 1:d913e0afb2ac 962 calBtnTimer.start();
mjr 1:d913e0afb2ac 963 int calBtnLit = false;
mjr 1:d913e0afb2ac 964
mjr 1:d913e0afb2ac 965 // Calibration button state:
mjr 1:d913e0afb2ac 966 // 0 = not pushed
mjr 1:d913e0afb2ac 967 // 1 = pushed, not yet debounced
mjr 1:d913e0afb2ac 968 // 2 = pushed, debounced, waiting for hold time
mjr 1:d913e0afb2ac 969 // 3 = pushed, hold time completed - in calibration mode
mjr 1:d913e0afb2ac 970 int calBtnState = 0;
mjr 1:d913e0afb2ac 971
mjr 1:d913e0afb2ac 972 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 973 Timer hbTimer;
mjr 1:d913e0afb2ac 974 hbTimer.start();
mjr 1:d913e0afb2ac 975 int hb = 0;
mjr 5:a70c0bce770d 976 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 977
mjr 1:d913e0afb2ac 978 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 979 Timer acTimer;
mjr 1:d913e0afb2ac 980 acTimer.start();
mjr 1:d913e0afb2ac 981
mjr 0:5acbbe3f4cf4 982 // create the accelerometer object
mjr 5:a70c0bce770d 983 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 0:5acbbe3f4cf4 984
mjr 0:5acbbe3f4cf4 985 // create the CCD array object
mjr 1:d913e0afb2ac 986 TSL1410R ccd(PTE20, PTE21, PTB0);
mjr 2:c174f9ee414a 987
mjr 1:d913e0afb2ac 988 // last accelerometer report, in mouse coordinates
mjr 6:cc35eb643e8f 989 int x = 0, y = 0, z = 0;
mjr 6:cc35eb643e8f 990
mjr 6:cc35eb643e8f 991 // previous two plunger readings, for "debouncing" the results (z0 is
mjr 6:cc35eb643e8f 992 // the most recent, z1 is the one before that)
mjr 6:cc35eb643e8f 993 int z0 = 0, z1 = 0, z2 = 0;
mjr 6:cc35eb643e8f 994
mjr 6:cc35eb643e8f 995 // Firing in progress: we set this when we detect the start of rapid
mjr 6:cc35eb643e8f 996 // plunger movement from a retracted position towards the rest position.
mjr 6:cc35eb643e8f 997 // The actual plunger spring return speed seems to be too slow for VP,
mjr 6:cc35eb643e8f 998 // so when we detect the start of this motion, we immediately tell VP
mjr 6:cc35eb643e8f 999 // to return the plunger to rest, then we monitor the real plunger
mjr 6:cc35eb643e8f 1000 // until it atcually stops.
mjr 9:fd65b0a94720 1001 int firing = 0;
mjr 2:c174f9ee414a 1002
mjr 2:c174f9ee414a 1003 // start the first CCD integration cycle
mjr 2:c174f9ee414a 1004 ccd.clear();
mjr 9:fd65b0a94720 1005
mjr 9:fd65b0a94720 1006 // Device status. We report this on each update so that the host config
mjr 9:fd65b0a94720 1007 // tool can detect our current settings. This is a bit mask consisting
mjr 9:fd65b0a94720 1008 // of these bits:
mjr 9:fd65b0a94720 1009 // 0x01 -> plunger sensor enabled
mjr 9:fd65b0a94720 1010 uint16_t statusFlags = (cfg.d.ccdEnabled ? 0x01 : 0x00);
mjr 10:976666ffa4ef 1011
mjr 10:976666ffa4ef 1012 // flag: send a pixel dump after the next read
mjr 10:976666ffa4ef 1013 bool reportPix = false;
mjr 1:d913e0afb2ac 1014
mjr 1:d913e0afb2ac 1015 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 1016 // host requests
mjr 0:5acbbe3f4cf4 1017 for (;;)
mjr 0:5acbbe3f4cf4 1018 {
mjr 0:5acbbe3f4cf4 1019 // Look for an incoming report. Continue processing input as
mjr 0:5acbbe3f4cf4 1020 // long as there's anything pending - this ensures that we
mjr 0:5acbbe3f4cf4 1021 // handle input in as timely a fashion as possible by deferring
mjr 0:5acbbe3f4cf4 1022 // output tasks as long as there's input to process.
mjr 0:5acbbe3f4cf4 1023 HID_REPORT report;
mjr 6:cc35eb643e8f 1024 while (js.readNB(&report))
mjr 0:5acbbe3f4cf4 1025 {
mjr 6:cc35eb643e8f 1026 // all Led-Wiz reports are 8 bytes exactly
mjr 6:cc35eb643e8f 1027 if (report.length == 8)
mjr 1:d913e0afb2ac 1028 {
mjr 6:cc35eb643e8f 1029 uint8_t *data = report.data;
mjr 6:cc35eb643e8f 1030 if (data[0] == 64)
mjr 0:5acbbe3f4cf4 1031 {
mjr 6:cc35eb643e8f 1032 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 6:cc35eb643e8f 1033 // for the outputs; 5th byte is the pulse speed (0-7)
mjr 6:cc35eb643e8f 1034 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 6:cc35eb643e8f 1035 // data[1], data[2], data[3], data[4], data[5]);
mjr 0:5acbbe3f4cf4 1036
mjr 6:cc35eb643e8f 1037 // update all on/off states
mjr 6:cc35eb643e8f 1038 for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1)
mjr 6:cc35eb643e8f 1039 {
mjr 6:cc35eb643e8f 1040 if (bit == 0x100) {
mjr 6:cc35eb643e8f 1041 bit = 1;
mjr 6:cc35eb643e8f 1042 ++ri;
mjr 6:cc35eb643e8f 1043 }
mjr 6:cc35eb643e8f 1044 wizOn[i] = ((data[ri] & bit) != 0);
mjr 6:cc35eb643e8f 1045 }
mjr 6:cc35eb643e8f 1046
mjr 6:cc35eb643e8f 1047 // update the physical outputs
mjr 1:d913e0afb2ac 1048 updateWizOuts();
mjr 6:cc35eb643e8f 1049
mjr 6:cc35eb643e8f 1050 // reset the PBA counter
mjr 6:cc35eb643e8f 1051 pbaIdx = 0;
mjr 6:cc35eb643e8f 1052 }
mjr 6:cc35eb643e8f 1053 else if (data[0] == 65)
mjr 6:cc35eb643e8f 1054 {
mjr 6:cc35eb643e8f 1055 // Private control message. This isn't an LedWiz message - it's
mjr 6:cc35eb643e8f 1056 // an extension for this device. 65 is an invalid PBA setting,
mjr 6:cc35eb643e8f 1057 // and isn't used for any other LedWiz message, so we appropriate
mjr 6:cc35eb643e8f 1058 // it for our own private use. The first byte specifies the
mjr 6:cc35eb643e8f 1059 // message type.
mjr 6:cc35eb643e8f 1060 if (data[1] == 1)
mjr 6:cc35eb643e8f 1061 {
mjr 9:fd65b0a94720 1062 // 1 = Set Configuration:
mjr 6:cc35eb643e8f 1063 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 6:cc35eb643e8f 1064 // data[3] = feature enable bit mask:
mjr 6:cc35eb643e8f 1065 // 0x01 = enable CCD
mjr 6:cc35eb643e8f 1066
mjr 6:cc35eb643e8f 1067 // we'll need a reset if the LedWiz unit number is changing
mjr 6:cc35eb643e8f 1068 uint8_t newUnitNo = data[2] & 0x0f;
mjr 6:cc35eb643e8f 1069 needReset |= (newUnitNo != cfg.d.ledWizUnitNo);
mjr 6:cc35eb643e8f 1070
mjr 6:cc35eb643e8f 1071 // set the configuration parameters from the message
mjr 6:cc35eb643e8f 1072 cfg.d.ledWizUnitNo = newUnitNo;
mjr 6:cc35eb643e8f 1073 cfg.d.ccdEnabled = data[3] & 0x01;
mjr 6:cc35eb643e8f 1074
mjr 9:fd65b0a94720 1075 // update the status flags
mjr 9:fd65b0a94720 1076 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 9:fd65b0a94720 1077
mjr 9:fd65b0a94720 1078 // if the ccd is no longer enabled, use 0 for z reports
mjr 9:fd65b0a94720 1079 if (!cfg.d.ccdEnabled)
mjr 9:fd65b0a94720 1080 z = 0;
mjr 9:fd65b0a94720 1081
mjr 6:cc35eb643e8f 1082 // save the configuration
mjr 6:cc35eb643e8f 1083 cfg.save(iap, flash_addr);
mjr 6:cc35eb643e8f 1084 }
mjr 9:fd65b0a94720 1085 else if (data[1] == 2)
mjr 9:fd65b0a94720 1086 {
mjr 9:fd65b0a94720 1087 // 2 = Calibrate plunger
mjr 9:fd65b0a94720 1088 // (No parameters)
mjr 9:fd65b0a94720 1089
mjr 9:fd65b0a94720 1090 // enter calibration mode
mjr 9:fd65b0a94720 1091 calBtnState = 3;
mjr 9:fd65b0a94720 1092 calBtnTimer.reset();
mjr 9:fd65b0a94720 1093 cfg.resetPlunger();
mjr 9:fd65b0a94720 1094 }
mjr 10:976666ffa4ef 1095 else if (data[1] == 3)
mjr 10:976666ffa4ef 1096 {
mjr 10:976666ffa4ef 1097 // 3 = pixel dump
mjr 10:976666ffa4ef 1098 // (No parameters)
mjr 10:976666ffa4ef 1099 reportPix = true;
mjr 10:976666ffa4ef 1100
mjr 10:976666ffa4ef 1101 // show purple until we finish sending the report
mjr 10:976666ffa4ef 1102 ledR = 0;
mjr 10:976666ffa4ef 1103 ledB = 0;
mjr 10:976666ffa4ef 1104 ledG = 1;
mjr 10:976666ffa4ef 1105 }
mjr 6:cc35eb643e8f 1106 }
mjr 6:cc35eb643e8f 1107 else
mjr 6:cc35eb643e8f 1108 {
mjr 6:cc35eb643e8f 1109 // LWZ-PBA - full state dump; each byte is one output
mjr 6:cc35eb643e8f 1110 // in the current bank. pbaIdx keeps track of the bank;
mjr 6:cc35eb643e8f 1111 // this is incremented implicitly by each PBA message.
mjr 6:cc35eb643e8f 1112 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 6:cc35eb643e8f 1113 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 6:cc35eb643e8f 1114
mjr 6:cc35eb643e8f 1115 // update all output profile settings
mjr 6:cc35eb643e8f 1116 for (int i = 0 ; i < 8 ; ++i)
mjr 6:cc35eb643e8f 1117 wizVal[pbaIdx + i] = data[i];
mjr 6:cc35eb643e8f 1118
mjr 6:cc35eb643e8f 1119 // update the physical LED state if this is the last bank
mjr 6:cc35eb643e8f 1120 if (pbaIdx == 24)
mjr 6:cc35eb643e8f 1121 updateWizOuts();
mjr 6:cc35eb643e8f 1122
mjr 6:cc35eb643e8f 1123 // advance to the next bank
mjr 6:cc35eb643e8f 1124 pbaIdx = (pbaIdx + 8) & 31;
mjr 6:cc35eb643e8f 1125 }
mjr 0:5acbbe3f4cf4 1126 }
mjr 0:5acbbe3f4cf4 1127 }
mjr 1:d913e0afb2ac 1128
mjr 1:d913e0afb2ac 1129 // check for plunger calibration
mjr 1:d913e0afb2ac 1130 if (!calBtn)
mjr 0:5acbbe3f4cf4 1131 {
mjr 1:d913e0afb2ac 1132 // check the state
mjr 1:d913e0afb2ac 1133 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1134 {
mjr 1:d913e0afb2ac 1135 case 0:
mjr 1:d913e0afb2ac 1136 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 1137 calBtnTimer.reset();
mjr 1:d913e0afb2ac 1138 calBtnState = 1;
mjr 1:d913e0afb2ac 1139 break;
mjr 1:d913e0afb2ac 1140
mjr 1:d913e0afb2ac 1141 case 1:
mjr 1:d913e0afb2ac 1142 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 1143 // passed, start the hold period
mjr 9:fd65b0a94720 1144 if (calBtnTimer.read_ms() > 50)
mjr 1:d913e0afb2ac 1145 calBtnState = 2;
mjr 1:d913e0afb2ac 1146 break;
mjr 1:d913e0afb2ac 1147
mjr 1:d913e0afb2ac 1148 case 2:
mjr 1:d913e0afb2ac 1149 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 1150 // for the entire hold period, move to calibration mode
mjr 9:fd65b0a94720 1151 if (calBtnTimer.read_ms() > 2050)
mjr 1:d913e0afb2ac 1152 {
mjr 1:d913e0afb2ac 1153 // enter calibration mode
mjr 1:d913e0afb2ac 1154 calBtnState = 3;
mjr 9:fd65b0a94720 1155 calBtnTimer.reset();
mjr 9:fd65b0a94720 1156 cfg.resetPlunger();
mjr 1:d913e0afb2ac 1157 }
mjr 1:d913e0afb2ac 1158 break;
mjr 2:c174f9ee414a 1159
mjr 2:c174f9ee414a 1160 case 3:
mjr 9:fd65b0a94720 1161 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 1162 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 1163 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 1164 break;
mjr 0:5acbbe3f4cf4 1165 }
mjr 0:5acbbe3f4cf4 1166 }
mjr 1:d913e0afb2ac 1167 else
mjr 1:d913e0afb2ac 1168 {
mjr 2:c174f9ee414a 1169 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 1170 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 1171 // and save the results to flash.
mjr 2:c174f9ee414a 1172 //
mjr 2:c174f9ee414a 1173 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 1174 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 1175 // mode, it simply cancels the attempt.
mjr 9:fd65b0a94720 1176 if (calBtnState == 3 && calBtnTimer.read_ms() > 15000)
mjr 2:c174f9ee414a 1177 {
mjr 2:c174f9ee414a 1178 // exit calibration mode
mjr 1:d913e0afb2ac 1179 calBtnState = 0;
mjr 2:c174f9ee414a 1180
mjr 6:cc35eb643e8f 1181 // save the updated configuration
mjr 6:cc35eb643e8f 1182 cfg.d.plungerCal = 1;
mjr 6:cc35eb643e8f 1183 cfg.save(iap, flash_addr);
mjr 2:c174f9ee414a 1184
mjr 2:c174f9ee414a 1185 // the flash state is now valid
mjr 2:c174f9ee414a 1186 flash_valid = true;
mjr 2:c174f9ee414a 1187 }
mjr 2:c174f9ee414a 1188 else if (calBtnState != 3)
mjr 2:c174f9ee414a 1189 {
mjr 2:c174f9ee414a 1190 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 1191 calBtnState = 0;
mjr 2:c174f9ee414a 1192 }
mjr 1:d913e0afb2ac 1193 }
mjr 1:d913e0afb2ac 1194
mjr 1:d913e0afb2ac 1195 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 1196 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 1197 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1198 {
mjr 1:d913e0afb2ac 1199 case 2:
mjr 1:d913e0afb2ac 1200 // in the hold period - flash the light
mjr 9:fd65b0a94720 1201 newCalBtnLit = ((calBtnTimer.read_ms()/250) & 1);
mjr 1:d913e0afb2ac 1202 break;
mjr 1:d913e0afb2ac 1203
mjr 1:d913e0afb2ac 1204 case 3:
mjr 1:d913e0afb2ac 1205 // calibration mode - show steady on
mjr 1:d913e0afb2ac 1206 newCalBtnLit = true;
mjr 1:d913e0afb2ac 1207 break;
mjr 1:d913e0afb2ac 1208
mjr 1:d913e0afb2ac 1209 default:
mjr 1:d913e0afb2ac 1210 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 1211 newCalBtnLit = false;
mjr 1:d913e0afb2ac 1212 break;
mjr 1:d913e0afb2ac 1213 }
mjr 3:3514575d4f86 1214
mjr 3:3514575d4f86 1215 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 1216 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 1217 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 1218 {
mjr 1:d913e0afb2ac 1219 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 1220 if (calBtnLit) {
mjr 2:c174f9ee414a 1221 calBtnLed = 1;
mjr 4:02c7cd7b2183 1222 ledR = 1;
mjr 4:02c7cd7b2183 1223 ledG = 1;
mjr 9:fd65b0a94720 1224 ledB = 0;
mjr 2:c174f9ee414a 1225 }
mjr 2:c174f9ee414a 1226 else {
mjr 2:c174f9ee414a 1227 calBtnLed = 0;
mjr 4:02c7cd7b2183 1228 ledR = 1;
mjr 4:02c7cd7b2183 1229 ledG = 1;
mjr 9:fd65b0a94720 1230 ledB = 1;
mjr 2:c174f9ee414a 1231 }
mjr 1:d913e0afb2ac 1232 }
mjr 1:d913e0afb2ac 1233
mjr 6:cc35eb643e8f 1234 // read the plunger sensor, if it's enabled
mjr 10:976666ffa4ef 1235 uint16_t pix[npix];
mjr 6:cc35eb643e8f 1236 if (cfg.d.ccdEnabled)
mjr 6:cc35eb643e8f 1237 {
mjr 6:cc35eb643e8f 1238 // start with the previous reading, in case we don't have a
mjr 6:cc35eb643e8f 1239 // clear result on this frame
mjr 6:cc35eb643e8f 1240 int znew = z;
mjr 2:c174f9ee414a 1241
mjr 6:cc35eb643e8f 1242 // read the array
mjr 6:cc35eb643e8f 1243 ccd.read(pix, npix);
mjr 6:cc35eb643e8f 1244
mjr 6:cc35eb643e8f 1245 // get the average brightness at each end of the sensor
mjr 6:cc35eb643e8f 1246 long avg1 = (long(pix[0]) + long(pix[1]) + long(pix[2]) + long(pix[3]) + long(pix[4]))/5;
mjr 6:cc35eb643e8f 1247 long avg2 = (long(pix[npix-1]) + long(pix[npix-2]) + long(pix[npix-3]) + long(pix[npix-4]) + long(pix[npix-5]))/5;
mjr 6:cc35eb643e8f 1248
mjr 6:cc35eb643e8f 1249 // figure the midpoint in the brightness; multiply by 3 so that we can
mjr 6:cc35eb643e8f 1250 // compare sums of three pixels at a time to smooth out noise
mjr 6:cc35eb643e8f 1251 long midpt = (avg1 + avg2)/2 * 3;
mjr 6:cc35eb643e8f 1252
mjr 6:cc35eb643e8f 1253 // Work from the bright end to the dark end. VP interprets the
mjr 6:cc35eb643e8f 1254 // Z axis value as the amount the plunger is pulled: zero is the
mjr 6:cc35eb643e8f 1255 // rest position, and the axis maximum is fully pulled. So we
mjr 6:cc35eb643e8f 1256 // essentially want to report how much of the sensor is lit,
mjr 6:cc35eb643e8f 1257 // since this increases as the plunger is pulled back.
mjr 6:cc35eb643e8f 1258 int si = 1, di = 1;
mjr 6:cc35eb643e8f 1259 if (avg1 < avg2)
mjr 6:cc35eb643e8f 1260 si = npix - 2, di = -1;
mjr 6:cc35eb643e8f 1261
mjr 6:cc35eb643e8f 1262 // If the bright end and dark end don't differ by enough, skip this
mjr 6:cc35eb643e8f 1263 // reading entirely - we must have an overexposed or underexposed frame.
mjr 6:cc35eb643e8f 1264 // Otherwise proceed with the scan.
mjr 6:cc35eb643e8f 1265 if (labs(avg1 - avg2) > 0x1000)
mjr 6:cc35eb643e8f 1266 {
mjr 6:cc35eb643e8f 1267 uint16_t *pixp = pix + si;
mjr 6:cc35eb643e8f 1268 for (int n = 1 ; n < npix - 1 ; ++n, pixp += di)
mjr 6:cc35eb643e8f 1269 {
mjr 6:cc35eb643e8f 1270 // if we've crossed the midpoint, report this position
mjr 6:cc35eb643e8f 1271 if (long(pixp[-1]) + long(pixp[0]) + long(pixp[1]) < midpt)
mjr 6:cc35eb643e8f 1272 {
mjr 6:cc35eb643e8f 1273 // note the new position
mjr 6:cc35eb643e8f 1274 int pos = n;
mjr 6:cc35eb643e8f 1275
mjr 6:cc35eb643e8f 1276 // Calibrate, or apply calibration, depending on the mode.
mjr 6:cc35eb643e8f 1277 // In either case, normalize to our range. VP appears to
mjr 6:cc35eb643e8f 1278 // ignore negative Z axis values.
mjr 6:cc35eb643e8f 1279 if (calBtnState == 3)
mjr 6:cc35eb643e8f 1280 {
mjr 6:cc35eb643e8f 1281 // calibrating - note if we're expanding the calibration envelope
mjr 6:cc35eb643e8f 1282 if (pos < cfg.d.plungerMin)
mjr 6:cc35eb643e8f 1283 cfg.d.plungerMin = pos;
mjr 6:cc35eb643e8f 1284 if (pos < cfg.d.plungerZero)
mjr 6:cc35eb643e8f 1285 cfg.d.plungerZero = pos;
mjr 6:cc35eb643e8f 1286 if (pos > cfg.d.plungerMax)
mjr 6:cc35eb643e8f 1287 cfg.d.plungerMax = pos;
mjr 6:cc35eb643e8f 1288
mjr 6:cc35eb643e8f 1289 // normalize to the full physical range while calibrating
mjr 6:cc35eb643e8f 1290 znew = int(round(float(pos)/npix * JOYMAX));
mjr 6:cc35eb643e8f 1291 }
mjr 6:cc35eb643e8f 1292 else
mjr 6:cc35eb643e8f 1293 {
mjr 6:cc35eb643e8f 1294 // Running normally - normalize to the calibration range. Note
mjr 6:cc35eb643e8f 1295 // that values below the zero point are allowed - the zero point
mjr 6:cc35eb643e8f 1296 // represents the park position, where the plunger sits when at
mjr 6:cc35eb643e8f 1297 // rest, but a mechanical plunger has a smmall amount of travel
mjr 6:cc35eb643e8f 1298 // in the "push" direction. We represent forward travel with
mjr 6:cc35eb643e8f 1299 // negative z values.
mjr 6:cc35eb643e8f 1300 if (pos > cfg.d.plungerMax)
mjr 6:cc35eb643e8f 1301 pos = cfg.d.plungerMax;
mjr 6:cc35eb643e8f 1302 znew = int(round(float(pos - cfg.d.plungerZero)
mjr 6:cc35eb643e8f 1303 / (cfg.d.plungerMax - cfg.d.plungerZero + 1) * JOYMAX));
mjr 6:cc35eb643e8f 1304 }
mjr 6:cc35eb643e8f 1305
mjr 6:cc35eb643e8f 1306 // done
mjr 6:cc35eb643e8f 1307 break;
mjr 6:cc35eb643e8f 1308 }
mjr 6:cc35eb643e8f 1309 }
mjr 6:cc35eb643e8f 1310 }
mjr 7:100a25f8bf56 1311
mjr 7:100a25f8bf56 1312 // Determine if the plunger is being fired - i.e., if the player
mjr 7:100a25f8bf56 1313 // has just released the plunger from a retracted position.
mjr 6:cc35eb643e8f 1314 //
mjr 7:100a25f8bf56 1315 // We treat firing as an event. That is, we tell VP when the
mjr 7:100a25f8bf56 1316 // plunger is fired, and then stop sending data until the firing
mjr 7:100a25f8bf56 1317 // is complete, allowing VP to carry out the firing motion using
mjr 7:100a25f8bf56 1318 // its internal model plunger rather than trying to track the
mjr 7:100a25f8bf56 1319 // intermediate positions of the mechanical plunger throughout
mjr 9:fd65b0a94720 1320 // the firing motion. This is essential because the firing
mjr 9:fd65b0a94720 1321 // motion is too fast for us to track - in the time it takes us
mjr 9:fd65b0a94720 1322 // to read one frame, the plunger can make it all the way to the
mjr 9:fd65b0a94720 1323 // zero position and bounce back halfway. Fortunately, the range
mjr 9:fd65b0a94720 1324 // of motions for the plunger is limited, so if we see any rapid
mjr 9:fd65b0a94720 1325 // change of position toward the rest position, it's reasonably
mjr 9:fd65b0a94720 1326 // safe to interpret it as a firing event.
mjr 9:fd65b0a94720 1327 //
mjr 9:fd65b0a94720 1328 // This isn't foolproof. The user can trick us by doing a
mjr 9:fd65b0a94720 1329 // controlled rapid forward push but stopping short of the rest
mjr 9:fd65b0a94720 1330 // position. We'll misinterpret that as a firing event. But
mjr 9:fd65b0a94720 1331 // that's not a natural motion that a user would make with a
mjr 9:fd65b0a94720 1332 // plunger, so it's probably an acceptable false positive.
mjr 9:fd65b0a94720 1333 //
mjr 9:fd65b0a94720 1334 // Possible future enhancement: we could add a second physical
mjr 9:fd65b0a94720 1335 // sensor that detects when the plunger reaches the zero position
mjr 9:fd65b0a94720 1336 // and asserts an interrupt. In the interrupt handler, set a
mjr 9:fd65b0a94720 1337 // flag indicating the zero position signal. On each scan of
mjr 9:fd65b0a94720 1338 // the CCD, also check that flag; if it's set, enter firing
mjr 9:fd65b0a94720 1339 // event mode just as we do now. The key here is that the
mjr 9:fd65b0a94720 1340 // secondary sensor would have to be something much faster
mjr 9:fd65b0a94720 1341 // than our CCD scan - it would have to react on, say, the
mjr 9:fd65b0a94720 1342 // millisecond time scale. A simple mechanical switch or a
mjr 9:fd65b0a94720 1343 // proximity sensor could work. This would let us detect
mjr 9:fd65b0a94720 1344 // with certainty when the plunger physically fires, eliminating
mjr 9:fd65b0a94720 1345 // the case where the use can fool us with motion that's fast
mjr 9:fd65b0a94720 1346 // enough to look like a release but doesn't actually reach the
mjr 9:fd65b0a94720 1347 // starting position.
mjr 6:cc35eb643e8f 1348 //
mjr 7:100a25f8bf56 1349 // To detremine when a firing even occurs, we watch for rapid
mjr 7:100a25f8bf56 1350 // motion from a retracted position towards the rest position -
mjr 7:100a25f8bf56 1351 // that is, large position changes in the negative direction over
mjr 7:100a25f8bf56 1352 // a couple of consecutive readings. When we see a rapid move
mjr 7:100a25f8bf56 1353 // toward zero, we set our internal 'firing' flag, immediately
mjr 7:100a25f8bf56 1354 // report to VP that the plunger has returned to the zero
mjr 7:100a25f8bf56 1355 // position, and then suspend reports until the mechanical
mjr 7:100a25f8bf56 1356 // readings indicate that the plunger has come to rest (indicated
mjr 7:100a25f8bf56 1357 // by several readings in a row at roughly the same position).
mjr 9:fd65b0a94720 1358 //
mjr 9:fd65b0a94720 1359 // Tolerance for firing is 1/3 of the current pull distance, or
mjr 9:fd65b0a94720 1360 // about 1/2", whichever is greater. Making this value too small
mjr 9:fd65b0a94720 1361 // makes for too many false positives. Empirically, 1/4" is too
mjr 9:fd65b0a94720 1362 // twitchy, so set a floor at about 1/2". But we can be less
mjr 9:fd65b0a94720 1363 // sensitive the further back the plunger is pulled, since even
mjr 9:fd65b0a94720 1364 // a long pull will snap back quickly. Note that JOYMAX always
mjr 9:fd65b0a94720 1365 // corresponds to about 3", no matter how many pixels we're
mjr 9:fd65b0a94720 1366 // reading, since the physical sensor is about 3" long; so we
mjr 9:fd65b0a94720 1367 // factor out the pixel count calculate (approximate) physical
mjr 9:fd65b0a94720 1368 // distances based on the normalized axis range.
mjr 9:fd65b0a94720 1369 //
mjr 9:fd65b0a94720 1370 // Firing pattern: when firing, don't simply report a solid 0,
mjr 9:fd65b0a94720 1371 // but instead report a series of pseudo-bouces. This looks
mjr 9:fd65b0a94720 1372 // more realistic, beacause the real plunger is also bouncing
mjr 9:fd65b0a94720 1373 // around during this time. To get maximum firing power in
mjr 9:fd65b0a94720 1374 // the simulation, though, our pseudo-bounces are tiny cmopared
mjr 9:fd65b0a94720 1375 // to the real thing.
mjr 9:fd65b0a94720 1376 const int restTol = JOYMAX/24;
mjr 9:fd65b0a94720 1377 int fireTol = z/3 > JOYMAX/6 ? z/3 : JOYMAX/6;
mjr 9:fd65b0a94720 1378 static const int firePattern[] = {
mjr 9:fd65b0a94720 1379 -JOYMAX/12, -JOYMAX/12, -JOYMAX/12,
mjr 9:fd65b0a94720 1380 };
mjr 9:fd65b0a94720 1381 if (firing != 0)
mjr 6:cc35eb643e8f 1382 {
mjr 6:cc35eb643e8f 1383 // Firing in progress - we've already told VP to send its
mjr 6:cc35eb643e8f 1384 // model plunger all the way back to the rest position, so
mjr 6:cc35eb643e8f 1385 // send no further reports until the mechanical plunger
mjr 6:cc35eb643e8f 1386 // actually comes to rest somewhere.
mjr 6:cc35eb643e8f 1387 if (abs(z0 - z2) < restTol && abs(znew - z2) < restTol)
mjr 6:cc35eb643e8f 1388 {
mjr 6:cc35eb643e8f 1389 // the plunger is back at rest - firing is done
mjr 9:fd65b0a94720 1390 firing = 0;
mjr 6:cc35eb643e8f 1391
mjr 6:cc35eb643e8f 1392 // resume normal reporting
mjr 6:cc35eb643e8f 1393 z = z2;
mjr 6:cc35eb643e8f 1394 }
mjr 9:fd65b0a94720 1395 else if (firing < countof(firePattern))
mjr 9:fd65b0a94720 1396 {
mjr 9:fd65b0a94720 1397 // firing - report the next position in the pseudo-bounce
mjr 9:fd65b0a94720 1398 // pattern
mjr 9:fd65b0a94720 1399 z = firePattern[firing++];
mjr 9:fd65b0a94720 1400 }
mjr 9:fd65b0a94720 1401 else
mjr 9:fd65b0a94720 1402 {
mjr 9:fd65b0a94720 1403 // firing, out of pseudo-bounce items - just report the
mjr 9:fd65b0a94720 1404 // rest position
mjr 9:fd65b0a94720 1405 z = 0;
mjr 9:fd65b0a94720 1406 }
mjr 6:cc35eb643e8f 1407 }
mjr 6:cc35eb643e8f 1408 else if (z0 < z2 && z1 < z2 && znew < z2
mjr 6:cc35eb643e8f 1409 && (z0 < z2 - fireTol
mjr 6:cc35eb643e8f 1410 || z1 < z2 - fireTol
mjr 6:cc35eb643e8f 1411 || znew < z2 - fireTol))
mjr 6:cc35eb643e8f 1412 {
mjr 6:cc35eb643e8f 1413 // Big jumps toward rest position in last two readings -
mjr 6:cc35eb643e8f 1414 // firing has begun. Report an immediate return to the
mjr 6:cc35eb643e8f 1415 // rest position, and send no further reports until the
mjr 6:cc35eb643e8f 1416 // physical plunger has come to rest. This effectively
mjr 6:cc35eb643e8f 1417 // detaches VP's model plunger from the real world for
mjr 6:cc35eb643e8f 1418 // the duration of the spring return, letting VP evolve
mjr 6:cc35eb643e8f 1419 // its model without trying to synchronize with the
mjr 6:cc35eb643e8f 1420 // mechanical version. The release motion is too fast
mjr 6:cc35eb643e8f 1421 // for that to work well; we can't take samples quickly
mjr 6:cc35eb643e8f 1422 // enough to get prcise velocity or acceleration
mjr 6:cc35eb643e8f 1423 // readings. It's better to let VP figure the speed
mjr 6:cc35eb643e8f 1424 // and acceleration through modeling. Plus, that lets
mjr 6:cc35eb643e8f 1425 // each virtual table set the desired parameters for its
mjr 6:cc35eb643e8f 1426 // virtual plunger, rather than imposing the actual
mjr 6:cc35eb643e8f 1427 // mechanical charateristics of the physical plunger on
mjr 6:cc35eb643e8f 1428 // every table.
mjr 9:fd65b0a94720 1429 firing = 1;
mjr 9:fd65b0a94720 1430
mjr 9:fd65b0a94720 1431 // report the first firing pattern position
mjr 9:fd65b0a94720 1432 z = firePattern[0];
mjr 6:cc35eb643e8f 1433 }
mjr 6:cc35eb643e8f 1434 else
mjr 6:cc35eb643e8f 1435 {
mjr 6:cc35eb643e8f 1436 // everything normal; report the 3rd recent position on
mjr 6:cc35eb643e8f 1437 // tape delay
mjr 6:cc35eb643e8f 1438 z = z2;
mjr 6:cc35eb643e8f 1439 }
mjr 6:cc35eb643e8f 1440
mjr 6:cc35eb643e8f 1441 // shift in the new reading
mjr 6:cc35eb643e8f 1442 z2 = z1;
mjr 6:cc35eb643e8f 1443 z1 = z0;
mjr 6:cc35eb643e8f 1444 z0 = znew;
mjr 2:c174f9ee414a 1445 }
mjr 9:fd65b0a94720 1446 else
mjr 9:fd65b0a94720 1447 {
mjr 9:fd65b0a94720 1448 // plunger disabled - pause 10ms to throttle updates to a
mjr 9:fd65b0a94720 1449 // reasonable pace
mjr 9:fd65b0a94720 1450 wait_ms(10);
mjr 9:fd65b0a94720 1451 }
mjr 6:cc35eb643e8f 1452
mjr 1:d913e0afb2ac 1453 // read the accelerometer
mjr 9:fd65b0a94720 1454 int xa, ya;
mjr 9:fd65b0a94720 1455 accel.get(xa, ya);
mjr 1:d913e0afb2ac 1456
mjr 6:cc35eb643e8f 1457 // confine the results to our joystick axis range
mjr 6:cc35eb643e8f 1458 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 6:cc35eb643e8f 1459 if (xa > JOYMAX) xa = JOYMAX;
mjr 6:cc35eb643e8f 1460 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 6:cc35eb643e8f 1461 if (ya > JOYMAX) ya = JOYMAX;
mjr 1:d913e0afb2ac 1462
mjr 6:cc35eb643e8f 1463 // store the updated accelerometer coordinates
mjr 6:cc35eb643e8f 1464 x = xa;
mjr 6:cc35eb643e8f 1465 y = ya;
mjr 6:cc35eb643e8f 1466
mjr 8:c732e279ee29 1467 // Send the status report. Note that the nominal x and y axes
mjr 8:c732e279ee29 1468 // are reversed - this makes it more intuitive to set up in VP.
mjr 8:c732e279ee29 1469 // If we mount the Freesale card flat on the floor of the cabinet
mjr 8:c732e279ee29 1470 // with the USB connectors facing the front of the cabinet, this
mjr 8:c732e279ee29 1471 // arrangement of our nominal axes aligns with VP's standard
mjr 8:c732e279ee29 1472 // setting, so that we can configure VP with X Axis = X on the
mjr 8:c732e279ee29 1473 // joystick and Y Axis = Y on the joystick.
mjr 9:fd65b0a94720 1474 js.update(y, x, z, 0, statusFlags);
mjr 1:d913e0afb2ac 1475
mjr 10:976666ffa4ef 1476 // If we're in pixel dump mode, report all pixel exposure values
mjr 10:976666ffa4ef 1477 if (reportPix)
mjr 10:976666ffa4ef 1478 {
mjr 10:976666ffa4ef 1479 // we have satisfied this request
mjr 10:976666ffa4ef 1480 reportPix = false;
mjr 10:976666ffa4ef 1481
mjr 10:976666ffa4ef 1482 // send reports for all pixels
mjr 10:976666ffa4ef 1483 int idx = 0;
mjr 10:976666ffa4ef 1484 while (idx < npix)
mjr 10:976666ffa4ef 1485 js.updateExposure(idx, npix, pix);
mjr 10:976666ffa4ef 1486
mjr 10:976666ffa4ef 1487 // The pixel dump requires many USB reports, since each report
mjr 10:976666ffa4ef 1488 // can only send a few pixel values. An integration cycle has
mjr 10:976666ffa4ef 1489 // been running all this time, since each read starts a new
mjr 10:976666ffa4ef 1490 // cycle. Our timing is longer than usual on this round, so
mjr 10:976666ffa4ef 1491 // the integration won't be comparable to a normal cycle. Throw
mjr 10:976666ffa4ef 1492 // this one away by doing a read now, and throwing it away - that
mjr 10:976666ffa4ef 1493 // will get the timing of the *next* cycle roughly back to normal.
mjr 10:976666ffa4ef 1494 ccd.read(pix, npix);
mjr 10:976666ffa4ef 1495 }
mjr 10:976666ffa4ef 1496
mjr 6:cc35eb643e8f 1497 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1498 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1499 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 1500 #endif
mjr 6:cc35eb643e8f 1501
mjr 6:cc35eb643e8f 1502 // provide a visual status indication on the on-board LED
mjr 5:a70c0bce770d 1503 if (calBtnState < 2 && hbTimer.read_ms() > 1000)
mjr 1:d913e0afb2ac 1504 {
mjr 5:a70c0bce770d 1505 if (js.isSuspended() || !js.isConnected())
mjr 2:c174f9ee414a 1506 {
mjr 5:a70c0bce770d 1507 // suspended - turn off the LED
mjr 4:02c7cd7b2183 1508 ledR = 1;
mjr 4:02c7cd7b2183 1509 ledG = 1;
mjr 4:02c7cd7b2183 1510 ledB = 1;
mjr 5:a70c0bce770d 1511
mjr 5:a70c0bce770d 1512 // show a status flash every so often
mjr 5:a70c0bce770d 1513 if (hbcnt % 3 == 0)
mjr 5:a70c0bce770d 1514 {
mjr 6:cc35eb643e8f 1515 // disconnected = red/red flash; suspended = red
mjr 5:a70c0bce770d 1516 for (int n = js.isConnected() ? 1 : 2 ; n > 0 ; --n)
mjr 5:a70c0bce770d 1517 {
mjr 5:a70c0bce770d 1518 ledR = 0;
mjr 5:a70c0bce770d 1519 wait(0.05);
mjr 5:a70c0bce770d 1520 ledR = 1;
mjr 5:a70c0bce770d 1521 wait(0.25);
mjr 5:a70c0bce770d 1522 }
mjr 5:a70c0bce770d 1523 }
mjr 2:c174f9ee414a 1524 }
mjr 6:cc35eb643e8f 1525 else if (needReset)
mjr 2:c174f9ee414a 1526 {
mjr 6:cc35eb643e8f 1527 // connected, need to reset due to changes in config parameters -
mjr 6:cc35eb643e8f 1528 // flash red/green
mjr 6:cc35eb643e8f 1529 hb = !hb;
mjr 6:cc35eb643e8f 1530 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1531 ledG = (hb ? 1 : 0);
mjr 6:cc35eb643e8f 1532 ledB = 0;
mjr 6:cc35eb643e8f 1533 }
mjr 6:cc35eb643e8f 1534 else if (cfg.d.ccdEnabled && !cfg.d.plungerCal)
mjr 6:cc35eb643e8f 1535 {
mjr 6:cc35eb643e8f 1536 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 1537 hb = !hb;
mjr 6:cc35eb643e8f 1538 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1539 ledG = 0;
mjr 6:cc35eb643e8f 1540 ledB = 1;
mjr 6:cc35eb643e8f 1541 }
mjr 6:cc35eb643e8f 1542 else
mjr 6:cc35eb643e8f 1543 {
mjr 6:cc35eb643e8f 1544 // connected - flash blue/green
mjr 2:c174f9ee414a 1545 hb = !hb;
mjr 4:02c7cd7b2183 1546 ledR = 1;
mjr 4:02c7cd7b2183 1547 ledG = (hb ? 0 : 1);
mjr 4:02c7cd7b2183 1548 ledB = (hb ? 1 : 0);
mjr 2:c174f9ee414a 1549 }
mjr 1:d913e0afb2ac 1550
mjr 1:d913e0afb2ac 1551 // reset the heartbeat timer
mjr 1:d913e0afb2ac 1552 hbTimer.reset();
mjr 5:a70c0bce770d 1553 ++hbcnt;
mjr 1:d913e0afb2ac 1554 }
mjr 1:d913e0afb2ac 1555 }
mjr 0:5acbbe3f4cf4 1556 }